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Abstract: A modified harmonic balance method is proposed for solving damped
forced generalized nonlinear oscillators with strong nonlinearity. In the classical har-
monic balance method, a set nonlinear algebraic equation of the unknown coefficients
is solved by the numerical method to determine the unknown coefficients. However,
in the present method, only one nonlinear equation and a set of linear algebraic
equations are required for solution, thereby reducing the computational effort. Com-
parison between the results obtain by the proposed method and the numerical method
is presented in figures which show a good agreement with the numerical results. The
proposed method can play an important role for handling such nonlinear dynamical
systems.
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1 Introduction

Nonlinear oscillators are very important in many areas of applied mathematics, physics,
and engineering. Most of the physical problems are governed by the nonlinear differ-
ential equations. The exact solutions of these nonlinear equations are rarely obtained.
Therefore, many researchers focused on analytical approximation methods. Among them,
the perturbation method [1,2], homotopy analysis method [3,4], homotopy perturbation
method [5–7], variational iteration technique [8,9], harmonic balance method (HBM)[10–
13] are well known. The perturbation methods [14–20] are widely used techniques for
dealing with the nonlinear differential systems and they were originally developed for
weakly nonlinear dynamical systems. Jones [20] modified the perturbation method to
extend the accuracy of the solution when the parameter was not small. Further, a modifi-
cation of the Lindstedt-Poincare technique was presented by Cheung et al. [21] based on
the Jones technique [20. The modified Lindstedt-Poincare method has been generalized
by Alam, et al.[22] and it is applicable for a wide variety of nonlinear oscillators. The
harmonic balance method (HBM) is another powerful technique to obtain the periodic
solution of the nonlinear oscillators. According to this method, the solution is chosen as a
truncated Fourier series. Usually, a set of strongly nonlinear algebraic equations appears
among the unknown coefficients of several harmonic terms and these equations are solved
by the numerical method. Further, this method has been modified by several researchers
[23–28]. Rahman et al. [23] used a modified HBM to study the Van der Pol equation.
Rahman and Lee [26] developed a modified residue HBM to handle nonlinear vibrating
problems of beam. Wu [27] developed the harmonic balance method for the Yao-Cheng
oscillator. Wagner and Lentz [28] developed a HBM to handle the Duffing oscillator with
a forcing term with cubic nonlinearity. Younesian et al. [29] applied He’s frequency-
amplitude formulation and He’s energy balance method to handle strongly nonlinear the
generalized Duffing oscillators without forcing term. Uddin et al.[30] presented an ana-
lytical approximation technique for handling the generalized nonlinear Duffing equation
with strong nonlinearity without external forcing term. Rafieipour et al. [31] developed
an analytical approximate solution for the generalized nonlinear vibration of a micro
electro mechanical system by using He’s frequency amplitude formulation. Karahan
and Pakdemirli [32] studied free and forced vibration response of the strongly nonlinear
cubic-quintic Duffing oscillators by using the multiple time scale method. Ullah et al.
[33] developed a modified harmonic balance method to handle nonlinear oscillators with
cubic nonlinearity in the presence of external forcing term. Rahman et al. [34] presented
a modified harmonic balance method to solve the nonlinear vibration problem of a beam
resting on nonlinear foundation. Recently, Yeasmin et al. [35] have presented an ana-
lytical technique for handing the quadratic nonlinear oscillator based on the harmonic
balance method for free vibration nonlinear problems. Cheib et al. [36] presented an
analysis of the dynamics of a two-degree-of-freedom nonlinear mechanical system under
harmonic excitation. It is noticed that the approximate analytical techniques for solving
the damped forced generalized nonlinear oscillators with strong nonlinearity are almost
untouched. To fill this gap, a modified harmonic balance method has been presented for
handling strongly generalized nonlinear damped forced oscillators. The convenience of
this method is that only one nonlinear algebraic equation and a set of linear algebraic
equations are required to solve by the numerical method, which reduces the heavy com-
putational effort that is required in classical harmonic balance methods. The obtained
results are compared with the corresponding numerical results in graphs and it shows a
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good agreement with these numerical results.

2 Method

Let us assume a strongly generalized nonlinear damped forced oscillator [29–33] of the
form

ẍ+ µẋ+ ω2
0x+ ε(α3f3(x) + α5f5(x) + .....+ αnfn(x)) = E cos(ωt), (1)

where over-dots denote differentiation with respect to time t, ω0 is the natural frequency,
µ is the linear damping coefficient, fi(x) are given general nonlinear functions of x, αi

(i = 1, 3, 5, ...n) are constants, ε is a positive parameter which is not necessarily small,
E is the amplitude of the excitation force and ω is the forcing frequency. All of the
parameters are positive. We assume that µ = 0 in our idealized systems. But damped
motion is important for most of the physical and engineering vibration problems. In this
paper, we are going to assume that µ 6= 0. This is a non-autonomous system since time t
explicitly appears in the right-hand side of the given equation. In particular, periodically
forced harmonic oscillators depended explicitly on time t and exhibited quite interesting
behavior. When a damped Duffing-type oscillator is driven with a periodic forcing func-
tion, the result may be a periodic response at the same frequency as the forcing function.
Since the unforced oscillation is the dissipated energy due to the damping, we are not
surprised to find that it is absent from the steady state forced behavior. According to
the proposed method, the approximate solution of Eq.(1) is assumed [33] in the following
form:

x = a cos(ωt) + b sin(ωt) + a3 cos(3ωt) + b3 sin(3ωt) + ...., (2)

where a, b, a3,b3... are the unknown coefficients. Now, differentiating Eq.(2) twice with
respect to t and then putting into Eq.(1) and expanding fi(x) as a truncated Fourier
series expansion and taking the coefficients of equal harmonics from both sides, we obtain
the following set of algebraic equations:

a(−ω2 + ω2
0) + bµω + εC1(a, b, a3, b3, ...) = E, (3a)

a(−ω2 + ω2
0)− aµω + εS1(a, b, a3, b3, ...) = 0, (3b)

a3(−9ω2 + ω2
0) + 3b3µω + εC3(a, b, a3, b3, ...) = 0, (3c)

b3(−9ω2 + ω2
0)− 3a3µω + εS3(a, b, a3, b3, ...) = 0. (3d)

Eliminating ω2 from the Eqs.(3b)-(3d) with the help of Eq.(3a), we get

ω2 = ω2
0 + bµω/a+ εC1(a, b, a3, b3, ...)− E/a, (4a)

− b2µω/a− aµω − εbC1(a, b, a3, b3, ...) + εS1(a, b, a3, b3, ...) + bE/a = 0, (4b)

− 8ω2
0a3 + 3b3µω− 9a3bµω/a− 9εa3C1(a, b, a3, b3, ...) + εC3(a, b, a3, b3, ...) + 9a3E/a = 0,

(4c)

− 8ω2
0b3 − 3a3µω− 9b3bµω/a− 9εb3C1(a, b, a3, b3, ...) + εS3(a, b, a3, b3, ...) + 9b3E/a = 0.

(4d)
Now, using Eq.(4b), eliminating ω from the Eqs.(4c)-(4d) and taking only the linear
terms of a3, b3 and neglecting the terms of insignificant effects, we obtain two linear
equations for a3 and b3. From these equations a3 and b3 are determined. After putting
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a3 and b3 into Eq.(4b), b is expressed as a power series of small parameter λ(µ, ω,E) in
the following form:

b = m0 +m1λ+m2λ
2 +m3λ

3 + ..., (5)

where m0, m1, m2 are the functions of a. Finally, after putting a3, b3 and b into Eq.(4a)
and then solving this equation, the values of a are determined. Consequently, the desired
values of b, a3 and b3 are calculated.

3 Example

Consider a generalized nonlinear (cubic-quintic) damped forced oscillator [29-33] of the
following form:

ẍ+ µẋ+ x+ ε(α3x
3 + α5x

5) = E cos(ωt), (6)

where ω2
0=1. According to the truncated Fourier series, the solution of Eq.(6) is assumed

as [33]

x = a cos(ωt) + b sin(ωt) + a3 cos(3ωt) + b3 sin(3ωt) + .... (7)

Putting Eq.(7) with its derivatives into Eq.(6) and then equating the coefficients of
equal harmonics on both sides, we obtain

16(a+ bµω − aω2) + 12ε((a2 − b2)a3 + 2aa23 + a(a2 + b2 + 2bb3 + 2b23)

+ 5ε(6(a2 − b2)a33 + 6aa43 + 12aa23(a2 + b2 + bb3 + b23) + a3(5a4 − 6a2b2 − 3b4

+ 6(a2 − b2)b23) + 2a((a2 + b2)2 + 2(3a2b+ b3)b3 + 6(a2 + b2)b23 + 6bb33

+ 3b43))α5 = 16E,

(8a)

− 16(aµω + b(−1 + ω2)) + 12ε(b(a2 + b2)− 2aba3 + 2ba23 + (a2 − b2)b3 + 2bb23)α3

+ 5ε(2b(a2 + b2)2 − 12aba33 + 6ba43 + (3a4 + 6a2b2 − 5b4)b3 + 12b(a2 + b2)b23

+ 6(a2 − b2)b33 + 6bb43 − 4aba3(a2 + 3b2 + 3b23) + 6a23(2b(a2 + b2)

+ (a2 − b2)b3 + 2bb23))α5 = 0,

(8b)

48µωb3 + ε(30a(a2 − 3b2)a23α5 + 10a53α5 + 10a(a2 − 3b2)b23α5 + a(a2 − 3b2)(4α3+

5(a2 + b2)α5) + 4a33((3α3 + 5(3(a2 + b2) + b23)α5)) + 2a3(8− 72ω2 + 6ε(2(a2 + b2)

+ b23)α3) + 5ε(3(a2 + b2)2 + (6a2b− 2b3)b3 + 6(a2 + b2)b43)α5) = 0,

(8c)

10εa43b3α5 + ε(−30b(−3a2 + b2)b23α5 + 10b53α5 + 12b33(α3 + 5(a2 + b2)α5))

− b(−3a2 + b2)(4α3 + 5(a2 + b2)α5)) + 2b3(8− 72ω2 + 12ε(a2 + b2)α3

+ 15ε(a2 + b2)2α5)− 4a3(12µω − 5εa(a2 − 3b2)b3α5) + 2εa23(−5b(−3a2 + b2)α5

+ 10b33α5 + 6b3(α3 + 5(a2 + b2)α5)) = 0.

(8d)

Eliminating ω2 from the Eqs.(8b)-(8d) with the help of Eq.(8a), and ignoring the
terms whose responses are negligible, we obtain the following equations:

− 16(−bE + a2µω + b2µω)− 3ε(ba3(3a2 − b2)(4α3 + 5(a2 + b2)α5)

− ab3(a2 − 3b2)(4α3 + 5(a2 + b2)α5)) = 0,
(9a)
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− 4a3(4(8a− 9E + 9bµω) + εa(21(a2 + b2)α3 + 15(a2 + b2)2α5))

+ a(48µωb3 + εa(a2 − 3b2)(4α3 + 5(a2 + b2)α5)) = 0,
(9b)

− 48aµωa3 + εab(3a2 + b2)(4α3 + 5(a2 + b2)α5)− 4b3(4(8a− 9E + 9bµω)

+ εa((21(a2 + b2)α3 + 15(a2 + b2)α5)) = 0.
(9c)

Now, using Eq.(9b), eliminating ω from the Eqs.(9c) and (9d) and taking only the
linear terms of a3, b3 and omitting the terms whose response is negligible, we obtain

εa(a4 − 2a2b2 − 3b4)(4α3 + 5(a2 + b2)α5)− 4a3(4(8a2 + 8b2 − 9aE)

+ ε(21(a2 + b2)2α3 + 15(a2 + b2)3α5)) = 0,
(10a)

− εb(3a4 + 2a2b2 − b4)(4α3 + 5(a2 + b2)α5) + 4b3(4(8a2 + 8b2 − 9aE)

+ ε(21(a2 + b2)2α3 + 15(a2 + b2)3α5)) = 0.
(10b)

After solving Eqs.(10a) and (10b), a3 and b3 are determined as follows:

a3 = εa(a4 − 2a2b2 − 3b4)(4α3 + 5(a2 + b2)α5)

/4(4(8a2 + 8b2 − 9bE) + ε(21(a2 + b2)2)α3 + 15(a2 + b2)3α5),
(11a)

b3 = εb(3a4 + 2a2b2 − b4)(4α3 + 5(a2 + b2)α5)

/4(4(8a2 + 8b2 − 9bE) + ε(21(a2 + b2)2)α3 + 15(a2 + b2)3α5).
(11b)

Inserting the values of a3 and b3 into Eq.(9a), we then expand b in a power series of the
small parameter λ as follows:

b = l0 + l1λ+ l2λ
2 + l3λ

3 + ..., (12)

where λ = 2µω/E, l0 = a2µω/E, l1 = a4µ2ω2/E2, l2 = 2a6µ3ω3/E3, .... Finally,upon
inserting a3, b3 and b into Eq.(8a) and solving, the values of a are obtained. Consequently,
the values b, a3 and b3 are determined.

4 Results and Discussion

The solutions determined by the present technique are compared with the corresponding
numerical solution to justify the validity and the accuracy of the proposed technique.
Comparisons between the solution curves obtained by the proposed method and a nu-
merical method are shown graphically in Figures 1-4 in the presence of various damping
and different values of the system parameters for strongly generalized nonlinear forced
vibration problems.

From the figures, it is seen that the approximate results agree nicely with those
solutions obtained by the numerical procedure.

5 Conclusion

In this study, a modified harmonic balance method is presented for handling strongly
generalized nonlinear damped forced vibration problems. Some limitations of the classi-
cal HBM are overcome by the proposed method. The advantage of the present technique
is that only one nonlinear algebraic equation is needed for solution. As a result, the
computational effort is reduced and less effort is required than in the existing classical
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Figure 1: Comparison between the results obtained by the presented method and a numerical
technique when ω = 5, ε = 1.0, α3 = 1, α5 = 1, µ = 0.1, E = 10.

Figure 2: Comparison between the results obtained by the presented method and a numerical
technique when ω = 10, ε = 1.0, α3 = 1, α5 = 1, µ = 0.25, E = 20.

Figure 3: Comparison between the results obtained by the presented method and a numerical
technique when ω = 5, ε = 0.5, α3 = 1, α5 = 1, µ = 0.05, E = 10.

Figure 4: Comparison between the results obtained by the presented method and a numerical
technique when ω = 10, ε = 1.0, α3 = 1, α5 = 1, µ = 0.1, E = 20.
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harmonic balance method. The results obtained by the present method show a good
agreement with the numerical results. It is assumed that the proposed method is very
effective and convenient for damped forced generalized nonlinear oscillators with strong
as well as weak nonlinearities. Our results exhibit acceptable complaince with the solu-
tions computed by the fourth order Runge-Kutta method for several values of systems
parameters and significant damping.
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