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Abstract: This paper is concerned with Cauchy problems for first-order systems of
impulsive linear ordinary differential equations with unknown right-hand sides, initial
conditions, and jumps of solutions at impulse points entering into the statement of
these problems which are assumed to be subjected to some quadratic restrictions.
From indirect noisy observations of their solutions on a finite system of intervals,
optimal, in a certain sense, estimates of images of unknown data under linear contin-
uous operators are obtained. It is shown how to apply the obtained results for finding
the guaranteed estimates of unknown coefficients of the nonlinear Gompers equation
which is widely used in population dynamics.
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1 Introduction

In this paper, for Cauchy problems for systems of linear impulsive ordinary differential
equations, we propose a novel technique of finding optimal estimates of images of their
data under linear continuous operators. We assume that the right-hand sides of equations,
initial conditions, and jumps of solutions at impulse points entering into the statement
of these problems are unknown and belong to certain ellipsoids in the corresponding
function spaces.
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For solving such estimation problems, we need supplementary data (observations of
solutions of the above Cauchy problems). By observations of unknown solutions we mean
functions that are linear transformations of the same solutions distorted by additive
random noises. Such a kind of observations is motivated by the fact that unknown
solutions often cannot be observed directly. Here we use indirect noisy observations of
solutions on a finite system of intervals.

Under the condition that unknown correlation functions of noises in observations
belong to some special sets, it is established that such estimates and estimation errors are
expressed explicitly via solutions of special uniquely solvable systems of linear impulsive
ordinary differential equations.

For this, we first solve the problem of guaranteed (minimax) estimation of values of
linear functionals from the above-mentioned right-hand sides and obtain the boundary
value problems, not depending on the specific form of linear functionals, that generate
the guaranteed estimates. Further, we apply these results for obtaining the optimal
estimates.

Notice that this work is a continuation of our earlier studies set forth in [3] and [4],
where we elaborate the guaranteed (minimax) estimation method for the case of the
problem of estimation of linear functionals from unknown solutions and right-hand sides
of first order linear periodic systems of ordinary differential equations.

2 Preliminaries and Auxiliary Results

Let C denote the field of complex numbers, Λ∗ denote the matrix complex conjugate and
transpose of a matrix Λ. Let [t0, T ] be a closed interval of R, and {ti} be a given strictly
increasing sequence of impulse points in (t0, T ) such that t0 < t1 < · · · < tq < tq+1 := T.

A Cauchy problem for a system of first order linear impulsive differential equations
on [t0, T ] is a problem of the form

dx(t)

dt
= A(t)x(t) +B(t)f(t) for a.e. t ∈ (t0, T ], (1)

∆x |t=ti = Bix(ti) + Cigi, i = 1, . . . , q, x(t0) = Cx0, (2)

where A(t) = [aij(t)] is an n × n-matrix with aij(·) ∈ L2(t0, T ), B(t) = [bij(t)] is an
n × r-matrix with bij(·) being piecewise continuous on [0, T ], f(t) is a vector-function
such that f(t) ∈ Cr and f ∈ (L2(t0, T ))r, Bi, Ci, gi, C and x0 are n × n, n × k, k × 1,
n×m, and m×1 constant matrices, respectively, ∆x(t) |t=ti = x(t+i )−x(ti) denotes the

jumps of x(t) at the points of impulses ti, with x(t+i ) = limt→ti+ x(t).
By a solution of this problem, we mean a function x(t) ∈ A that is left continuous,

satisfies the equation (1) almost everywhere (a.e.) on (t0, T ], and the conditions (2),
where by A we denote a class of left continuous functions y(t) ∈ Cn defined on [t0, T ]
such that y(·) |(ti−1,ti)

∈ (W 1
2 (ti−1, ti))

n, i = 1, . . . , q + 1. Here W 1
2 (a, b) = {u(t) ∈

L2(a, b) such that du(t)
dt ∈ L

2(a, b)}.
Further we will assume that the following conditions are valid:

det(E +Bi) 6= 0, i = 1, . . . , q. (3)

Under the conditions (3), the problem (1), (2) as well as the problem

−dz(t;u)

dt
= A∗(t)z(t;u) + g(t) for a.e. t ∈ [t0, T ),
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∆z(t) |t=ti = −(E +B∗i )−1B∗i z(ti) + g′i, i = 1, . . . , q, z(T ) = z0,

that is adjoint of nonhomogeneous problem (1), (2), are uniquely solvable for any vector-
functions f(t) ∈ Cr, g(t) ∈ Cn such that f ∈ (L2(t0, T ))r, g ∈ (L2(t0, T ))n and for any
vectors gi ∈ Ck, g′i ∈ Cn x0 ∈ Cm, z0 ∈ Cn.

These assertions follow from the results contained in [6], [2], [5].

3 Statement of the Problem of Guaranteed Estimation of Linear Functionals
Defined on Unknown Cauchy Data

Let us give the definition of guaranteed estimates of linear functionals defined on solutions
to the problem (1), (2) from observations of these solutions on a finite system of intervals.

Let Ωij , j = 1, . . . ,Mi, be a given system of subintervals of (ti−1, ti), F :=

(f, g1, . . . , gq, x0) ∈ H := (L2(t0, T ))r × Ckq × Cm.
The problem is to estimate the expression

l(F ) =

∫ T

t0

(f(t), l0(t))rdt+

q∑
i=1

(gi, ai)k + (x0, a)m (4)

from observations of the form

yij(t) = Hi
j(t)x(t) + ξij(t), t ∈ Ωij , j = 1, . . . ,Mi, i = 1, . . . , q + 1, (5)

in the class of estimates

l̂(F ) =

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(yij(t), u
i
j(t))ldt+ c, (6)

linear with respect to observations (5); here x(t) is the state of a system described by
problem (1), (2), l0 ∈ (L2(t0, T )r, ai ∈ Ck, a ∈ Cm, Hi

j(t) are l × n matrices with the

entries that are piecewise continuous complex-valued functions on Ω̄ij , u
i
j(t) are vector-

functions belonging to (L2(Ωij))
l, c ∈ C, and by (·, ·)d we denote the inner product in

Cd.
We suppose that the vector-function f and vectors g1, . . . , gq, x0 are unknown and

the element F = (f, g1, . . . , gq, x0) belongs to the set G1, where

G1 =
{
F ∈ H : f ∈ (L2(t0, T ))r, gi ∈ Ck, x0 ∈ Cm,

q∑
i=1

(Qi(gi − g0
i ), gi − g0

i )k + (Q0(x0 − x0
0), x0 − x0

0)m

+

∫ T

t0

(Q(t)(f(t)− f0(t)), f(t)− f0(t))r dt ≤ 1
}
,

ξ := (ξ1
1(·), . . . , ξ1

M1
(·), . . . , ξq+1

1 (·), . . . , ξq+1
Mq+1

(·)) ∈ G2, where ξij(·) are observation errors

in (5), that are realizations of random vector-functions ξij(t) = ξij(ω, t) ∈ Cl, and G2

denotes the set of random elements ξ, whose components have zero means, Eξij(·) =
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0, with Lebesgue square integrable second moments on Ωij , and unknown correlation

matrices Rij(t, s) = Eξij(t)(ξij)∗(s) satisfying the condition

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

Tr [Di
j(t)R

i
j(t, t)]dt ≤ 1, (7)

where f0 ∈ (L2(t0, T ))r is a prescribed vector-function, g0
1 , . . . , g

0
q ∈ Ck and x0

0 ∈ Cm
are prescribed vectors, Di

j(t) and Q(t) are known Hermitian positive definite l × l and

r × r-matrices with entries which are complex-valued continuous functions on Ω̄ij and
[t0, T ], correspondingly, Qi, i = 0, 1, . . . , q, are Hermitian positive definite matrices with
constant elements for which there exist their inverse matrices (Di

j)
−1(t), Q−1(t), and

Q−1
i , TrD :=

∑l
i=1 dii denotes the trace of the matrix D = {dij}li,j=1.

Set u := (u1
1(·), . . . , u1

M1
(·), . . . , uq+1

1 (·), . . . , uq+1
Mq+1

(·)) ∈ H, where H := (L2(Ω1
1))l ×

· · ·×(L2(Ω1
M1

))l×. . . ,×(L2(Ωq+1
1 ))l×· · ·×(L2(Ωq+1

Mq+1
))l. The norm in space H is defined

by

‖u‖H =
{q+1∑
i=1

Mi∑
j=1

‖uij(·)‖(L2(Ωi
j))l

}1/2

.

Definition 3.1 The estimate

̂̂
l(F ) =

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(yij(t), û
i
j(t))ldt+ ĉ,

in which vector-functions ûij(·), and a number ĉ are determined from the condition

inf
u∈H,c∈C

σ(u, c) = σ(û, ĉ),

where
σ(u, c) = sup

F∈G1, ξ∈G2

E|l(F )− l̂(F )|2,

will be called the guaranteed (minimax) estimate of expression (4). The quantity

σ := {σ(û, ĉ)}1/2

will be called the error of the guaranteed estimation of l(F ).

Thus, a guaranteed estimate is an estimate minimizing the maximal mean-square
estimation error calculated for the worst-case realization of the perturbations.

4 Representations for Guaranteed Estimates and Estimation Errors of l(F )

In this section we deduce equations that generate the minimax estimates.
For any fixed u ∈ H, introduce the vector-function z(t;u) as a unique solution to the

problem

− dz(t;u)

dt
= A∗(t)z(t;u)−

q+1∑
i=1

Mi∑
j=1

χΩi
j
(t)(Hi

j)
∗(t)uij(t) for a.e. t ∈ [t0, T ), (8)
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∆z(t;u) |t=ti = −(E +B∗i )−1B∗i z(ti;u), i = 1, . . . , q, z(T ;u) = 0, (9)

where

χΩ(t) =

{
1 if t ∈ Ω,
0 if t /∈ Ω

is a characteristic function of the set Ω.
The unique solvability of this problem follows from condition (3).

Lemma 4.1 Finding the minimax estimate of functional l(F ) is equivalent to the
problem of optimal control of the system (8), (9) with the cost function

I(u) =

∫ T

t0

(Q−1(t)(B∗(t)z(t;u) + l0(t)), B∗(t)z(t;u) + l0(t))rdt

+

q∑
i=1

(Q−1
i (C∗i (E +B∗i )−1z(ti;u) + ai), C

∗
i (E +B∗i )−1z(ti;u) + ai)k

+ (Q−1
0 (a+ C∗z(t0;u)), a+ C∗z(t0;u))m

+

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

((Di
j)
−1(t)uij(t), u

i
j(t))ldt→ inf

u∈H
. (10)

Proof. Let x be a solution to problem (1), (2). From (4)−(6), we obtain

l̂(F ) =

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(yij(t), u
i
j(t))ldt+ c

=

q+1∑
i=1

∫ ti

ti−1

(x(t),

Mi∑
j=1

χΩi
j
(t)(Hi

j)
∗(t)uij(t))ndt+

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(ξij(t), uj(t))ldt+ c.

Transform the first term in the right-hand side of this equality. Applying the integration
by parts formula, we have

q+1∑
i=1

∫ ti

ti−1

(x(t),

Mi∑
j=1

χΩi
j
(t)(Hi

j)
∗(t)uij(t))ndt = −

q+1∑
i=1

∫ ti

ti−1

(
x(t),−dz(t;u)

dt
−A∗(t)z(t;u)

)
n
dt

= −
q+1∑
i=1

(
(x(t+i−1), z(t+i−1;u))n−(x(ti), z(ti;u))n

)
−
N+1∑
i=1

∫ ti

ti−1

(dx(t)

dt
−A(t)x(t), z(t;u)

)
n
dt

= −(x(t0), z(t0;u))n

−
q∑
i=1

(Cigi, (E +B∗i )−1z(ti))n −
q+1∑
i=1

∫ ti

ti−1

(
B(t)f(t), z(t;u)

)
n
dt.

Here we have used the fact that

q+1∑
i=1

(
(x(t+i−1), z(t+i−1;u))n − (x(ti), z(ti;u))n

)
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= (x(t0), z(t0;u))n +

q∑
i=1

(
(x(t+i ), z(t+i ;u))n − (x(ti), z(ti;u))n

)
and

q∑
i=1

(
(x(t+i ), z(t+i ;u))n − (x(ti), z(ti;u))n

)

=

q∑
i=1

(
((E +Bi)x(ti) + Cigi, (E − (E +B∗i )−1B∗i )z(ti;u))n − (x(ti), z(ti;u))n

)

=

q∑
i=1

(
((E +Bi)x(ti), (E − (E +B∗i )−1B∗i )z(ti;u))n − (x(ti), z(ti;u))n

)

+

q∑
i=1

(Cigi, (E − (E +B∗i )−1B∗i )z(ti;u))n

=

q∑
i=1

(
((E +Bi)x(ti), (E +B∗i )−1z(ti;u))n − (x(ti), z(ti;u))n

)

+

q∑
i=1

(Cigi, (E +B∗i )−1z(ti;u))n =

q∑
i=1

(gi, C
∗
i (E +B∗i )−1z(ti;u))k.

Since

l(F ) =

∫ T

t0

(f(t), l0(t))rdt+

q∑
i=1

(gi, ai)k + (x0, a)m,

we get

l(F )− l̂(F ) =

∫ T

t0

(f(t), l0(t) +B∗(t)z(t;u))rdt+

q∑
i=1

(gi, ai + C∗i (E +B∗i )−1z(ti;u))k

+(x0, a+ C∗z(t0;u))m −
q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(ξij(t), uj(t))ldt− c.

The latter equality yields

E[l(F )− l̂(F )] =

∫ T

t0

(f(t), l0(t) +B∗(t)z(t;u))rdt

+

q∑
i=1

(gi, ai + C∗i (E +B∗i )−1z(ti;u))k + (x0, a+ C∗z(t0;u))m − c.

From here on, we apply the same reasoning as in the proof of Lemma in [4] to obtain

inf
c∈C

sup
F∈G1,ξ∈G2

E|l(F )− l̂(F )|2 = I(u),
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where I(u) is determined by formula (10) and the infimum over c is attained at

c =

∫ T

t0

(
f0(t), l0(t) +B∗(t)z(t;u))rdt

)
r
dt

+

q∑
i=1

(g0
i , ai + C∗i (E +B∗i )−1z(ti;u))k + (x0

0, a+ C∗z(t0;u))m. (11)

The proof is complete.
Further in the proof of Theorem 4.1 stated below, it will be shown that solving the

optimal control problem (8)−(10) is reduced to solving some system of impulsive periodic
differential equations.

Theorem 4.1 The minimax estimate
̂̂
l(F ) of the expression l(F ) has the form

̂̂
l(F ) =

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(yij(t), û
i
j(t))ldt+ ĉ = l(

ˆ̂
F ),

where

ûij(t) = Di
j(t)H

i
j(t)p(t), i = 1, . . . , q + 1, j = 1, . . . ,Mi, (12)

ĉ =

∫ T

t0

(
f0(t), l0(t) +B∗(t)ẑ(t))rdt

)
r
dt

+

q∑
i=1

(g0
i , ai + C∗i (E +B∗i )−1ẑ(ti))k + (x0

0, a+ C∗ẑ(t0))m,

ˆ̂
F := (f̂ , ĝ1, . . . , ĝq, x̂0) with

f̂(t) = f0(t) +Q−1(t)B∗(t)p̂(t), ĝi = g0
i +Q−1

i C∗i (E +B∗i )−1p̂(ti), i = 1 . . . , q,

x̂0 = x0
0 +Q−1

0 (t)C∗p̂(t0), (13)

p(t), ẑ(t), and p̂(t) are determined from the solution of the systems of equations

− dẑ(t)
dt

= A∗(t)ẑ(t)−
q+1∑
i=1

Mi∑
j=1

χΩi
j
(t)(Hi

j)
∗(t)Di

j(t)H
i
j(t)p(t) for a.e. t ∈ [t0, T ), (14)

∆ẑ(t) |t=ti = −(E +B∗i )−1B∗i ẑ(ti), i = 1, . . . , q, ẑ(T ) = 0, (15)

dp(t)

dt
= A(t)p(t) +B(t)Q−1(t)(B∗ẑ(t) + l0(t)) for a.e. t ∈ (t0, T ], (16)

∆p(t) |t=ti = Bip(ti) + CiQ
−1
i (C∗i (E +B∗i )−1ẑ(ti) + ai),

i = 1, . . . , q, p(t0) = CQ−1
0 (C∗ẑ(t0) + a) (17)
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and

− dp̂(t)
dt

= A∗(t)p̂(t)−
q+1∑
i=1

Mi∑
j=1

χΩi
j
(t)(Hi

j)
∗(t)Di

j(t)[H
i
j(t)x̂(t)−yij(t)] for a.e. t ∈ [t0, T ),

(18)
∆p̂(t) |t=ti = −(E +B∗i )−1B∗i p̂(ti), i = 1, . . . , q, p̂(T ) = 0, (19)

dx̂(t)

dt
= A(t)x̂(t) +B(t)(Q−1(t)B∗(t)p̂(t) + f0(t)) for a.e. t ∈ (t0, T ], (20)

∆x̂(t) |t=ti = Bix̂(ti) + CiQ
−1
i (C∗i (E +B∗i )−1p̂(ti) + gi),

i = 1, . . . , q, x̂(t0) = CQ−1
0 (C∗p̂(t0) + x0

0), (21)

respectively. Problems (14) – (17) and (18) – (21) are uniquely solvable. Equations (18)
– (21) are fulfilled with probability 1.

The minimax estimation error σ is determined by the formula

σ = [l(P̂ )]1/2, (22)

where

P̂ =
(
Q−1(·)(l0(·) +B∗(·)ẑ(·)), Q−1

1 (C∗1 (E +B∗1)−1ẑ(t1) + a1),

. . . , Q−1
q (C∗q (E +B∗q )−1ẑ(tq) + aq), Q

−1
0 (C∗ẑ(t0) + x0

0)
)
.

Proof. It is not difficult to verify, using the representation (1.21) from [2], that I(u)
is a weakly lower semicontinuous strictly convex functional on H. Therefore, since

I(u) ≥
q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

((Di
j)
−1(t)uij(t), u

i
j(t))ldt ≥ c‖u‖2H ∀u ∈ H, c=const,

by Theorems 13.2 and 13.4 (see [1]), there exists one and only one element û ∈ H
such that I(û) = infu∈H I(u). Hence, for any fixed v ∈ H and τ ∈ R, the functions
s1(τ) := I(û+ τv) and s2(τ) := I(û+ iτv) reach their minimums at a unique point τ = 0
so that

1

2

d

dτ
I(û+ τv)

∣∣∣
τ=0

= 0 and
1

2

d

dτ
I(û+ iτv)

∣∣∣
τ=0

= 0, (23)

where i =
√
−1. Since z(t; û+τv) = z(t; û)+τz(t; v) and z(t; û+iτv) = z(t; û)+iτz(t; v),

from (10) and (23), we obtain

0 =

∫ T

t0

(
Q−1(t)(B∗(t)z(t; û)+l0(t)), B∗(t)z(t; v)

)
r
dt+(Q−1

0 (C∗z(t0; û)+a), C∗z(t0; v))m

+

q∑
i=1

(Q−1
i (C∗i (E +B∗i )−1z(ti; û) + ai), C

∗
i (E +B∗i )−1z(ti; v))k

+

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

((Di
j)
−1(t)ûij(t), v

i
j(t))ldt. (24)
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Let p(t) be a solution of the problem

dp(t)

dt
= A(t)p(t) +B(t)Q−1(t)(B∗z(t; û) + l0(t)) for a.e. t ∈ (t0, T ],

∆p(t) |t=ti = Bip(ti) + CiQ
−1
i (C∗i (E +B∗i )−1ẑ(ti; û) + ai),

i = 1, . . . , q, p(t0) = CQ−1
0 (C∗ẑ(t0) + a).

Taking this into account, transform the first summand in the right-hand side of (24).
We have∫ T

t0

(
Q−1(t)(B∗(t)z(t; û)+l0(t)), B∗(t)z(t; v)

)
r
dt =

q+1∑
i=1

∫ ti

ti−1

(dp(t)
dt
−A(t)p(t), z(t; v)

)
n
dt

=

q+1∑
i=1

(
(p(ti), z(ti; v))n−(p(t+i−1), z(t+i−1; v))n

)
−
q+1∑
i=1

∫ ti

ti−1

(
p(t),

dz(t; v)

dt
+A∗(t)z(t; v)

)
n
dt

= −
q∑
i=1

(Q−1
i (C∗i (E +B∗i )−1z(ti; û) + ai), C

∗
i (E +B∗i )−1z(ti; v))k,

− (Q−1
0 (C∗z(t0; û) + a), C∗z(t0; v))m −

∫ T

t0

(
p(t),

q+1∑
i=1

Mi∑
j=1

χΩi
j
(t)(Hi

j)
∗(t)vij(t)

)
n
dt. (25)

From (24) and (25), we find

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

((Di
j)
−1(t)ûij(t), v

i
j(t))ldt =

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(p(t), (Hi
j)
∗(t)vij(t))ndt

for any v := (v1
1(·), . . . , v1

M1
(·), . . . , vq+1

1 (·), . . . , vq+1
Mq+1

(·)) ∈ H, whence ûij(t), i =

1, . . . , q + 1, j = 1, . . . ,Mi, are defined by (12). Setting u = û in (11), (8) and (9)
and denoting ẑ(t) = z(t; û), we see that ẑ(t) and p(t) satisfy system (14) – (17); the
unique solvability of this system follows from the fact that the functional I(u) has one
minimum point û.

Now let us establish that σ = [l(P̂ )]1/2. Substituting expression (12) into (10), we
obtain

σ2 =

∫ T

t0

(Q−1(t)(B∗(t)ẑ(t)+l0(t)), B∗(t)ẑ(t)+l0(t))rdt+(Q−1
0 (a+C∗ẑ(t0)), a+C∗ẑ(t0))m

+

q∑
i=1

(Q−1
i (C∗i (E +B∗i )−1ẑ(ti) + ai), C

∗
i (E +B∗i )−1ẑ(ti) + ai)k

+

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(Hi
j(t)p(t), D

i
j(t)H

i
j(t)p(t))ldt. (26)

However,∫ T

t0

(Q−1(t)(B∗(t)ẑ(t) + l0(t)), B∗(t)ẑ(t))rdt =

q+1∑
i=1

∫ ti

ti−1

(dp(t)
dt
−A(t)p(t), ẑ(t)

)
n
dt
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=

q+1∑
i=1

(
(p(ti), ẑ(ti))n − (p(t+i−1), ẑ(t+i−1))n

)
−
q+1∑
i=1

∫ ti

ti−1

(
p(t),

dẑ(t)

dt
+A∗(t)ẑ(t)

)
n
dt

= −
q∑
i=1

Q−1
i (C∗i (E +B∗i )−1ẑ(ti) + ai), C

∗
i (E +B∗i )−1ẑ(ti))k

−(Q−1
0 (C∗z(t0; û) + a), C∗z(t0; v))m −

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(Hi
j(t)p(t), D

i
j(t)H

i
j(t)p(t))ldt.

From here and from (26) it follows (22).

The representation
̂̂
l(F ) = l(

ˆ̂
F ) can be proved in much the same way as the repre-

sentation ̂̂
l(F ) =

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(yij(t), û
i
j(t))ldt+ ĉ.

This completes the proof.

Remark 4.1 In the representation
̂̂
l(F ) = l(

ˆ̂
F ) of the guaranteed mean square esti-

mate of l(F ), where F := (f, g1, . . . , gq, x0),
ˆ̂
F := (f̂ , ĝ1, . . . , ĝq, x̂0) with f̂(t) = f0(t) +

Q−1(t)B∗(t)p̂(t), ĝi = g0
i +Q−1

i C∗i (E+B∗i )−1p̂(ti), i = 1 . . . , q, x̂0 = x0
0 +Q−1

0 (t)C∗p̂(t0),

the vector-function f̂(t) and vectors ĝi, and x̂0 do not depend on a specific form of the
functional l.

5 Optimal Estimation Problem of Unknown Cauchy Data

Now consider the problem of finding the optimal estimate of the vector g = LF among
the estimates of the form

ĝ =

q+1∑
i=1

Mi∑
j=1

U ijy
i
j(·) + C; (27)

here yij(·) are observations (5), L is a linear continuous operator acting from the space
H into a separable complex Hilbert space V with the inner product (·, ·) and the norm
‖ · ‖, U ij are linear continuous operators acting from (L2(Ωij))

l to V , C ∈ V.
Let {e1, e2, . . . } be an orthonormal basis of V. Denote by σ1(U,C) and σ2(U,C) the

quantities defined by
σ1(U,C) = sup

G1,G2

E‖g − ĝ‖2

and

σ2(U,C) =

∞∑
k=1

sup
G1,G2

E|(g − ĝ, ek)|2,

respectively, where U := (U1
1 , . . . , U

1
M1
, . . . , Uq+1

1 , . . . , Uq+1
Mq+1

), G1 and G2 are defined on
page 483.

Definition 5.1 The estimates ˆ̂g1 and ˆ̂g2, which are determined from the condition

ˆ̂gi ∈ Argminĝ∈Lσi(U,C),

are called the guaranteed and optimal estimate of g, respectively, where by L we denote
the set of all estimates of the form (27).
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Parseval’s formula implies that the following inequality holds:

σ1(U,C) ≤ σ2(U,C).

Lemma 5.1 Suppose that, for an arbitrary vector e ∈ V, there holds the equality

inf
(̂g,e)

sup
G1,G2

E|(g, e)− (̂g, e)|2 = sup
G1,G2

E|(g, e)− ̂̂
(g, e)|2,

where
̂̂
(g, e) = (ˆ̂g, e), ˆ̂g does not depend on the vector e, and (̂g, e) is a linear estimate of

the inner product (g, e). Then the vector ˆ̂g is the optimal estimate of the vector g.

Proof. Notice that

inf
ĝ∈L

σ2(U,C) = inf
ĝ∈L

∞∑
k=1

sup
G1,G2

E|(g − ĝ, ek)|2 ≥
∞∑
k=1

inf
(̂g,ek)

sup
G1,G2

E|(g, ek)− (̂g, ek)|2

= sup
G1,G2

E|(g, ek)− ̂̂
(g, ek)|2 =

∞∑
k=1

sup
G1,G2

E|(g − ˆ̂g, ek)|2

and the lower bound is attained at ĝ = ˆ̂g. This completes the proof.
Next we obtain the optimal estimate of the element g = LF using this lemma. Note

first that for any e ∈ V , we have

(g, e)− (ĝ, e) = (LF, e)− (

q+1∑
i=1

Mi∑
j=1

U ijy
i
j(·) + C, e)

= (F,L∗e)H −
q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(yij(t), (U
i
j)
∗e(t))ndt− (C, e)

= l(F )− l̂(F ),

where L∗ and (U ij)
∗ denote the adjoint operators of L and U ij , respectively,

l(F ) := (F,L∗e)H =

∫ T

t0

(f(t), l0(t))rdt+

q∑
i=1

(gi, ai)k + (x0, a)m,

with some l0 ∈ (L2(t0, T )r, ai ∈ Ck, and a ∈ Cm,

l̂(F ) := ̂(F,L∗e)H =

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(yij(t), u
i
j(t))ndt+ c,

where uij(t) = (U ij)
∗e(t) are vector-functions belonging to (L2(Ωij))

l, c = (C, e) ∈ C.
By Theorem 4.1,

inf
̂(F,L∗e)H

sup
G1,G2

E|(F,L∗e)H − ̂(F,L∗e)H|2 = sup
G1,G2

E|(F,L∗e)H −
̂̂

(F,L∗e)H|2,

where
̂̂

(F,L∗e)H = (
ˆ̂
F,L∗e)H with

ˆ̂
F := (f̂ , ĝ1, . . . , ĝq, x̂0) and f̂(·), ĝ1, . . . , ĝq, x̂0 being

determined by (13). From the latter relationship and from the fact that
ˆ̂
F does not

depend on L∗e (see Remark 1) it follows that the vector ĝ = LF̂ satisfies the assumptions
of Lemma 5.1. This proves the validity of the following assertion.
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Theorem 5.1 The optimal estimates
ˆ̂
F and ˆ̂g of F and g = LF are determined by

ˆ̂
F = (f̂(·), ĝ1, . . . , ĝq, , x̂0) and L

ˆ̂
F, respectively, where f̂(·), ĝ1, . . . , ĝq, x̂0 are defined by

(13).

Remark 5.1 All the results of the paper remain valid if we assume that the com-
ponents ξij(·) of the random elements ξ := (ξ1

1(·), . . . , ξ1
M1

(·), . . . , ξq+1
1 (·), . . . , ξq+1

Mq+1
(·))

entering into the set G2 are pairwise uncorrelated and satisfy the condition∫
Ωi

j

Tr [Di
j(t)R

i
j(t, t)]dt ≤ 1, i = 1, . . . q + 1, j = 1, . . . ,Mi.

Let us present an example of applying the obtained results to the guaranteed estima-
tion problem for the impulsive nonlinear differential equation.

In the population dynamics, for modeling of the processes of rapid change of the
number of individuals of a population, the Gompers equation of the form

dx(t)

dt
=
(
a(t) + b(t) lnx(t)

)
x(t) (28)

is applied. For the use of such models, it is required to know the parameters a(t) and
b(t).

Let us show how to apply the above results, for example, for obtaining the guaranteed
estimates for the function a(t) by assuming that the function b(t) is known and that a(t)
satisfies the following condition∫ T

0

(da(t)

dt

)2

dt ≤ γ2
T (γT = const), a(0) = 0.

Let the function
v(t) = ξ(t)x(t) (29)

be observed on the set (0, T )\(∪qi=1{ti}), where ξ(t) is a realization of a stochastic process
ξ(t, ω) > 0, x(t) satisfies equation (28) and the conditions

x(0) = 1,
x(tk + 0)

x(tk − 0)
= ck, (30)

where tk, k = 1, . . . , q, are given impulse points such that 0 < t1 < · · · < tq < T, ck are
prescribed numbers.

We will find the guaranteed estimate of the functional

L(a) =

∫ T

0

l(t)a(t)dt

in the class of estimates

L̂(a) =

∫ T

0

u(t) ln v(t)dt,

where l ∈ L2(0, T ) is a given function, u ∈ L2(0, T ).
If we introduce the notation ϕ1(t) = lnx(t), ϕ2(t) = a(t), y(t) = ln v(t), η(t) =

ln ξ(t), then the guaranteed estimation problem of the functional L(a) is reduced to the
guaranteed estimation problem of the functional L(ϕ2) from the observations of the form

y(t) = ϕ1(t) + η(t),
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where ϕ1(t) and ϕ2(t) are found from solving the following system of linear impulsive
differential equations:

dϕ1(t)

dt
= ϕ2(t) + b(t)ϕ1(t) for a.e. t ∈ (0, T ], ϕ1(0) = 0,

dϕ2(t)

dt
= f(t) for a.e. t ∈ (0, T ], ϕ2(0) = 0,

ϕ1(tk + 0) = ϕ1(tk − 0) + ln ck, k = 1, . . . , q,

ϕ2(tk + 0) = ϕ2(tk − 0), k = 1, . . . , q,

where f(t) = da(t)
dt .

Under certain restrictions on the correlation function of the process η(t), we can apply
the results of the present paper for obtaining the guaranteed estimates of the parameter
a(t).

6 Conclusion

The method proposed in the present paper enables one to obtain the optimal estimates
of unknown data of Cauchy problems for first-order linear impulsive systems of ordinary
differential equations from noisy observations of their solutions.

We deduce the boundary value problems for linear impulsive ordinary differential
equations of the special kind that generate the optimal estimates.

The results presented above are aimed at elaborating mathematically justified esti-
mation techniques for various forward and inverse problems with uncertainties describing
evolution processes characterized by the combination of a continuous and abrupt change
of their state.
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