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1 Introduction

The self-organization process is found in many natural structures and represents the
main concept of the Systems Science field. It sometimes refers to the formation of vari-
ous patterns in some physical and biological systems. For instance, we can see it in the
rippled dune formation in a sand desert or in the cells combination that creates highly
structured and ordered tissues. In most of these systems, the order and structure are
acquired thanks to the proximate means characterizing them. It is then possible to view
the pattern formation at the global level of the structure due to interactions between
components of lower levels. The whole process is specifically governed by natural selec-
tion characterizing physical and biological systems. However, some other systems (found
in nature) can become organized due to external commands, for instance, human inter-
ventions (protocols, algorithms, simulations) that lead to the building of sophisticated
societies, structures or machines. We are exploring the later case with the specific domain
of wave-motion where the model of Harry Dym is considered [1–8].

It is important to recall that the self-organization process is closely related to the dy-
namical system theory. A number of dynamical systems have been investigated several
times in the course of science history, but the concept remains fascinating for scientists.
One of the reasons is the unpredictable trajectories that characterize the vast amount
of applications found in engineering, physics, biology, (applied) mathematics, and med-
ical sciences [4, 9–12, 14]. A simple example includes the study of chaotic systems with
complicated bifurcations that exist there. The literature comprises diverse types of dy-
namical systems [10,11,13–15], namely, the classical dynamical system and also the open
dynamical system. The later can be seen in Fig.1, where different orbits and trajectories
can be observed. It starts with the initial trajectories (Fig.1 (upper right)) of an agent
dynamical system in isolation in its suitable space Sπ. The process goes on with a de-
coupled agent dynamical system, see Fig.1 (upper left), well defined on its suitable total
space Sτ and which joints together to form the total system shown in Fig.4 (lower left).
The system is completed by the projection or paths, see Fig.1 (lower right), showing how
an agent behaves in a particular environment (Sπ). The behavior of the system in this
last space (Sπ) is the major symbolism at the core of the so-called open dynamical system
as it contrasts with the agent in isolation (Fig.1 (upper right)). Particularly, the orbits in
the open phase portrait for the embedded agent dynamical system (Fig.1 (lower right))
overlap, which is not the case for those of the agent in isolation (Fig.1 (upper right)).
This is what makes open dynamical systems generally hard to study. This statement
is supported by the types of dynamics observed in complex systems like fractals. Some
of these dynamics are depicted in Fig.2 and Fig.3. These representations show differ-
ent sorts of waves involved in fractal-type motifs. The fractal patterns are artificially
(numerically) formed due to mathematical simulations issued from modeling the type of
movements observed in nature around us. The fractal motif include sound-type fractal
waves, heat-type fractal waves, particle fractal waves, ocean chaotic fractal waves, spiral
wave fractal swirls, fluffy cloud chaotic fractal wave spirals, chaotic fractal light waves
and so on.

1.1 Approximation results for the classical Harry Dym model

Let Ω = (a, b), R 3 T > 0 R 3 b > a ∈ R and g ∈ C0 [[0, T ]× Ω] . Let α ∈ [0; 1], β ∈
(0,+∞), then consider the non-linear Dym equation in its classical form. Existence and
uniqueness of the exact solution are shown for the model under investigation that reads
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Figure 1: Basic principle of the open dynamical system. We can see the initial trajectories (upper
right) of an agent dynamical system in isolation in its suitable space Sπ . The process goes on with a
decoupled agent dynamical system (upper left), well defined on its suitable total space Sτ and which
joints together to form the total system shown (lower left). The system is completed by the projection
or paths (lower right) showing how an agent behaves in a particular environment (Sπ). The behavior of
the system in this last space (Sπ) is the major symbolism at the core of the so-called open dynamical
system as it contrasts with the agent in isolation (upper right). Particularly, the orbits in the open phase
portrait for the embedded agent dynamical system (lower right) overlap, which is not the case for those
of the agent in isolation (upper right).

Figure 2: Simulation showing different sorts of waves involved in fractal-type motifs. The fractal
patterns here are artificially (numerically) formed due to mathematical simulations issued from modeling
the type of movements observed in nature. In (a) we have sound fractal waves, in (b) heat fractal waves,
in (c) particle fractal wave and (d) ocean chaotic fractal wave.
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Figure 3: Simulation showing different sorts of waves involved in fractal-type patterns. The fractal
motifs here are artificially (numerically) formed due to mathematical simulations issued from modeling
the type of movements observed in nature. In (a) fractal wave multi color motion glowing lines, in (b)
spiral wave fractal swirl, (c) fluffy cloud chaotic fractal wave spirals, in (d) chaotic fractal light waves.

as
∂

∂t
g(t, x) = g3gxxx(t, x), (1)

subject to the initial condition

g(0, x) = g0(x) (2)

with g : Ω 7−→ R+.

The function g can be approximated in the form

g(t, x) =

∞∑
j=0

ejHj(x), (3)

here the coefficients ej are given by

ej = 2k
∫ 1

0

g(t, x)Hj(x)dx, (4)

where j = 2k + l, k ≥ 0 and 0 ≤ l < 2k. Moreover, the x-dependant function Hj(x) is
the Haar wavelet function [1, 9, 16–18]

Hj(x) =


1, if l

p ≤ x < l+1/2
p ;

−1, if l+1/2
p ≤ x < l+1

p ;

0, elsewhere

(5)

with p = 2k, k = 1, 2, · · · , L, where L denotes the chosen resolution’s level and l rep-
resents the translation parameter which can take the values 0, 1, · · · , p− 1. Because the
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series of function g(t, x) comprises an infinite number of terms, it can be obtained using
the following definite sum:

g(t, x) =

p−1∑
j=0

ejHj(x), (6)

which takes the form

g(t, x) =t epHp(x)

with tep being the transpose of

ep =


e0
e1
...

ep−1

 and Hp =


H0

H1

...
Hp−1

 .

Now, using the Haar wavelet technique to solve the model (1) and (2), we can assume
that the t-partial derivative ∂gxxx

∂t (t, x) is expandable as follows:

∂gxxx
∂t

(t, x) =

2P∑
j=0

ejHj(x), tr < t ≤ tr+1, (7)

where 2P is the number of collocation points calculated as

xi =
i− 1/2

2P
, with i = 1, 2, · · · , 2P. (8)

Integration of (7) respectively with respect to variables t and x leads to

gxxx(t, x) = gxxx(tr, x) + (t− tr)
2P∑
j=1

ejHj(x),

gxx(t, x) = gxx(t, 0)− gxx(tr, 0) + gxx(tr, x) + (t− tr)
2P∑
j=1

ejM
j
1(x)

and

gx(t, x) = gx(t, 0)− gx(tr, 0) + gx(tr, x) + x[gxx(t, 0)]− gxx(tr, 0) + (t− tr)
2P∑
j=1

ejM
j
2(x),

which finally leads to

g(t, x) = g(t, 0) + g(tr, x)− g(tr, 0) + x[gx(t, 0)− gx(tr, 0)]

+
x2

2
[gx(t, 1)− gx(t, 0) + gx(tr, 0)− gx(tr, 1)] (9)

(t− tr)
2P∑
j=1

ej

(
−x

2

2
Mj

2(1) + Mj
3(x)

)
,
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where we have considered at the point x = 1 the operational matrix M defined in its
general expression for the indexes j = l + p+ 1 by

Mj
s(x) =


1
s! (x− l/p)

s, if l
p ≤ x < l+1/2

p ;
1
s!

[
(x− l/p)s − 2(x− l+1/2

p )s
]
, if l+1/2

p ≤ x < l+1
p ;

1
s!

[
(x− l/p)s − 2(x− l+1/2

p )s + (x− l+1
p )s

]
, if l+1/2

p ≤ x < l+1
p ;

0, elsewhere.

(10)

The differentiation of (9) with respect to variable t is followed by the discretization at
the point (tr, xi)

g(tr+1, xi) = g(tr+1, 0) + g(tr, xi)− g(tr, 0) + xi[gx(tr+1, 0)− gx(tr, 0)]

+
x2i
2

[gx(tr+1, 1)− gx(tr+1, 0) + gx(tr, 0)− gx(tr, 1)]

(tr+1 − tr)
2P∑
j=1

ej

(
−x

2
i

2
Mj

2(1) + Mj
3(xi)

)
,

∂g

∂t
(tr+1, xi) =

∂g

∂t
(tr+1, 0) + xi

∂gx
∂t

(tr+1, 0) +
x2i
2

[
∂gx
∂t

(tr+1, 1)− ∂gx
∂t

(tr+1, 0)] (11)

2P∑
j=1

ej

(
−x

2
i

2
Mj

2(1) + Mj
3(xi)

)
.

Still, using the discretization at the point (tr, xi) and the substitution into (1) leads to

2P∑
j=1

ej

(
x2i
2

Mj
2(1)−Mj

3(xi) + g3(tr, xi)(tr+1 − tr)Hj(xi)

)

=
∂g

∂t
(tr+1, 0)− g3(tr, xi)gxxx(tr, xi) +xi

∂gx
∂t

(tr+1, 0) +
x2i
2

[
∂gx
∂t

(tr+1, 1) +
∂gx
∂t

(tr+1, 0)],

(12)
equivalently,

2P∑
j=1

ej

(
x2i
2

Mj
2(1)−Mj

3(xi) + g3(tr, xi)(tr+1 − tr)Hj(xi)

)

+g3(tr, xi)gxxx(tr, xi)−
1

tr+1 − tr
[g(tr+1, 0)− g(tr, 0)]− xi

[
∂g

∂t
(tr+1, 0)− ∂g

∂t
(tr, 0)

]
− x2i

2(tr+1 − tr)

[(
∂g

∂t
(tr+1, 1)− ∂g

∂t
(tr, 1)

)
−
(
∂g

∂t
(tr+1, 0)− ∂g

∂t
(tr, 0)

)]
= 0, (13)

where we have used the scheme

∂g

∂t
(tr+1, 0) =

1

tr+1 − tr
[g(tr+1, 0)− g(tr, 0)]

and
∂g

∂t
(tr+1, 1) =

1

tr+1 − tr
[g(tr+1, 1)− g(tr, 1)] .
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Figure 4: Three-dimensional representation of the solution g(t, x) to model (1) and (2) when g0(x) =
x2.

Hence, equation (13) allows the calculation of the Haar wavelet coefficients, which
are used to establish the numerical solution (9). The related numerical simulations are
depicted in Fig.1 to Fig.5 relating the usual wave dynamics with different given initial
conditions.

1.2 Recent progress in self-organization operators

To help with the advancement of sciences and try to understand and describe many
unsolved problems that were too complex to model, fractional derivatives were proposed.
Those operators have since shown their infinite importance in applied sciences modelling.
Today some authors classify them into two types: local and non-local [19–22]. Since the
moment when Riemann and Liouville proposed their integral, from which derivatives
of fractional were constructed, there has been a huge development in the domain with
various and variant definitions proposed by a number of authors. In fact, the latest
related literature comprises (but is not limited to) the following definitions.

Formerly:

• The Riemann–Liouville derivative RLDγ
t with fractional order γ reads as

RLDγ
t g(t, x) =

1

Γ (n− γ)

(
d

dt

)n ∫ t

0

(t− υ)
n−γ−1

g (υ, x) dυ, (14)

n− 1 < γ ≤ n.

• The Caputo derivative CDγ
t with fractional order γ reads as

CDγ
t g(t, x) =

1

Γ (n− γ)

∫ t

0

(t− υ)
n−γ−1

(
d

dυ

)n
g (υ, x) dυ, (15)

n− 1 < γ ≤ n.
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Figure 5: Three-dimensional representation of the solution g(t, x) to model (1) and (2) when g0(x) =
ex − 1.

Figure 6: Three-dimensional representation of the solution g(t, x) to model (1) and (2) when g0(x) =
xex.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (5) (2021) 525–543 533

More recently [14,20,23,24]:

• The Caputo-Fabrizio derivative CFDγ
t with fractional order γ reads as

CFDγ
t g(t, x) =

n(γ)

(1− γ)

∫ t

0

∂g

∂υ
(υ, x) exp

(
−γ(t− υ)(1− γ)−1

)
dυ, (16)

where n(γ) satisfies
n(0) = n(1) = 1. (17)

• The new-Riemann–Liouville derivative nRLDγ
t with fractional order γ is given by

nRLDγ
t g(t, x) =

(2− γ)n(γ)

2 (1− γ)

d

dt

∫ t

0

g (υ, x) exp
(
−γ(t− υ)(1− γ)−1

)
dυ. (18)

• The Atangana-Baleanu-Caputo derivative ABCDγ
t with fractional order γ reads as

ABCDγ
t g(t, x) =

n(γ)

(1− γ)

∫ t

0

∂g

∂υ
(υ, x) Eγ

[
−γ(t− υ)γ(1− γ)−1

]
dυ. (19)

In the definitions here above, the function g is assumed to belong to the Sobolev
space

S1(α, β) = {g : g,
∂

∂t
g ∈ L2(α, β)}. (20)

• The Caputo-sense two-parameter derivative CGDγ,θ
t with fractional order γ, when

knowing the parameter θ ∈ R, reads as

CGDγ,θ
t g(t, x) =

θñ(γ, θ)

(θ − γ)

∫ t

0

∂g

∂υ
(υ, x) (t− υ)θ−1Eγ,θ

[
−γθ(t− υ)γ(θ − γ)−1

]
dυ,

(21)
where θ ∈ R and ñ(γ, θ) verifies ñ(0, 1) = ñ(1, 1) = 1.

Introduction to fractal-fractional derivative

Initially defined to be the convolution operation between a fractal differential operator
and the usual law functions found in fractional calculus, the fractal-fractional deriva-
tive [25] was introduced in order to attract and describe a huge number of non-local
problems in real life while respecting the fractal structure that characterizes them. In
the recent literature, one can find a number of versions for the definitions of fractal-
fractional operation and this mainly depends on the kind of law function we choose to
use. Some are given as follows.

Definition 1.1 We consider Ω ∈ R3, T ∈ R, and assume that g(t, x) defined on
(0, T )× Ω is t–fractal differentiable with the order γ on the interval (0, T ), then:

1. The fractal-fractional derivative of g of order γ in the sense of Riemann-Liouville
with the power law reads as

FRpDγ
t g(t, x) =

1

Γ (1− γ)

∂

∂tγ

∫ t

0

g (ϑ, x) (t− ϑ)−γdϑ, (22)

where ∂
∂tγ g is defined as

∂

∂tγ
g(t, x0) = lim

t→t0

g(t, x)− g(t, x0)

tγ − tγ0
.
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The generalized version of (22) is defined by

FRpDγ,ς
t g(t, x) =

1

Γ (1− γ)

∂ς

∂tγ

∫ t

0

g (ϑ, x) (t− ϑ)−γdϑ, (23)

with ς > 0 and ∂ς

∂tγ g given by

∂ς

∂tγ
g(t, x0) = lim

t→t0

gς(t, x)− gς(t, x0)

tγ − tγ0
.

Similarly, the Caputo version of this definition can be given.

2. The fractal-fractional derivative of g of order γ in the sense of Caputo with the
power law reads as

FCpDγ
t g(t, x) =

1

Γ (1− γ)

∫ t

0

∂

∂ϑγ
g (ϑ, x) (t− ϑ)−γdϑ, (24)

the generalized version is

FCpDγ,ς
t g(t, x) =

1

Γ (1− γ)

∫ t

0

∂ς

∂ϑγ
g (ϑ, x) (t− ϑ)−γdϑ. (25)

The following definitions are related to the exponential law.

3. The fractal-fractional derivative of g of order γ in the sense of Riemann-Liouville
with the exponential law reads as

FReDγ
t g(t, x) =

n(γ)

(1− γ)

∂

∂tγ

∫ t

0

g (ϑ, x) exp

(
−γ(t− ϑ)

1− γ

)
dϑ, (26)

where n(0) = n(1) = 1, with

the generalized version

FReDγ,ς
t g(t, x) =

n(γ)

(1− γ)

∂ς

∂tγ

∫ t

0

g (ϑ, x) exp

(
−γ(t− ϑ)

1− γ

)
dϑ. (27)

4. The fractal-fractional derivative of g of order γ in the sense of Caputo with the
exponential law reads as

FCeDγ
t g(t, x) =

n(γ)

(1− γ)

∫ t

0

∂

∂ϑγ
g (ϑ, x) exp

(
−γ(t− ϑ)

1− γ

)
dϑ, (28)

with the generalized version

FCeDγ,ς
t g(t, x) =

n(γ)

(1− γ)

∫ t

0

∂ς

∂ϑγ
g (ϑ, x) exp

(
−γ(t− ϑ)

1− γ

)
dϑ. (29)

The following definitions are related to the Mittag-Leffler law.
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5. The fractal-fractional derivative of g of order γ in the sense of Riemann-Liouville
with the Mittag-Leffler law reads as

FRmDγ
t g(t, x) =

n(γ)

(1− γ)

∂

∂tγ

∫ t

0

g (ϑ, x)Eγ

(
−γ(t− ϑ)γ

1− γ

)
dϑ, (30)

where n(γ) is a regularization function. Here the generalized version is

FRmDγ,ς
t g(t, x) =

n(γ)

(1− γ)

∂ς

∂tγ

∫ t

0

g (ϑ, x)Eγ

(
−γ(t− ϑ)γ

1− γ

)
dϑ. (31)

6. Then the fractal-fractional derivative of g of order γ in the sense of Caputo with
the Mittag-Leffler law reads as

FCmDγ
t g(t, x) =

n(γ)

(1− γ)

∫ t

0

∂

∂ϑγ
g (ϑ, x)Eγ

(
−γ(t− ϑ)γ

1− γ

)
dϑ, (32)

where n(γ) is a regularization real function related to the definition and with

the more general version given as

FCmDγ,ς
t g(t, x) =

n(γ)

(1− γ)

∫ t

0

∂ς

∂ϑγ
g (ϑ, x)Eγ

(
−γ(t− ϑ)γ

1− γ

)
dϑ. (33)

Remark 1.1 In this analysis, we make use of the operator given by (26). To proceed,
we have to associate to it another great concept, its associated fractal-fractional operator.
Whence, we define the fractal-fractional integral of order γ, associated to (26), as follows:

FReIγt g(t, x) =
γ(1− γ)tγ−1g(t, x)

n(γ)
+

γ2

n(γ)

∫ t

0

υγ−1g(υ)dυ, t > 0. (34)

2 Self-Organization Process for Harry Dym Model

2.1 Stability of the fractal Dym model

In this section we consider the following system:

FReDγ
t g(t, x) = g3gxxx(t, x), (35)

subject to the initial condition
g(0, x) = g0(x), (36)

where we have combined the Dym model with the fractal-fractional derivative [25, 26],
recalled to be defined in (26) as

FReDγ
t g(t, x) =

n(γ)

(1− γ)

∂

∂tγ

∫ t

0

g (ϑ, x) exp

(
−γ(t− ϑ)

1− γ

)
dϑ, (37)

where n(0) = n(1) = 1. To proceed further in the analysis, the fractal-fractional operator
(37) should be associated with its anti-derivative called the fractal-fractional integral of
order γ, and given by

FF Iγt g(t, x) =
γ

Γ(γ)

∫ t

0

$−γg(x, $)(t−$)γ−1d$, t > 0. (38)
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We have solved the classical model in Subsection 1.1 using the Haar wavelet method,
which has provided a comprehensive analysis of the system and a global picture of the
dynamic in the absence of the fractal influence. We are now using the Legendre wavelets
method ( [27, 28]) to solve the fractal-fractional system (35)–(36). Hence, we can trans-
form it into a compact form with the application of the associated fractional integral on
both sides of the model to have

FFDγ
t g(t, x) = TMmΨm(t), (39)

where the matrix Ψm(t) is given with the elements defining the Legendre wavelets which
are expressed by

ψnm(t) =

{
2l/2
√

2m+ 1L∗m(2lt− n)), if t ∈ [ n
2l
, n+1

2l
];

0, elsewhere.
(40)

Recall that the shifted Legendre polynomial, given by L∗m, is defined on [0, 1] by L∗m(t) =
Lm(2t− 1), with (Lm(2t− 1))m representing the family

L0 = 1, L1 = x, Lm+1(x) =
1 + 2m

m+ 1
xLm(x)− m

1 +m
Lm−1(x), m = 1, 2, · · · , N − 1.

(41)
Recall also that we have considered N 3 J points x = x1, x2, · · · , xJ and N is a positive
integer number, n = 1, 2, · · · , 2l − 1 and l = 0, 1, 2, · · · . Mm =T [m1

m,m
2
m, · · · ,mm

m] are
coefficients to be found with TMm being the transpose of the matrices Mm, respectively.
Associating the initial conditions yields

g(t, xj) ≈ TMmQ
γ
m×mΨm(t) + g0(xj), (42)

where Qγm×m is the Legendre operational matrix of integration and the subscript m
denotes its dimension. We know that [27,28] that the Legendre wavelets can be expanded
into an m-term form as

Ψm(t) = Υm×mAm(t), (43)

where Am(t) =T [a1(t), a2(t), · · · , am(t)] are the block pulse functions so that

al(t) =

{
1, if t ∈ [ l−1m , lm ];
0, elsewhere

(44)

for each l = 1, 2, · · ·m, and Υ is the Legendre wavelet matrix

Υm×m =

[
Ψm

(
1

2m

)
Ψm

(
3

2m

)
· · ·Ψm

(
2m− 1

2m

)]
.

Now the substitution of (43) into system (42) leads to

g(t, xj) ≈ TM1
mQ

γ
m×mΥm×mAm(t) + [[g0(xj)]i]Am(t), (45)

where
[[g0(xj)]i] = [[g0(xj)]1, g0(xj)]2, · · · , g0(xj)]m].
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Now let

TM i
mQ

γ
m×mΥm×m =Mγ,i

1×m = [mγ,i
1 ,mγ,i

2 , · · · ,mγ,i
m ]. (46)

Now the use of the collocations points ti = 2i−1
2l+1N

, i = 1, 2, 3, · · · ,m, N ∈ N, to disperse
t and the substitution of (45) and (46) into the system (35) lead to

TM1
mΥm×m =

x2
i

2 M
γ,i
1×m(1)−Mγ,i

1×m(xi) + g3(tr, xi)(tr+1 − tr)Υ1×m(xi)

+
[
mγ,2

1 ,mγ,2
2 , · · · ,mγ,2

m

]T [
mγ,j

1 ,mγ,j
2 , · · · ,mγ,j

m

]
+[[g0(xj)]1, [g0(xj)]2, · · · , [g0(xj)]m].

(47)

Hence, we obtain this non-linear system of equations with 3m unknown coefficients
mγ,i
l , 1 ≤ i ≤ 3, 1 ≤ l ≤ m, which are easily found using the Newton iteration method.

Then exploiting the model (42) leads to the expected numerical solution (g(t, x).

2.2 Error analysis

Consider N 3 J points x = x1, x2, · · · , xJ . We assume here that the solution g = g(t, xi)
is a function whose second order derivative with respect to t is bounded as∣∣∣∣∂2g∂t2

∣∣∣∣ ≤ α1
0.

Making use of the Legendre wavelet schemes described here above to approximate the
solution g(t, xi) means it can be expanded as a uniformly convergent series that reads as

g(t, xi) =

∞∑
n=0

∞∑
m=0

mγ,1
nmψnm(t)

with

mγ,1
nm = 〈g(t, xi), ψnm(t)〉. (48)

We have the following convergence results.

Proposition 2.1 Let i = 1, 2, · · · , J ∈ N and α1
0 > 0. Assume that the solution

g(t, xi) is a continuous function on [0, T ] whose second order derivative with respect to t
is bounded as ∣∣∣∣∂2g∂t2

∣∣∣∣ ≤ α1
0,

then the coefficients mγ,1
nm satisfy

|mγ,1
nm| <

(12)1/2α1
0

(2m− 3)2
(√

2n
)5 .
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Proof. For i ∈ N, let us consider the function g = g(t, xi) and using the definition of
the Legendre wavelet coefficients given in (48) and taking into account (40), we have

mγ,1
nm =

∫ 1

0

g(t, xi)ψnm(t)dt

=

∫ n+1

2l

n

2l

g(t, xi)2
l/2
√

2m+ 1L∗m(2lt− n)dt

=

√
1 + 2m

2l

∫ 1

0

g

(
n+ ξ

2l
, xi

)
L∗m(ξ)dξ

(where we have changed the variable as t =
n+ ξ

2l
)

=

√
1

(2m+ 1)23l+2

∫ 1

0

∂g

∂t

(
n+ ξ

2l
, xi

)(
L∗m+1(ξ)− L∗m−1(ξ)

)
dξ

=

√
1

(2m+ 1)25l+2

∫ 1

0

∂2g

∂t2

(
n+ ξ

2l
, xi

)(
L∗m+2(ξ)− L∗m(ξ)

6 + 4m
−
L∗m(ξ)− L∗m−2(ξ)

−2 + 4m

)
dξ,

where we have used the derivative properties of the shifted Legendre polynomials [27,28].
Hence

|mγ,1
nm| ≤

∣∣∣∣∣
√

1

(2m+ 1)25l+2

∣∣∣∣∣∫ 1

0

∣∣∣∣ ∂2gd∂t2

(
n+ ξ

2l
, xi

)∣∣∣∣ ∣∣∣∣(L∗m+2(ξ)− L∗m(ξ)

6 + 4m
−
L∗m(ξ)− L∗m−2(ξ)

−2 + 4m

)∣∣∣∣ dξ.
(49)

Developing the right-hand side of the inequality and making use of the constraint property
|x′′(t)| ≤ α1

0 and the orthogonality property of the shifted Legendre polynomials finally
lead to

|mγ,1
nm| ≤

√
1√

2m+ 1
· 1

2(5/2)l+1
· α1

0 ·

√ √
3

(2m− 3)
· 1

2m− 1
<

(12)1/2α1
0

(2m− 3)2
(√

2n
)5 ,

and the proposition is concluded. This result leads to the following error estimate.

Corollary 2.1 Let i = 1, 2, · · · , J ∈ N and α1
0 > 0. Assume that the solution g(t, xi)

is a continuous function on [0, 1] whose second order derivative with respect to t is bounded
as ∣∣∣∣∂2g∂t2

∣∣∣∣ ≤ α1
0,

then the error made when gkN =
∑2l−1
n=0

∑N−1
m=0 m

γ,1
nmψnm(t) approximates g(t, xi) satisfies

∆1
kN < (12)1/2α1

0

√√√√ ∞∑
n=2l

∞∑
m=N

1

32n5(2m− 3)4
.
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Figure 7: Three-dimensional representation of the solution g(t, x) to model (35)–(36) when g0(x) =
6
10

ex and γ = 1.

2.3 Numerical applications

Now, having solved the model and shown its stability results, we perform in this section
some numerical simulations showing the behavior of the fractal-fractional system (35)–
(36). The graphs in Fig.7 to Fig.12 show such behavior in three-dimensional and two-
dimensional space. In Fig.7, we can see the three-dimensional representation of the
solution g(t, x) when γ = 1 with g0(x) = 6

10ex. The two-dimensional representation is
depicted in Fig.8. For γ = 0.85, the behavior of the solution g(t, x) changes as depicted in
Fig.9 – Fig.10 in three and two dimensions, respectively. The dynamic becomes involved
in a self-organization process. This process consists of structuring itself in such a manner
that the initial object is replicated approximately exactly to itself or to a part of itself.
The process continues with the self-organization process which expands and multiplies
in a similar way, for γ = 0.65, as shown in Fig.11 – Fig.12. Briefly, the system is shown
to create diverse pattern formation processes, in this case, very important in the wave-
motion domain. Thus, the system is capable of artificially structuring the fractals using
mathematical concepts, numerical techniques, codes and simulations.

3 Concluding Remarks

We have combined some mathematical concepts and been able to model, solve and sim-
ulate a self-organization process related to the dynamics of wave motion. The resulting
model, that includes the Harry Dym system, the fractal and fractional operators, has
been solved numerically and its stability results have been given. Numerical simula-
tions have proven a dynamic involved in a self-organization process where initial objects
are replicated and various fractal patterns are formed. Numerical simulations have also
proven that the fractal patterns vary with the fractional order derivative. Hence, this
paper improves the preceding works in the domain as it reveals a system capable of
artificially structuring the fractal patterns using mathematical concepts.
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Figure 8: Two-dimensional representation of the solution g(t, x) to model (35)–(36) when g0(x) = 6
10

ex

and γ = 1.

Figure 9: Three-dimensional representation of the solution g(t, x) to model (35)–(36) when g0(x) =
6
10

ex and γ = 0.85. Here, the dynamic is involved in a self-organization process, which consists of getting
a structure in which the initial object is replicated approximately exactly to itself or to a part of itself.
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Figure 10: Two-dimensional representation of the solution g(t, x) to model (35)–(36) when g0(x) =
6
10

ex and γ = 0.85. Here, we can see the projection on the plan (t, g) of the self-organization dynamic.

Figure 11: Three-dimensional representation of the solution g(t, x) to model (35)–(36) when g0(x) =
6
10

ex and γ = 0.65. Here, the self-organization dynamic is maintained and continues further, as it expands
and multiplies in a similar way.
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Figure 12: Two-dimensional representation of the solution g(t, x) to model (35)–(36) when g0(x) =
6
10

ex and γ = 0.65. Here, we can see the projection on the plan (t, g) of the self-organization dynamic
that is maintained and continues further, as it expands and multiplies.
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[5] A. Yokuş and S. Gülbahar. Numerical solutions with linearization techniques of the frac-
tional Harry Dym equation. Applied Mathematics and Nonlinear Sciences 4 (1) (2019)
35–42.

[6] F. Jarad, T. Abdeljawad and Z. Hammouch. On a class of ordinary differential equations
in the frame of Atangana-Baleanu fractional derivative. Chaos, Solitons & Fractals 117
(2018) 16–20.

[7] J. Singh, D. Kumar and S. Kumar. An efficient computational method for local fractional
transport equation occurring in fractal porous media. Computational & Applied Mathemat-
ics 39 (3) (2020).

[8] E. F. Doungmo Goufo. The Proto-Lorenz system in its chaotic fractional and fractal struc-
ture. International Journal of Bifurcation and Chaos 30 (12) (2020) P. 2050180.

[9] E. F. Doungmo Goufo. Solvability of chaotic fractional systems with 3D four-scroll attrac-
tors. Chaos, Solitons & Fractals 104 (2017) 443–451.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (5) (2021) 525–543 543
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