Nonlinear Dynamics and Systems Theory, 21 (5) (2021) 471-480

Dynamics of Nonlinearly Damped Duffing-Van Der Pol Oscillator Driven by Frequency Modulated Signal

B. Bhuvaneshwari ¹, S. Valli Priyatharsini ¹, V. Chinnathambi ^{1,*} and S. Rajasekar ²

¹ Department of Physics, Sadakathullah Appa College, Tirunelveli 627 011, Tamil Nadu, India.
² School of Physics, Bharathidasan University, Tiruchirapalli 620 024, Tamilnadu, India.

Received: July 13, 2019; Revised: September 10, 2021

Abstract: The dynamics of a nonlinearly damped Duffing-Van der Pol (DVP) oscillator driven by a frequency modulated (FM) signal is numerically investigated as a function of the amplitude (g) and frequency (Ω) of the high-frequency signal and damping exponent (P). FM signals are basically classified into two types, namely, Narrow-Band FM (NBFM) and Wide-Band FM (WBFM). We considered both signals to study the dynamics of the system. As the amplitude g and frequency Ω of the high-frequency signal are varied, with other parameters at a constant value, a variety of features such as different routes to chaos, periodic windows, period-doubling and reverse period-doubling bifurcations, periodic bubbles, hysteresis and vibrational resonance are found to occur due to the signals. Our results show many striking departures from the behaviour of a linearly damped system with the FM signal. A bifurcation diagram, phase portrait, Poincaré map, resonance plot are also plotted to show the manifestation of periodic and chaotic orbits and resonance phenomenon.

Keywords: *DVP oscillator; nonlinear damping; FM signal; hysteresis; chaos; vibrational resonance.*

Mathematics Subject Classification (2010): 34C55, 34C25, 37D45, 37G35, 70K30.

^{*} Corresponding author: mailto:veerchinnathambi@gmail.com

^{© 2021} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua471