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1 Introduction

The notion of capacity is an essential tool in the study of nonlinear potential theory,
which allows us to measure sets more precisely than the usual Lebesgue measure, to see
that functions are better defined almost everywhere (quasi everywhere). Capacities play
a key role in the study of solutions of partial differential equations, for example, Boccardo
et al. studied in [6] the existence and non existence of solutions of the following problem:

(P)

{
−△u+ u | ∇u |2= µ in Ω,

u = 0 on ∂Ω,
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where Ω is a bounded open set in RN , N ≥ 2, and µ is a Radon measure on Ω. More
precisely, the authors proved the existence of a solution u in H1

0 (Ω) for the problem (P)
if and only if the measure µ does not charge the sets of capacity zero in Ω. Capacity is
also a tool to understand the point-wise behavior of functions in Sobolev spaces.

The theory of nonlinear potential was studied by Maz’ya and Khalvin in [13] and by
Meyers in [20] in the Lp space ( 1 < p < +∞ ) by introducing the concept of capacity
in those spaces which allowed very rich applications in functional analysis, harmonic
analysis, theory of probabilities and partial differential equations. The Sobolev capacity
for constant exponent spaces has found a great number of applications, see Maz’ya [19],
Evans and Gariepy [8], and Heinonen et al. in [12]. Also, Kilpeläinen introduced in
[14] the weighted Sobolev capacity and discussed the role of capacity in the point-wise
definitions of functions in Sobolev spaces involving the weights of Muckenhoup’s Ap-class.
On the other hand, Harjulehto et al. [9] generalized the Sobolev capacity to the variable
exponent case. Later, this notion was defined in Orlicz spaces in [4] by N. Aissaoui and
A. Benkirane and in Musielak-Orlicz space by M.C. Hassib, Y. Akdim, A. Benkirane
and N. Aissaoui in [2, 3].

In a recent work [5], we have defined the Ck,p⃗ capacity in anisotropic Sobolev spaces.
Also, we proved that Ck,p⃗ is a Choquet capacity.

The Sobolev space with zero boundary values was classically defined as a completion
of compactly supported smooth functions with respect to the Sobolev space [18]. Indeed,
the Sobolev space with zero boundary is essential to specify or compare boundary values
of Sobolev functions. This is particularly important in connection with boundary value
problems in the calculus of variations and partial differential equations and with compar-
ison principales in potential theory. Then, the variable exponent Sobolev space with zero
boundary values has been defined in [10] following a method developed by Kilpeläinen,
Kinnunen and Martio in [16] for metric measure spaces. On the other hand, this no-
tion was generalized by M.C. Hassib and Y. Akdim [11] to weighted variable exponent
Sobolev spaces on metric measure spaces. In [22], T. Ohno and T. Shimomura stud-
ied the Musielak-Orlicz-Sobolev space with zero boundary values on any metric space
endowed with a Borel regular measure.

Our goal in this work is to study the anisotropic Sobolev space with zero boundary
values using the concept of capacity.

The present paper is organized as follows. In the second section, we recall some
preliminary results on anistropic Sobolev spaces and some properties of capacities. In
Section 3, we develop a capacity theory in this space by including monotonicity, countable
subadditivity and serval convergence results, we define the anisotropic Sobolev space with
zero boundary values and we show some of its properties. As an application of our results,
we consider, in Section 4, the Dirichlet energy and we prove that it has a minimizer in
anisotropic Sobolev spaces with zero boundary values.

2 Preliminaries

2.1 Anisotropic Sobolev spaces

Let Ω be an open bounded domain in RN (N ≥ 2) with boundary ∂Ω.
Let 1 < p0, p1, ..., pN < ∞ and denote

p⃗ = (p0, p1, ..., pN ), D0u = u and Diu = ∂u
∂xi

for i = 1, ...., N.
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Set

p = min{p0, p1, ..., pN}, then p > 1.

The anisotropic Sobolev space W 1,p⃗(Ω) is defined as follows:

W 1,p⃗(Ω) = {u ∈ Lp0(Ω) and Diu ∈ Lpi(Ω), i = 1, ..., N}.

We recall that the W 1,p⃗(Ω) is a separable, reflexive Banach space (see [1]) with respect
to the norm

∥u∥W 1,p⃗(Ω)=

N∑
i=0

∥Diu∥Lpi (Ω).

We recall also the space W 1,p⃗
0 (Ω) is the closure of C∞

0 (Ω) with respect to this norm.
The theory of such anisotropic spaces was developed in [25], [21], [23], [24]. It was

shown that C∞
0 (Ω) is dense in W 1,p⃗

0 (Ω) and W 1,p⃗
0 (Ω) is a reflexive Banach space. For

any p⃗ = (p0, p1, ....., pN ), with 1 < pi < ∞, i = 0, 1, ......, N , the dual space of the

anisotropic Sobolev space W 1,p⃗
0 (Ω) is equivalent to W−1,p⃗′

(Ω), where p⃗′ = (p′0, p
′
1, ..., p

′
N )

and p′i =
pi

pi − 1
for all i = 0, 1, ..., , N.

Proposition 2.1 Let p ∈ [1,+∞[ and (fn)n be a sequence in (Lp(µ), ∥.∥p) whose
series of norms

∑
n
∥fn∥p converges. Then the series of functions

∑
n
fn converges for the

norm ∥.∥p and we have ∥
∑
n
fn∥p≤

∑
n
∥fn∥p.

Proof. For n ∈ N∗ fixed, according to the Minkowski inequality, we have∥∥∥∥∥
n∑

k=0

|fk|

∥∥∥∥∥
p

≤
n∑

k=0

∥fk∥p≤
+∞∑
k=0

∥fk∥p.

It follows from the monotone convergence theorem that(∫
Ω

(
+∞∑
k=0

|fk|

)p

dµ

) 1
p

≤
+∞∑
k=0

∥fk∥p.

Thus, ∥∥∥∥+∞∑
k=0

fk

∥∥∥∥
p

≤
+∞∑
k=0

∥fk∥p.

Proposition 2.2 [ [7]] Let E be a Banach space. If (fn)n converges weakly to f in
E, then ∥fn∥ is bounded and ∥f∥≤ lim inf∥fn∥.

By the application of Proposition 2.1, we have the following result.

Lemma 2.1 Let (fn) be a sequence in W 1,p⃗(Ω) whose series of norms
∑
n

∥fn∥W 1,p⃗(Ω)

converges. Then we have

∥
∑
n

fn∥W 1,p⃗(Ω)≤
∑
n

∥fn∥W 1,p⃗(Ω).
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2.2 Capacity

Definition 2.1 Let E be a topological space and T be the class of Borel sets in E,
and let C : T → [ 0,+∞ ] be a function.
1) The function C is called a capacity if the following axioms are satisfied:
i) C(∅) = 0.
ii) X ⊂ Y ⇒ C(X) ≤ C(Y ) for all X and Y in T (monotonicity).
iii) For all sequences (Xn) ⊂ T

C(
⋃
n

Xn) ≤
∑
n

C(Xn) (countable subadditivity).

2) The capacity C is called an outer capacity if, for all X ∈ T,

C(X) = inf{C(O) : O ⊃ X,O is open }.

3) The capacity C is called an interior capacity if, for all X ∈ T,

C(X) = sup{C(K) : K ⊂ X,K is compact}.

4) A property that holds true, except perhaps on a set of capacity zero, is said to be true
C-quasi everywhere (abbreviated C − q.e) .

Definition 2.2 Let f be a real-valued function being finite C-q.e and (fn) be a
sequence of real-valued function being finite C-q.e.
1) We say that (fn) converges to f in C-capacity if

∀ε > 0, lim
n→+∞

C ({x : |fn(x)− f(x)| > ε}) = 0.

2) We say that (fn) converges to f C-quasi uniformly (abbreviated C − q.u) if
∀ε > 0,∃X ∈ T : C(X) < ε and (fn) converges to f uniformly on Xc.

Using same arguments as in Remark 1.27 in [18], we obtain the following remark.

Remark 2.1 Let Ω ⊂ RN and u, v ∈ W 1,p⃗(Ω), then max(u, v) ∈ W 1,p⃗(Ω) and
min(u, v) ∈ W 1,p⃗(Ω). Moreover, for j = 1, ..., N, we have

Dj max(u, v) =

{
Dju almost everywhere in {x ∈ Ω, u(x) ≥ v(x)},
Djv almost everywhere in {x ∈ Ω, v(x) ≥ u(x)}.

3 Anisotropic Sobolev p⃗ - Capacity

In the whole of this paper, we assume that Ω is an open bounded domain in RN (N ≥ 2)
with boundary ∂Ω and µ is a measure of Lebesegue.

Definition 3.1 The anisotropic Sobolev p⃗ - capacity of the set E ⊂ Ω is defined by

Cp⃗(E) = inf
u∈A(E)

{
∥u∥W 1,p⃗(Ω)

}
,

where

A(E) =
{
u ∈ W 1,p⃗(Ω) : u ≥ 1 on an open set containing E and u ≥ 0

}
.

If A(E) = ϕ, we set Cp⃗(E) = ∞. Functions belonging to A(E) are called admissible
functions for E.
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Lemma 3.1 The anisotropic Sobolev p⃗ - capacity is a capacity.

Proof.

i) It is obvious that Cp⃗(ϕ) = 0.

ii) A(E2) ⊂ A(E1) implies Cp⃗(E1) ≤ Cp⃗(E2) for every E1 ⊂ E2.

iii) Let ε > 0, we may assume that

∞∑
i=0

Cp⃗(Ei) < +∞.

Let (Ei) be a subset of Ω
(
if

∞∑
i=0

Cp⃗(Ei) = +∞, there is nothing to show
)
,

then
∀i ∈ N, Cp⃗(Ei) < +∞,

therefore, we choose ui ∈ A(Ei) so that

∥ui∥W 1,p⃗(Ω)≤ Cp⃗(Ei) + ε× 2−i−1, i = 0, 1, 2, ...

Let v = supui, we show that v is an admissible function for

+∞⋃
i=0

Ei.

Indeed, for all i ∈ N, we have by Lemma 2.1 that

∥supui∥W 1,p⃗(Ω)≤ ∥
+∞∑
i=0

ui∥W 1,p⃗(Ω)≤
+∞∑
i=0

∥ui∥W 1,p⃗(Ω),

thus,

∥v∥W 1,p⃗(Ω)≤
+∞∑
i=0

∥ui∥W 1,p⃗(Ω)≤
+∞∑
i=0

Cp⃗(Ei) + ε,

which implies that v ∈ W 1,p⃗(Ω). Since ui ∈ A(Ei), there exists an open set Oi ⊃ Ei

such that ui ≥ 1 on Oi for every i= 0,1,2,..., it follows that

v = supui ≥ 1 on

+∞⋃
i=1

Oi which is an open set containing

+∞⋃
i=0

Ei.

Hence we conclude that Cp⃗ is a capacity.

Lemma 3.2 Let E ⊂ Ω. The anistropic Sobolev p⃗ - capacity of E is given by

Cp⃗(E) = inf
u∈B(E)

{
∥u∥W 1,p⃗(Ω)

}
,

where
B(E) =

{
u ∈ A(E) : 0 ≤ u ≤ 1

}
.

Proof. Clearly, we have
B(E) ⊂ A(E),

thus,

Cp⃗(E) ≤ inf
u∈B(E)

{
∥u∥W 1,p⃗(Ω)

}
.



6 Y. AKDIM, R. ELHARCH, M.C. HASSIB AND S. LALAOUI RHALI

For the reverse inequality, let ε > 0 and let u ∈ A(E) such that

∥u∥W 1,p⃗(Ω)≤ Cp⃗(E) + ε.

Then we have v = max(0,min(u, 1)) ∈ B(E). Thus, v ≤ u and by Remark 2.1, we have

| ∂v

∂xj
|≤| ∂u

∂xj
| for j = 1, ....., N almost everywhere.

Thus,

inf
u∈B(E)

{
∥u∥W 1,p⃗(Ω)

}
≤ ∥v∥W 1,p⃗(Ω)≤ ∥u∥W 1,p⃗(Ω)≤ Cp⃗(E) + ε.

Letting ε → 0, we obtain

inf
u∈B(E)

{
∥u∥W 1,p⃗(Ω)

}
≤ Cp⃗(E).

Theorem 3.1 The anisotropic Sobolev p⃗ - capacity is an outer capacity.

Proof. Indeed, by monotonicity, we have

Cp⃗(E) ≤ inf{Cp⃗(O) : E ⊂ O is open}.

To prove the other inequality, let ε > 0 and take u ∈ A(E) such that

∥u∥W 1,p⃗(Ω)≤ Cp⃗(E) + ε.

Since u ∈ A(E), there is an open set O containing E such that u ≥ 1 on O.
This implies that

Cp⃗(O) ≤ ∥u∥W 1,p⃗(Ω)≤ Cp⃗(E) + ε.

The claim follows by letting ε → 0.

Proposition 3.1 Let µ be a Lebesegue measure on Ω and E ⊂ Ω, then

µ(E) ≤ µ(Ω)Cp⃗(E).

Proof. If Cp⃗(E) = ∞, there is nothing to prove. Thus we may assume that
Cp⃗(E) < ∞. Let ε > 0 and take u ∈ A(E) such that

∥u∥W 1,p⃗(Ω)≤ Cp⃗(E) + ε.

There is an open O ⊃ E such that u ≥ 1 in O and u ≥ 0, thus

µ(E) ≤ µ(O) ≤
∫
O

|u|dµ ≤
∫
Ω

|u|dµ.

On the other hand, by Hölder’s inequality, we have∫
Ω

|u|dµ ≤ (µ(Ω))1−
1
p0 ∥u∥W 1,p⃗(Ω)≤ µ(Ω) (Cp⃗(E) + ε) .

The claim follows by letting ε → 0.
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Theorem 3.2 Let (kn) be a decreasing sequence of compacts and k =
⋂
n∈N

kn, then

lim
n→∞

Cp⃗(kn) = Cp⃗(k).

Proof. First, we observe that Cp⃗(k) ≤ lim
n→∞

Cp⃗(kn). On the other hand, let O be an

open set such that k ⊂ O, thus

k ∩Oc = ϕ.

The sequence (k
′

n) defined for all n by k
′

n = kn∩Oc is a decreasing sequence of compacts

that satisfies
⋂
n∈N

k
′

n = ∅. Then, there exists n0 such that k
′

n0
= ∅. Hence, for all n ≥ n0,

k
′

n = ∅ and then kn ⊂ O, for all n ≥ n0. Therefore,

lim
n→∞

Cp⃗(kn) ≤ Cp⃗(O).

And since Cp⃗ is an outer capacity, we obtain the claim by taking infimum over all open
sets O containing k.

Proposition 3.2 If there exists u ∈ W 1,p⃗(Ω) such that u = +∞ on an open set
containing E, then Cp⃗(E) = 0.

Proof. Let u ∈ W 1,p⃗(Ω) be such that u = +∞ on an open set O containing E, then
u ≥ α, for all α > 0. Therefore,

∀α > 0, Cp⃗(E) ≤ 1

α
∥u∥W 1,p⃗(Ω).

Letting α → +∞, we obtain Cp⃗(E) = 0.

Theorem 3.3 Let u and (un)n be in W 1,p⃗(Ω) and consider the following proposi-
tions:
i) un → u strongly in W 1,p⃗(Ω).
ii) un → u in Cp⃗-capacity .
iii) There is a subsequence (unj

) such that unj
→ u in Cp⃗ - q.u.

iv) (unj
) → u in Cp⃗.- q.e.

Then we have

i) ⇒ ii) ⇒ iii) ⇒ iv).

Proof.

• We show that i) ⇒ ii).

By Proposition 3.2, we have u and un are finite Cp⃗ -q.e, for all n.

Let ε > 0, then

Cp⃗

({
x : |un − u|(x) > ε

})
≤ ∥un − u∥W 1,p⃗(Ω)

ε
.

• We show that ii) ⇒ iii).
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Let ε > 0, then there exists unj
such that

Cp⃗

({
x : |unj − u|(x) > 2−j

})
≤ ε · 2−j .

We put

Ej =
{
x : |unj

− u|(x) > 2−j
}

and Gm =
⋃
j≥m

Ej .

Then we have
Cp⃗(Gm) ≤

∑
j≥m

ε · 2−j < ε.

On the other hand,

∀x ∈ (Gm)c,∀j ≥ m |unj − u|(x) ≤ 2−j ,

thus
unj

→ u in Cp⃗ − q.u.

• We show that iii) ⇒ iv).

We have

∀j ∈ N,∃Xj : Cp⃗(Xj) ≤
1

j
,

thus,

unj
converges uniformly to u on (Xj)

C .

We put X =
⋂
j

Xj , then Cp⃗(X) = 0 and unj → u on XC .

As an immediate consequence of Theorem 3.3 and Proposition 3.1, we have the following
result.

Corollary 3.1 If (un)n is a sequence which converges to u in W 1,p⃗(Ω), then there
exists a subsequence of (un)n which converges to u, µ a.e.

Definition 3.2 A function u : Ω → [−∞,+∞] is called a Cp⃗ - quasicontinuous
function in Ω if for every ε > 0, there is a set X such that Cp⃗(X) < ε and u|Ω\X is
continuous.

Theorem 3.4 The anistropic Sobolev p⃗ - capacity Cp⃗ satisfies the following proper-
ties:

1) If O is an open set of Ω and E ⊂ Ω is such that µ(E) = 0, then

Cp⃗(O) = Cp⃗(O − E).

2) Let u and v be Cp⃗− quasicontinuous functions in Ω, we have
i) if u = v almost everywhere in an open O ⊂ Ω, then

u = v Cp⃗ − quasi everywhere in O,

ii) If u ≤ v almost everywhere in an open O ⊂ Ω, then

u ≤ v Cp⃗ − quasi everywhere in O.
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Proof.

1) By monotonicity of Cp⃗, we get Cp⃗(O) ≥ Cp⃗(O − E).
Let ε > 0 and let u ∈ A(O − E) be such that

∥u∥W 1,p⃗(Ω)≤ Cp⃗(O − E) + ε.

Then there exists an open G ⊂ Ω with (O −E) ⊂ G and u ≥ 1 almost everywhere
in G. Since G∪O is open, O ⊂ G∪O and u ≥ 1 almost everywhere in G∪ (O−E),
and almost everywhere in G ∪O since µ(E) = 0, we have u ∈ A(O)

Cp⃗(O) ≤ ∥u∥W 1,p⃗(Ω)≤ Cp⃗(O − E) + ε

by letting ε → 0 , we deduce that Cp⃗(O) ≤ Cp⃗(O − E).

2) Since Cp⃗ is an outer capacity, we get the results by [15].

Lemma 3.3 For any bounded open O ⊂ Ω, we have

µ(O) = 0 ⇐⇒ Cp⃗(O) = 0.

Proof. If µ(O) = 0, then, by applying Theorem 3.4, we get Cp⃗(O) = Cp⃗(O\O) =
Cp⃗(ϕ) = 0. On the other hand, if Cp⃗(O) = 0, then, by Proposition 3.1, µ(O) ≤ Cp⃗(O) =
0.

Proposition 3.3 Let (un)n, u ∈ W 1,p⃗(Ω) be such that un ⇀ u weakly in W 1,p⃗(Ω),
then lim inf(un) ≤ u ≤ lim sup(un) Cp⃗-q.e.

Proof. Since W 1,p⃗(Ω) is a reflexive space, un ⇀ u weakly in W 1,p⃗(Ω). Then, by
the Banach-Saks theorem, there is a subsequence denoted again by (un) such that the

sequence (gn) defined by gn = 1
n

n∑
i=1

ui converges to u strongly in W 1,p⃗(Ω).

By Theorem 3.3, there is a subsequence of (gn) denoted again by (gn) such that

lim
n→+∞

gn = u Cp⃗ − q.e.

On the other hand,
lim inf un ≤ lim

n→+∞
gn.

Therefore,

lim inf(un) ≤ u Cp⃗ − q.e.

For the second inequality, it suffices to replace un by (−un) in the first inequality.

3.1 Anisotropic Sobolev spaces with zero boundary values

Definition 3.3 We say that a function u belongs to the anisotropic Sobolev space
with zero boundary values, and we denote u ∈ B1,p⃗

0 (Ω) if there is a Cp⃗-quasicontinuous
function ũ ∈ W 1,p⃗(RN ) such that ũ = u almost everywhere in Ω and ũ = 0 Cp⃗ -quasi

everywhere in RN\Ω. The set B1,p⃗
0 (Ω) is endowed with the norm

||u||
B1,p⃗

0 (Ω)
= ||ũ||W 1,p⃗(RN ).
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Theorem 3.5 B1,p⃗
0 (Ω) is a Banach space.

Proof. Let (un)n be a Cauchy sequence in B1,p⃗
0 (Ω), for every n, there is a Cp⃗-

quasicontinuous function ũn ∈ W 1,p⃗(RN ) such that ũn = un almost everywhere in Ω and
ũn = 0Cp⃗-quasi everywhere in RN\Ω.

Since W 1,p⃗(RN ) is a Banach space, there is a function u such that ũn → u in
W 1,p⃗(RN ) as n → +∞. By applying Theorem 3.3, we deduce that u is Cp⃗− quasi-
continuous and by Proposition 3.3, we have u = 0 Cp⃗ -q.e in RN\Ω. Consequently,
u ∈ B1,p⃗

0 (Ω) and we conclude that the spaces B1,p⃗
0 (Ω) are complete.

Corollary 3.2 The space B1,p⃗
0 (Ω) is reflexive.

Proof. The space W 1,p⃗(RN ) is a reflexive Banach space, by applying Theorem 3.5,

we deduce the space B1,p⃗
0 (Ω) is closed in W 1,p⃗(RN ) and therefore B1,p⃗

0 (Ω) is reflexive.

Corollary 3.3 We have W 1,p⃗
0 (Ω) ⊂ B1,p⃗

0 (Ω) ⊂ W 1,p⃗(Ω).

Proof. Since D(Ω) ⊂ B1,p⃗
0 (Ω) and by applying Theorem 3.5, we obtain the first

inclusion. The second inclusion follows directly from the definition of the space B1,p⃗
0 (Ω).

Proposition 3.4 Let u ∈ B1,p⃗
0 (Ω) and v ∈ W 1,p⃗(RN ) be bounded functions. If v is

Cp⃗- quasicontinuous, then uv ∈ B1,p⃗
0 (Ω).

Proof. Let ũ ∈ W 1,p⃗(RN ) be a Cp⃗- quasicontinuous representative function of u.
ũv is Cp⃗- quasicontinuous in RN . Let D = {x ∈ RN\Ω : ũv ̸= 0}, D = G ∪ H, where
G = {x ∈ RN\Ω : ũ ̸= 0} and H = {x ∈ RN\Ω : v = ∞}. It is obvious that Cp⃗(G) = 0
and by Proposition 3.2, we have Cp⃗(H) = 0, thus Cp⃗(D) = 0. Therefore, ũv = 0 Cp⃗ -

quasi everywhere in Ω. Since ũv = uv a.e in Ω, we get uv ∈ B1,p⃗
0 (Ω).

Theorem 3.6 Let O ⊂ Ω be such that Cp⃗(O) = 0, we have

B1,p⃗
0 (Ω) = B1,p⃗

0 (Ω\O).

Proof. It is obvious that B1,p⃗
0 (Ω\O) ⊂ B1,p⃗

0 (Ω).

Let u ∈ B1,p⃗
0 (Ω), then there is a Cp⃗- quasicontinuous function ũ ∈ W 1,p⃗(RN ) such

that ũ = u a.e in Ω and ũ = 0 Cp⃗- quasi everywhere in RN\Ω. Since Cp⃗(O) = 0, we have

ũ = 0 Cp⃗ - quasi everywhere in RN\(Ω\O). Thus u ∈ B1,p⃗
0 (Ω\O).

Remark 3.1 If Cp⃗(∂Ω) = 0, then B1,p⃗
0 (Ω̊) = B1,p⃗

0 (Ω).

4 Application

4.1 The Dirichlet energy integral minimisers

Definition 4.1 Let w ∈ W 1,p⃗(Ω). For all u ∈ B1,p⃗
0 (Ω), we define I p⃗Ω,w(u) by

I p⃗Ω,w(u) =

∫
Ω

| w | dx+

N∑
i=0

∫
Ω

(
| ∂u

∂xi
|pi + | ∂w

∂xi
|pi

)
dx.

I p⃗Ω,w is called the energy operator corresponding to the boundary value function w.
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Lemma 4.1 [17] Let H be a reflexive Banach space. If I : H → R is a convex, lower
semi-continuous and coercive operator, then there is an element in H that minimizes I.

Theorem 4.1 Let B1,p⃗
0 (Ω) be the anisotropic Sobolev space with zero boundary val-

ues. Then there exists a function u ∈ B1,p⃗
0 (Ω) such that

I p⃗Ω,w(u) = inf
v∈B1,p⃗

0 (Ω)
I p⃗Ω,w(v).

Proof. It follows from Theorem 3.5 and Corollary 3.2 that B1,p⃗
0 (Ω) is a reflexive

Banach space. Since the function x → xp is convex for every fixed 1 < p < ∞, we
deduce that I p⃗Ω,w is convex. Moreover, I p⃗Ω,w is lower semi-continuous and coercive, hence
all assumptions of Lemma 4.1 are satisfied.

4.2 Conclusion

In this work, we first show that the anisotropic Sobolev p⃗-capacity Cp⃗ is an outer capacity
and we give sufficient conditions ensuring that Cp⃗(E) = 0 whenever E is a subset of Ω.
Then, we discuss the convergence of a sequence in Cp⃗-capacity. This allows us to show

that the anisotropic Sobolev space with zero boundary values B1,p⃗
0 (Ω) is a reflexive

Banach space. We also prove that B1,p⃗
0 (Ω) coincides with B1,p⃗

0 (Ω\E) for all E ⊂ Ω
satisfying Cp⃗(E) = 0. Finaly, we apply our results to show that the Dirichlet energy has
a minimizer in anisotropic Sobolev spaces with zero boundary values.
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55–68.

[24] J. Rakosnik. Some remarks to anisotropic Sobolev spaces II. Beiträge zur Analysis. 15
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