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1 Introduction

The theory of reliability systems plays an important role in industry, manufacturing,
safety engineering and quality. The lifetime of equipment or apparatus is a random time
from the beginning of the operation until the appearance of a complete failure. Reliability
is the ability of a system to perform its stated purpose adequately for a specified period
of time under specified operational conditions. The system defined here could be an
electronic or mechanical hardware product, a software product, a manufacturing process.
For example, in the case of a mechanical system, a failure is a breakdown of some of its
parts or an increase in vibration above the permitted level. The reliability characteristics
are usually expressed in terms of the lifetime. Modeling and analyzing lifetime data
are important issues for engineering reliability, industry, quality control, and clinical
trials, etc. Different lifetime data can be modeled by different continuous probability
distributions such as exponential, Lindley, Weibull, lognormal, and Frechet as well as
their generalizations [1, 2].

In reliability and survival analysis, it is difficult to collect lifetime data for all compo-
nents under consideration due to time and cost constraints. Various types of censoring
schemes can be used for such purpose based on the model and available information using
both parametric and nonparametric methods. Recently, progressive censoring sampling
is of special importance in reliability and survival analysis. Progressive censoring was
first introduced by Cohen [3]. Extensive studies are available in the literature related to
the progressive censoring [4–6]. Different parametric survival models have been consid-
ered in progressive censoring using binomial removals, they are the Type-II generalized
logistic distribution [7], the exponential distribution [8], the generalized exponential dis-
tribution [9], the exponentiated gamma distribution [10], the Pareto distribution [11–13],
the Rayleigh distribution [14], the Burr Type-XII distribution [15], and the Gompertz
distribution [16]. For more details about Type-I and Type-II censored samples, one
can refer to Salah [17], Lin et al. [18], Balakrishnan [19], Balakrishnan et al. [20], and
Salah [21,22].

Type-II progressively censored life test is conducted as follows. For n identical units in
a test, at the time of the first failure, R1 units from the remaining n−1 survival items are
removed. At the time of the second failure, R2 units from the remaining n−R1−1 items
are removed, and so forth. Finally, at the time of m−th failure, the reaming survival
units, would be Rm can be removed. In this case, censoring takes place progressively in
m stages. Clearly, this scheme includes, as special cases, the complete sample situation
(when m = n and R1 = ... = Rm = 0) and the conventional Type−II right censoring
situation (when R1 = ... = Rm−1 = 0 and Rm = n−m). The corresponding scheme (r1,
r2, . . . , rm) is known as the progressive Type-II right censoring scheme.

Different versions of the power function distributions are reported in the literature
[23]. These power function distributions can be easily implemented to determine the
failure rates and reliability values compared to other distributions such as lognormal,
Weibull, logistic and others. The particular parameterization of the power distribution
function to be considered in this work has the following cumulative distribution function
(CDF) form:

F (x) = 1−
(
θ − x
θ − α

)β
, α < x < θ, β > 0, (1)

where θ and α are the scale parameters and β is the shape parameter.
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The probability density function (PDF) is given by

f(x) =
β

θ − α

(
θ − x
θ − α

)β−1
, α < x < θ, β > 0. (2)

The power function distribution is a member of the Beta family of distributions.
Sarhan and Pandey [24] obtained the best linear unbiased estimates of the parameters
of the above power distribution function in terms of k−th upper record values. The
power function distribution has applications in industrial and mechanical engineering [24].
Meniconi and Barry [25] explored the performance of the power function distribution on
certain electrical components and showed that it is the most suitable distribution function
as compared to the lognormal, Weibull and exponential models. Statistical properties of
the power function distribution were reported by Johnson et al. [26].

This work considers progressive Type-II censoring for a power function distribution
with binomial removals. The maximum likelihood estimators (MLEs) of the model pa-
rameters are determined. A simulation study is performed to determine the behavior
of the MLEs via bias and the root mean square error (RMSE) using different sample
sizes, parameter values and censored proportions. An example related to lifetime data
of electronic devices will be presented to illustrate the approach developed in this work.

2 Model

Assume the lifetime random variable follows the power function distribution given in
equation (1), it is a realistic assumption to assume the location parameter (lower bound)
α = 0, the cumulative distribution function (CDF) reduces to

F (x) = 1−
(
θ − x
θ

)β
, 0 < x < θ, β > 0, (3)

where θ is the scale parameter and β is the shape parameter.
The probability density function (PDF) reduces to

f(x) =
β

θ

(
θ − x
θ

)β−1
, 0 < x < θ, β > 0. (4)

The reliability function is given by

r(x) = P (T > x) =

(
θ − x
θ

)β
, 0 < x < θ, β > 0.

The hazard rate function is given by

h(x) =
f(x)

R(x)
=

β

θ − x
, 0 < x < θ, β > 0.

Figure 1 shows a graphical representation of the probability density function (PDF)
for the values of the shape parameter β of 0.2, 0.7, 1.5, 3, 4 and θ = 1. The proba-
bility density function exhibits various behaviors depending on the values of the shape
parameter β. Figure 2 shows the graphical representation of the hazard function using
selected shape parameter values. According to Figure 2, it is seen that the power function
distribution is characterized by increasing J-shaped hazard rates.
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Figure 1: PDF plot of power function distribution.

Figure 2: Hazard rate curves of power function distribution.

3 Maximum Likelihood Estimation

We first consider estimating the parameters based on the complete observed sample
x1, ..., xn. Let x(1), ..., x(n) be the corresponding order statistics. Given the sample, the
likelihood function of the density in (4) is

L(β, θ) ≡ L(β, θ|x1, ..., xn) =

(
β

θ

)n n∏
j=1

(
1− xj

θ

)β−1
I(x(n),∞)(θ) , β > 0,

where IA(x) is the zero−one indicator function. We notice that the support of the density
depends on the scale parameter and therefore the MLE may not be calculated directly
as a solution to the likelihood equations.

For fixed β = β0, the limits of the likelihood function when approaching its boundaries
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are given by

lim
θ↓x(n)

L(β0, θ) =


∞, 0 < β0 < 1,

0, β0 > 1,(
x(n)

)−n
, β0 = 1,

and
lim
θ↑∞

L(β0, θ) = 0,∀β0 > 0.

For 0 < β0 ≤ 1, L(β0, θ) is maximized at θ = x(n). However, for β0 > 1, L(β0, θ)
attains its maximum at some θ > x(n) and not at x(n). To illustrate this, the graphs of
L(β0, θ) based on a sample of size 10 from the power function distribution with θ = 2
and β0 = 1.2, 2, and 4, respectively, are displayed in Figures 3, 4 and 5. The values of
x(n) are approximately 1.99, 1.79 and 0.56, respectively. Notice that for β0 = 1.2, the
maximum of L(θ) is approximately 1.75, which is very close to x(n)=1.71, for β0 = 2,
we have x(n)=1.22 and L(θ) is approximately maximized at θ = 1.49, and for β0 = 4,
x(n) = 0.75 and L(θ) attains its maximum at θ = 1.83, approximately. We observe that
the maximizer of L(θ) deviates from x(n) with increasing β.

Figure 3: Likelihood function based on a sample of size 10 generated from the power function
distribution with β = 1.2 and = 2.

Now we investigate the MLE of the parameter vector θ = (β, θ). Necessary conditions
for the existence and uniqueness of the MLE of a parameter vector θ = (θ1, ..., θk) are
in [27]:

1. L(θ) is a twice continuously differentiable likelihood function varying in a connected
open subset Θ ⊂ Rk.

2. L(θ) satisfies the following two conditions:

(i) lim
θ→∂Θ

L(θ) = 0,
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Figure 4: Likelihood function based on a sample of size 10 generated from the power function
distribution with β = 2 and = 2.

Figure 5: Likelihood function based on a sample of size 10 generated from the power function
distribution with β = 4 and = 2.

(ii) The Hessian matrix of second partial derivatives

H =

(
∂2L
∂θ2

∂2L
∂θ∂β

∂2L
∂β∂θ

∂2L
∂β2

)

is negative definite at every point θ ∈ Θ for which the vectorOL = (∂L/∂θi) = 0.
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These conditions also apply to the log−likelihood function with lim
θ→∂Θ

l(θ) = 0 being

replaced by lim
θ→∂Θ

L(θ) = −∞.

The domain of the likelihood function of the power function distribution based on a
sample of size n is the rectangle (0,∞)× (x(n),∞) which is an open connected set in R2.
The boundaries of Θ are the lines θ = x(n), β ∈ (0,∞) and β = 0, θ ∈ (x(n),∞). It is
clear that lim

θ→∂Θ
L(θ) = 0 when approaching each of these two lines. So, to prove the

existence and uniqueness of the MLE, it remains to show that the Hessian matrix H is
nonnegative definite at the zeros of the first partial derivatives of L(θ) or, equivalently,
of l(θ).

Given the observed sample x1, ..., xn, the log-likelihood function is

l(β, θ) ≡ logL(β, θ) = n log β − n log θ + (β − 1)

n∑
j=1

log
(

1−
x(j)

θ

)
. (5)

For β > 0, we have

∂l(β, θ)

∂β
=
n

β
+

n∑
j=1

log
(

1−
x(j)

θ

)
= 0, (6)

and for θ > x(n), we have

∂l(β, θ)

∂θ
= −n

θ
+(β − 1)

n∑
j=1

x(j)

θ
(
θ − x(j)

) = 0. (7)

Solving (6) for β, we obtain

β ≡ β(θ) = − n∑n
j=1 log

(
1− x(j)

θ

) (8)

and solving (7) for β, we have

β − 1 =
n∑n

j=1 xj (θ − xj)−1
. (9)

Since
∂2l(β, θ)

∂β2
= − n

β2
< 0,

it follows for fixed θ, l(β, θ) is maximized at

β(θ) = − n∑n
j=1 log

(
1− x(j)

θ

) ,
provided that the maximum exists. Replacing β by β(θ), the log-likelihood (5) can be
written as

l(θ) ≡ sup
β
l(β, θ) = n logβ(θ)− n logθ + (β(θ)− 1)

n∑
j=1

log
(

1−
x(j)

θ

)
= n logβ(θ)− n logθ + (β(θ)− 1)

−n
β(θ)

= n log
β(θ)

θ
+

n

β(θ)
− n.
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The second partial derivatives of l(β, θ) are

∂2l(β, θ)

∂β2
= − n

β2
, (10)

∂2l(β, θ)

∂θ2
=

n

θ2
-(β − 1)

n∑
j=1

x(j)(2θ − x(j))
θ2(θ − x(j))2

, (11)

∂2l(β, θ)

∂θ∂β
=
∂2l(β, θ)

∂β∂θ
=

n∑
j=1

x(j)

θ(θ − x(j))
. (12)

From (9) and (12), we have ∂2l(β,θ)
∂θ∂β = 1

θ

∑n
j=1

x(j)

(θ−x(j))
= 1

θ
n
β−1 . Thus, H can be

written as

H =

(
− n
β2

n
θ(β−1)

n
θ(β−1)

n
θ2 − (β − 1)

∑n
j=1

xj(2θ−xj)
θ2(θ−xj)2

)
.

The determinant of H is

D = − n

β2

 n
θ2
− (β − 1)

n∑
j=1

xj(2θ − xj)
θ2(θ − xj)2

− ( n

θ(β − 1)

)2

. (13)

Completing the square of the numerator of the term inside the sum on the right-hand
side of (13), we get

D = − n

β2

 n
θ2

+ (β − 1)

n∑
j=1

{
(θ − xj)2 − θ2

}
θ2(θ − xj)2

− ( n

θ(β − 1)

)2

= − n

β2

nβ
θ2
− (β − 1)

n∑
j=1

1

(θ − xj)2

− ( n

θ(β − 1)

)2

= − n

β2

nβ
θ2

+
nβ2

θ2(β − 1)2
− (β − 1)

n∑
j=1

1

(θ − xj)2

 .
For D to be negative definite, we need to show that the term between the square

brackets is positive. That is,

nβ

θ2

(
1 +

β

(β − 1)2

)
− (β − 1)

n∑
j=1

1

(θ − xj)2
> 0, or

nβ

θ2

(
1 +

β

(β − 1)2

)
> (β − 1)

n∑
j=1

1

(θ − xj)2
.

Then for each j = 1, . . . , n, we have θ − xj < θ, which implies that

n∑
j=1

1

(θ − xj)2
>

n∑
j=1

1

θ2
=

n

θ2
.
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So, the above inequality reduces to

nβ

θ2(β − 1)

(
1 +

β

(β − 1)2

)
>

n

θ2
.

Multiplying both sides of the above inequality by θ2/n, after some algebra, we get

β3 − β2 + 1− (β − 1)3

(β − 1)3
> 0.

We have noticed earlier that for 0 < β ≤ 1, the MLE is X(n), so we only examine
here the case β > 1. After expanding the numerator and noticing that the denominator
is positive, the last inequality reduces to 2β2− 3β+ 2 = 2(β− 1)2 + β > 0, which is true
for all β and hence for β > 1. Thus,

nβ

θ2
+

nβ2

θ2(β − 1)2
− (β − 1)

n∑
j=1

1

(θ − xj)2
> 0,∀β > 1, and

− n

β2

nβ
θ2

+
nβ2

θ2(β − 1)2
− (β − 1)

n∑
j=1

1

(θ − xj)2

 < 0,∀β > 1.

We have shown that the Hessian matrix H is negative definite at the zeros of the first
partial derivatives of the log-likelihood function. Thus, all necessary conditions for the
existence and uniqueness of the MLE are met.

Let (X1, R1) , (X2, R2) , . . . , (Xm, Rm) be a progressively censored sample, where
X1 < X2 < . . . < Xm. With a predetermined number of removals, such as R1 = r1, R2 =
r2, . . . , Rm = rm, the conditional likelihood function can be written as [3]

L(θ, β;x|R = r) = A

m∏
i=1

f(xi) (1− F (xi))
ri , (14)

where A = n(n− r − 1)...(n−
∑m−1
i=1 ri + 1).

After substituting (3) and (4) into equation (14), the likelihood function becomes

L(θ, β;x|R = r) = A

m∏
i=1

β

θ

(
θ − xi
θ

)β−1((
θ − xi
θ

)β)ri
. (15)

Suppose that an individual unit being removed from the test at the ith failure,i =
1, 2, . . . ,m − i, is independent of the others but with the same probability p. There-
fore, Ri, i = 1, 2, ..,m − 1, follows a binomial distribution with parameters n − m −∑m−1
k=1 rk and p. Thus,

P (R1 = r1) =

(
n−m
r1

)
pr1(1− p)n−m−r1 , (16)

P (Ri = ri|Ri−1 = ri−1, . . . , R1 − r1)

=

(
n−m−

∑m−1
k=1 rk

ri

)
pri(1− p)n−m−

∑i
k=1 rk , i = 1, 2, ...,m− 1, (17)
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where 0 ≤ ri ≤ n−m−
∑i−1
j=1 rj .

The full likelihood function takes the following form:

L(θ, β, p;x, r) = L(θ, β;x|R) = r(P (R = r|p)), (18)

where P (R = r|p)) is the joint conditional distribution and is given by

P (R = r|p) =

P (R1 = r1)P (R2 = r2|R1 = r1)...P (Rm−1 = rm−1|Rm−2 = rm−2, ...., R1 = r1) (19)

=
(n-m)!p

∑m−1
i=1 ri(1− p)(m−1)(n−m)

∑m−1
i=1 (m−i)ri(

n−m−
∑m−1
i=1 ri

)
!
∏m−1
i=1 ri!

.

Using equations (15), (18) and (19), we can write the full likelihood function as

L (θ, β, p;x, r) = AL1 (θ, β)L2 (p) ,

where

L1(θ, β) =

m∏
i=1

β

θ

(
θ − xi
θ

)β−1((
θ − xi
θ

)β)ri

=

(
β

θ

)m m∏
i=1

(
θ − xi
θ

)β(1+ri)−1
,

L2(p) = p
∑m−1
i=1 ri(1− p)(m−1)(n−m)

∑m−1
i=1 (m−i)ri

and

A =
c(n−m)!(

n−m−
∑m−1
i=1 ri

)
!
∏m−1
i=1 ri!

.

It is clear that A is parameter free and L2 (p) is independent of θ and β.
The MLE of β can be obtained by maximizing

L1(β, θ) =

m∏
i=1

β

θ

(
θ − xi
θ

)β(ri+1)−1

or, equivalently, the log-likelihood function

l1(β, θ) = m log(β)−m log(θ) +

m∑
i=1

[β(ri + 1)− 1] log

(
θ − xi
θ

)
. (20)

The corresponding likelihood equations are

∂l1
∂β

=
m

β
+

m∑
i=1

(ri + 1) log

(
θ − xi
θ

)
= 0, (21)

∂l1
∂θ

= −m
θ

+

m∑
i=1

[β(ri + 1)− 1] log
xi

θ (θ − xi)
= 0. (22)
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Solving (21) for β, we obtain

β ≡ β(θ) = − m∑m
i=1(ri + 1) log

(
θ−xi
θ

) . (23)

Substitute (23) into (22) to obtain

m∑
i=1

[β(θ)(ri + 1)− 1] log
xi

θ (θ − xi)
=
m

θ
. (24)

As clarified before, the MLE of θ is X(m) if 0 < β(ri + 1) ≤ 1, in this case the MLE
of β is

β̂ = − m∑m
i=1(ri + 1) log

(
x(m)−xi
x(m)

) .
For β(ri + 1) > 1, we use numerical methods to solve (24) for θ and then apply (23)

to solve for β. The MLE of p is easily derived by maximizing logL2(p):

p̂ =

∑m−1
i=1 ri∑m−1

i=1 ri + (m− 1)(n−m)−
∑m−1
i=1 (m− i)ri

.

4 Numerical Results

4.1 Simulation study

A simulation study was performed to deduce the behavior of the maximum likelihood
estimators. Different sample sizes, namely, n = 25, 50 and 100 were used. Different
combinations of the parameter values of θ and β were considered. The values of the
parameter p used in the simulation study are 0.25, 0.5 and 0.75. The simulation results
were based on 1000 replicates. The means and root mean square errors (RMSE) of the
maximum likelihood estimators for the three parameters p, θ and β are displayed in
Tables 1, 2 and 3.

The following concluding remarks can be drawn based on the results shown in Tables
1, 2, and 3:

1. For a fixed value of m, as n increases, the bias and RMSE show a decreasing trend.

2. For a fixed value of n, as m increases, the bias and RMSE decrease for the maximum
likelihood estimators for θ and β; on the other hand, the RMSE increases for the
maximum likelihood estimator for p.

3. As the shape parameter β increases, the bias and RMSE increase.

4. As the value of the probability parameter p increases, the bias and RMSE for the
estimators of p and β increase.

4.2 Study on real data

A real-life data set is considered which represents the failure times (in minutes) for a
sample of 15 electronic components in an accelerated life test [5]. The data set is 1.4,
5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 23.0, 30.6, 37.3, 46.3, 53.9, 59.8, 66.2.
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Table 1: Mean and RMSE of the MLEs and for p = 0.25 and different choices n, m, θ and β.

n m θ̂ β̂
p̂ θ̂ β̂

Mean RMSE Mean RMSE Mean RMSE

25

15
1 0.5 0.26926 0.07899 0.99366 0.01187 0.51518 0.14276

1.5 1 0.26926 0.07910 1.41241 0.08126 0.91826 0.26551
2 1.5 0.26926 0.07900 1.72610 0.17629 1.20655 0.37488

20
1 0.5 0.29167 0.12260 0.99592 0.00899 0.57428 0.13269

1.5 1 0.29166 0.12261 1.43108 0.06667 1.03523 0.24506
2 1.5 0.29166 0.12261 1.76733 0.15360 1.37200 0.35504

50

30
1 0.5 0.25922 0.05237 0.99796 0.00422 0.52328 0.10064

1.5 1 0.25922 0.05237 1.45143 0.04723 0.96558 0.18577
2 1.5 0.25922 0.05237 1.81607 0.12262 1.30226 0.26939

40
1 0.5 0.27079 0.07868 0.99892 0.00234 0.54803 0.08874

1.5 1 0.27079 0.07868 1.46462 0.03431 1.02557 0.16921
2 1.5 0.27079 0.07868 1.85091 0.09830 1.39968 0.25315

100

80
1 0.5 0.25909 0.05182 0.99969 0.00068 0.52754 0.05999

1.5 1 0.25909 0.05182 1.48124 0.01857 1.01082 0.11601
2 1.5 0.25909 0.05182 1.90260 0.06567 1.41151 0.17877

90
1 0.5 0.27079 0.07868 0.99977 0.00045 0.52939 0.05726

1.5 1 0.27079 0.07868 1.48350 0.01589 1.01832 0.11180
2 1.5 0.27079 0.07868 1.91029 0.05957 1.42767 0.17258

The failure times were analyzed in order to validate the proposed progressive Type-
II censoring scheme using the power function distribution model. The validity of the
power distribution function was checked based on the maximum likelihood estimated
parameters θ and β of 66.2 and 1.1573, respectively. The Kolmogorov-Smirnov (K−S)
test was used for this data set. It is noted that the K−S distance between the fitted and
the empirical distribution functions equals to 0.21, and the corresponding critical value
at α =0.05 equals to 0.33. Thus, the power function distribution fits the above data set
reasonably well.

Five progressively censored samples were generated from the above data for the values
of m = 14, 13, 12, 11, 10. Uniform random removal of subjects was used to generate
(r1,r2,...,rm).

Progressive censoring with m =14 (1 observation removed): (1.4, 0), (5.1,1), (6.3,0),
10.8,0), (12.1,0), (18.5,0), (19.7,0), (22.2,0), (23.0,0), (30.6,0), (37.3,0), (53.9,0), (59.8,0),
(66.2).

Progressive censoring with m =13 (2 observations removed): (1.4,1), (5.1,0), (6.3,0),
(10.8,0), (12.1,0), (18.5,0), (22.2,0), (23.0,0), (30.6,0), (37.3,1), (53.9,0), (59.8,0), (66.2,0).

Progressive censoring with m =12 (3 observations removed): (1.4,1), (6.3,0), (10.8,0),
(12.1,0), (18.5,1), (19.7,0), (22.2,0), (23.0,0), (30.6,0), (37.3,1), (59.8,0), (66.2,0).

Progressive censoring with m =11 (4 observations removed): (1.4,1), (5.1,0), (10.8,0),
(12.1,1), (18.5,0), (19.7,1), (22.2,0), (23.0,0), (30.6,0), (37.3,1), (53.9,0).

Progressive censoring with m =10 (5 observations removed): (1.4,1), (5.1,0), (6.3,1),
(10.8,1), (12.1,0), (18.5,0), (19.7,1), (22.2,0), (37.3,0), (46.3,1).

The maximum likelihood estimates for the model parameters β and θ using the five
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Table 2: Mean and RMSE of the MLEs p̂, θ̂, and β̂ for p = 0.5 and different choices of n,m, θ
and β.

n m θ̂ β̂
p̂ θ̂ β̂

Mean RMSE Mean RMSE Mean RMSE

25

15
1 0.5 0.52050 0.11961 0.99366 0.01187 0.57897 0.15603

1.5 1 0.52050 0.11961 1.41241 0.08126 1.03978 0.28820
2 1.5 0.52050 0.11961 1.72610 0.17649 1.35124 0.40669

20
1 0.5 0.55036 0.17118 0.99592 0.00899 0.59603 0.13753

1.5 1 0.55036 0.17118 1.43108 0.06666 1.07318 0.25358
2 1.5 0.55036 0.17118 1.76733 0.15360 1.42118 0.36723

50

30
1 0.5 0.51021 0.08361 0.99796 0.00422 0.55312 0.10559

1.5 1 0.51021 0.08361 1.45143 0.04723 1.01860 0.19525
2 1.5 0.51021 0.08361 1.81607 0.12262 1.37170 0.28424

40
1 0.5 0.52049 0.11961 0.92545 0.04940 1.41970 0.25714

1.5 1 0.52049 0.11961 1.46462 0.03431 1.04072 0.17182
2 1.5 0.52049 0.11961 1.85091 0.09880 1.41970 0.25719

100

80
1 0.5 0.51021 0.08361 0.99969 0.00068 0.52127 0.06048

1.5 1 0.51021 0.08361 1.48124 0.01857 1.01775 0.11693
2 1.5 0.51021 0.08361 1.90260 0.06567 1.42089 0.18018

90
1 0.5 0.52050 0.11961 0.99877 0.00045 0.53083 0.05737

1.5 1 0.52050 0.11961 1.48347 0.01589 1.02103 0.11204
2 1.5 0.52050 0.11961 1.91029 0.05957 1.43137 0.17302

progressive censoring schemes with m=14, 13, 12, 11 and 10 are (1.1880, 66.2), (1.1348,
66.2), (1.1882, 66.2), (1.0772, 53.9) and (0.7553, 46.3), respectively.

5 Conclusion

We develop some results on the power function distribution when progressive Type-
II censoring is used with binomial removals. The maximum likelihood estimators for
the model parameters were derived. The simulation results showed that as the sample
size increases, the performance of the estimators improves in terms of the bias and the
RMSE. The biases and the RMSEs for p and β decrease as m increases. The bias and
RMSE increase with the increase in the shape parameter β. The bias and RMSE for the
estimators of p and β increase with the increase in parameter p. An application of real
lifetime data was conducted, it illustrates the proposed censoring scheme.
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Table 3: Mean and RMSE of the MLEs and for p = 0.75 and different choices of n,m, θ and
β.

n m θ̂ β̂
p̂ θ̂ β̂

Mean RMSE Mean RMSE Mean RMSE

25

15
1 0.5 0.76234 0.12057 0.97366 0.01187 0.60158 0.16142

1.5 1 0.76234 0.12057 1.41241 0.08126 1.06821 0.29896
2 1.5 0.76234 0.12057 1.72261 0.17649 1.40003 0.42009

20
1 0.5 0.77827 0.16000 0.99592 0.00899 0.60243 0.13902

1.5 1 0.77827 0.16000 1.43108 0.06666 1.00416 0.25630
2 1.5 0.77827 0.16000 1.76733 0.15360 1.43519 0.37113

50

30
1 0.5 0.75463 0.08281 0.99796 0.00422 0.56249 0.10805

1.5 1 0.75463 0.08281 1.45143 0.04723 1.03510 0.19815
2 1.5 0.75463 0.08281 1.81607 0.12262 1.39312 0.28874

40
1 0.5 0.76234 0.12057 0.99892 0.00234 0.55915 0.09050

1.5 1 0.76234 0.12057 1.46462 0.03431 1.04560 0.17262
2 1.5 0.76234 0.12057 1.85091 0.09830 1.42612 0.25041

100

80
1 0.5 0.75463 0.08281 0.99969 0.00068 0.53249 0.06060

1.5 1 0.75463 0.08281 1.48124 0.01857 1.01997 0.11713
2 1.5 0.75463 0.08281 1.90260 0.06567 1.42390 0.19050

90
1 0.5 0.76234 0.12057 0.99977 0.00045 0.53132 0.05744

1.5 1 0.76234 0.12057 1.48347 0.01589 1.02195 0.11218
2 1.5 0.76234 0.12057 1.91029 0.05957 1.43261 0.17326
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