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Abstract: This paper develops an adaptive sliding mode control based on fuzzy
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exploited, and the Lyapunov theory is used to establish a parametric adaptation law
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1 Introduction

The use of classical control techniques (proportional, integral and/or derivative actions
control) requires knowing the system parameters in order to set the appropriate control
parameters which permit reaching the desired goal. Thus, errors and inaccuracies might
well happen during the process. Moreover, the control is hard due to the existing coupling
between the variables of the system (interaction between the variables to be controlled).
Yet nevertheless, using the so-called robust control methods including adaptive control
can help solve the problem. Recent contributions in adaptive control, both theoretical
and practical, have allowed to better understand adaptive systems [1–4]. The main
purpose of adaptive control is the synthesis of adaptation laws to automatically adjust
regulators of the control loops in order to achieve or maintain a given level of performance,
when the parameters of the process to be controlled are unknown or little known [5–9].
Indeed, a large research effort is invested in understanding the structural and functional
aspects of biological systems and in particular the processes of the human brain. This
led to try new ways which integrate the non-linearities and uncertainties inherent in the
real system. The fuzzy systems approach seems to be practical, and studies have shown
that certain classes have the quality of being universal function approximators [10–16].
This important property has opened a new way to use fuzzy systems in the field of
control [1–4]. Hence, several works are oriented towards combining fuzzy systems with
control techniques such as adaptive control. In these control schemes, fuzzy systems
are used to approximate non-linear functions. In this paper, an adaptive control based
on fuzzy systems is developed. Fuzzy systems are used to approximate the model of
the system to be controlled, and in order to compensate the effects of reconstruction
errors, we introduce a sliding mode term in the control law. The approximation theory
and the Lyapunov theory are used to establish a parametric adaptation law ensuring the
boundedness of all the signals of the system and the error of the fuzzy system parameters.

2 Description of The Sugeno Type Fuzzy System

The fuzzy system in its design consists of four main modules [17–20]: 1) the fuzzy rule
base, or knowledge base, contains the fuzzy rules describing the behavior of the system;
2) the fuzzy inference engine transforms, with the help of fuzzy reasoning techniques,
the fuzzy part resulting from the fuzzification into a new fuzzy part; 3) the fuzzification
transforms the physical input quantity into a fuzzy quantity; 4) the defuzzification trans-
forms the fuzzy quantity resulting from the inference into a physical quantity. There is a
great number of possibilities of realization of fuzzy systems with a multitude of choices
for each, and each combination of choices generates a class of fuzzy systems. In our
work, we are interested in the Sugeno type fuzzy system, initially developed by Sugeno
and Takagi for modeling of systems from numerical data [21]. In this case the conse-
quences of the rules are numerical functions, which depend on the current values of the
input variables. In this way, the defuzzification step required by other fuzzy systems is
skipped. As our goal is to develop a law of adaptation of the parameters of the fuzzy
system, it is therefore essential to give the analytical expression of the output of Sugeno’s
fuzzy system, to approximate any nonlinear function from numerical data.

Let us denote by xsf1 , . . . , xsfn the inputs of Sugeno’s fuzzy system, and by ysf its

output. For each variable xsfi is associated mi fuzzy sets F ji in universe of discourse Ui
such that for any xsfi in Ui, there exists at least one degree of membership. µF ji

(xsfi) 6= 0,
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where i = 1, 2, ..., n and j = 1, 2, ...,mi. The rule base of the fuzzy system includes
M =

∏n
i=1mi rules such as

Rl : if xsf1 isF
l1
1 and...and xsfi is F

li
i and...and xsfn isF

ln
n then ysf1(x) = al0+...+alnxfn .

(1)
Each fuzzy rule Rl corresponds to a combination of (F l11 , ..., F

li
i , ..., F

ln
n ) fuzzy sets.

In fact, the knowledge base contains all possible combinations of the fuzzy sets of the
input variables. In this case, the consequences of the rules are numerical functions,
which depend on the current values of the observation variables (xsf )i=1,...n. From
the previous set of rules, the expression for the final output is given by the following
relationship [16,18,22]:

ysf =

∑M
l=1 µlysfl∑M
l=1 µl

(2)

with

µ
l

=

n∏
i=1

µF lii xi , 1 ≤ li ≤ mi. (3)

This represents the degree of confidence or activation of the rule Rl. Since each rule has
a numerical conclusion, the total output of the fuzzy system is obtained by calculating a
weighted average, and in this way, the time consumed by the defuzzification procedure
is avoided. The membership functions characterizing the fuzzy sets F ji are chosen based
on Gaussian functions defined by the following relation:

µF ji
(xsfi) = exp(−0.5(vji (xsfi − c

j
i ))), (4)

where c is the mean, v is the inverse of the variance. In the case where the parameters
of the premises are a priori fixed, the only adjustable parameters will be those of the
conclusion. Thus, the final output can be written in the following form:

ysf = W (xsf )A, (5)

where A is a vector of parameters aji , and W (xsf ) is a vector of fuzzy basis functions,
l = 1, ...,M ; i = 1, ..., n; and 1 ≤ li ≤ mi.

3 Adaptive Control Based on Fuzzy Systems

3.1 Formulation of the problem

Let us define a nonlinear system by the collection of m differential equations of order n
such as

ui = Fi(X)x
(n)
i +Gi(X), (6)

yi = xi; i = 1, ...,m, X = [x(n−1), ..., x]T , x = [x1, ..., xm]T , u = [u1, ..., um]T ,
and y = [y1, ..., ym]T are, respectively, the state vector, the input vector and the output
vector. Moreover, we assume that the time derivative of Fi(X) verifies the following
condition:

|Fi(X)| ≤ Fi0‖X‖, (7)

where Fi0 is a known positive constant. To help establishing the control law, we introduce
the following definitions:
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– The tracking error vector ei = [ei ėi ... e
(n−1)
i ]T ∈ Rm with ei = xid − xi.

– The filtered tracking error

si = (
∂

∂t
+ λ)(n−1)ei (8)

can be written as si = Ci ei0, where Ci = [λ(n−1) (n− 1)λn−2 ... 1].
– The reference signal

y
(n)
ir = x

(n)
id + Cir ei (9)

with Cir = [0 λ(n−1) (n− 1)λ(n−2) ...(n− 1)λ] and x
(n)
id being the nth derivative of

the reference xid.
To synthesize the control law, the functions Fi(X) and Gi(X) are replaced by two

Sugeno fuzzy systems of the form W (X)θ such as

Fi(X) = Wfi(X)θfi + εfi (10)

Gi(X) = Wgi(X)θgi + εgi, (11)

where εfi and εgi are the reconstruction errors of functions Fi(X) and Gi(X) such that [4]

|εfi | ≤ ε̄fi (12)

|εgi | ≤ ε̄gi . (13)

We denote the estimate of the function Fi(X) by F̂i(X) and Gi(X) by Ĝi(X) such
that

F̂i(X) = Wfi(X)θ̂fi (14)

Ĝi(X) = Wgi(X)θ̂gi . (15)

The adaptive fuzzy control problem is posed as follows. For the nonlinear system defined
by equation (6), determine the adjustment laws of the parameters of the two fuzzy
systems that allow to estimate, online, the functions Fi(X) and Gi(X) as well as the
adequate control ui such that the tracking error converges asymptotically to zero.

3.2 Synthesis of the control law

Our goal is to design a control such that the tracking error converges asymptotically to
zero. Thus, this control is given by

ui = kidsi +
1

2
Fi0 ‖X‖ si +Wfi(X)θ̂fiy

(n)
ir +Wgi(X)θ̂gi +Kisign(si), (16)

where Ki is the sliding mode term, it is given by

Ki = ε̄fi |y
(n)
ir |+ ε̄gi . (17)

The parameters of the fuzzy systems are adjusted by the following adaptation laws:

˙̂
θfi = ηfiW

T
fi(X)siy

(n)
ir , (18)

˙̂
θgi = ηfiW

T
gi(X)si. (19)

The schematic diagram of adaptive control based on fuzzy systems is shown in Figure
1.
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Figure 1: Structure of adaptive control based on fuzzy systems.

4 Study of the Stability

Using the control law (16) and the dynamic model of the nonlinear system (6), and

knowing that y
(n)
ir = y

(n)
i + ṡi, the dynamics of the error is given by

Fiṡi = −kidsi−
1

2
Fi0 ‖X‖ si−Wfi(X)θ̃f

i
y

(n)
ir −Wgi(X)θ̃gi−kisign(si)+εfiy

(n)
ir +εgi , (20)

where θ̃fi and θ̃gi are the parametric errors, they are given by θ̃fi = θ̂fi − θ̄fi and θ̃gi =

θ̂gi − θ̄gi with θ̄fi and θ̃gi being the parameter vectors for the reconstruction errors to
be zero.

Let the following Lyapunov function:

V =
1

2
s2
iFi +

1

2
(θ̃Tf

i
η−1
fi
θ̃f
i
) +

1

2
(θ̃Tg

i
η−1
gi θ̃gi ). (21)

By deriving (21) with respect to time, we obtain

V̇ =
1

2
s2
iFi + siFiṡi + θ̃Tf

i
η−1
fi

˙̂
θfi + θ̃Tg

i
η−1
gi

˙̂
θgi . (22)

Replacing (20) in (22), we have

V̇ =
1

2
s2
i Ḟ i − s2

i kid −
1

2
s2
iFi0 ‖X‖ − siWfi(X)θ̃f

i
y

(n)
ir − siWgi(X)θ̃g

i

+ θ̃Tf
i
η−1
fi

˙̂
θfi + θ̃Tg

i
η−1
g
i

˙̂
θg
i

+ siεf
i
y

(n)
ir + siεgi − siKisign(si). (23)

To facilitate the demonstration, we make the following decomposition:
V̇1 = −s2

i kid,
V̇2 = 1

2s
2
i Ḟi − 1

2s
2
iFi0 ‖X‖,

V̇3 = siWfi(X)θ̃f
i
y

(n)
ir + θ̃Tf

i
η−1
f
i

˙̂
θf
i
− siWgi(X)θ̃g

i
+ θ̃Tg

i
η−1
g
i

˙̂
θg
i
.

Thus, the expression of V̇ is put in the following form:

V̇4 = siεf
i
y

(n)
ir + siεgi − siKisign(si),

V̇ = V̇1 + V̇2 + V̇3 + V̇4.
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Knowing that kd is a positive constant, we get V̇1 ≤ 0. Using condition (7), we have
V̇2 ≤ 0.

Following the adaptation laws in (18), and (19), we obtain V̇3 ≤ 0. According to the
expression of the slip mode term (16), it comes V̇4 ≤ 0. Hence, the time derivative of the
Lyapunov function verifies

V̇ ≤ 0. (24)

The inequality (24) implies that s converges asymptotically to zero and that all signals
in the system are bounded.

4.1 Application to the permanent magnet synchronous machine

The machine model is established by considering the commonly accepted simplifying
assumptions that the machine is of symmetric, unsaturated construction and that the
iron losses and space harmonics of the magnetic field are negligible. The dynamics of the
machine is represented by its rotor-related PARK model [23–25] so that the electrical
quantities appear in a continuous form, easy to process by the control algorithm. Thus,
this model is given by

vd = Rsid + Ld
did
dt − pLqΩiq,

vq = Rsiq + Lq
diq
dt + pLdΩid + pΩΦ

f
,

j dΩ
dt = Tem − Tr − FcΩ,

Tem = 3
2p(Φf

iq + (Ld − Lq)idiq),

(25)

where Φ
f

is the total permanent magnet flux, (Ld, Lq) are the forward and quadrature
inductances, (id, iq) are the stator current components, (vd, vq) are the stator voltage
components, Rs is the stator resistance, Ω is the rotational speed, Fc is the strongly
viscous coefficient, j is the moment of inertia, Tr is the resistive torque and p is the
number of pole pairs.

4.2 Speed control

In the case of a permanent magnet synchronous machine without salience (Ld = Lq)
and without dampers, the electromagnetic torque depends only on the q-axis current
component. The power input is optimized for a given torque if the disturbance current
id = 0, [26]. The control must maintain zero and adjust the torque with. Physically,
this strategy amounts to maintaining the armature reaction flux in quadrature with the
rotor flux produced by the system. The overall structure of this command is shown in
Figure 2. A coordinate transformation (dq-abc) is used to calculate the reference stator
currents. These currents are compared to the actual measured currents to set the control
of each inverter arm. Using the equilibrium equation between the driving torque and the
torque opposed by the mechanical part of the system, we can write

iq = F (Ω)
dΩ

dt
+G(Ω). (26)

The implementation of this command requires the approximation of the functions F (Ω)
and G(Ω) by the fuzzy systems, thus, this approximation is given by

F (Ω) = Wf (Ω)θf + εfΩ
, (27)

G(Ω) = Wg(Ω)θg + εgΩ
(28)
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Figure 2: Speed/position control structure by the adaptive control method based on fuzzy
systems.

with εfΩ
and εgΩ

being the reconstruction errors of functions Fi(Ω) and Gi(Ω) such that
|εfΩ| ≤ ε̄fΩ, |εgΩ| ≤ ε̄gΩ.

In this approximation, we choose two Sugeno fuzzy systems of order one having the
input. Three membership functions are associated to this input. Thus, we have three
rules for each fuzzy system.

The estimated functions generated by the fuzzy systems are given by

F̂ (Ω) = Wf (Ω)θ̂f , (29)

Ĝ(Ω) = Wg(Ω)θ̂g, (30)

where θ̂f and θ̂g are the internal parameters of the fuzzy systems, they are adjusted by
the following adaptation law:

˙̂
θf = ηfΩ

WT
f (Ω)sẏr, (31)

˙̂
θg = ηgΩW

T
g (Ω)s, (32)

where ηfΩ
and ηgΩ

are positive constants, s and ẏr are, respectively, the error and the

reference signal, their expressions are given by s = Ωref − Ω, ẏr = Ω̇ref .

From the estimated fuzzy functions, the law control has the following form:

iqref = kdΩs+
1

2
F0Ω ‖Ω‖ s+Wf (Ω)θ̂f ẏr +Wg(Ω)θ̂g + kΩsign(s), (33)

where kΩ is the gain of the slip mode term, its expression is given by kΩ = ε̄fΩ
|ẏr|+ ε̄gΩ

.
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4.3 Position control

The schematic diagram of this control is shown in Figure 2. Through fuzzy systems, the
functions F (θ̇) and G(θ̇) in equation (26) are approximated as follows:

F (θ̇) = Wf (θ̇)θf + εfθ , (34)

G(θ̇) = Wg(θ̇)θg + εgθ , (35)

with εfθ and εgθ being the reconstruction errors of functions F (θ̇) and G(θ̇) such that
|εfθ| ≤ ε̄fθ, |εgθ| ≤ ε̄gθ.

In our application, two Sugeno fuzzy systems of order one with three fuzzy rules
are used to approximate the functions F (θ̇) and G(θ̇). The fuzzy systems generate the
estimated functions F̂ (θ̇) and Ĝ(θ̇) such that

F̂ (Ω̇) = Wf (Ω̇)θ̂f , (36)

Ĝ(Ω̇) = Wg(Ω̇)θ̂g, (37)

where θ̂f and θ̂g are the internal parameters of the fuzzy systems, they are adjusted by
the following adaptation law:

˙̂θf = ηfθW
T
f (θ)sÿr, (38)

˙̂θg = ηgθW
T
g (θ)s, (39)

where s and ÿr are, respectively, the filtered error and the reference signal, they are given
by s = θ̇ref − θ̇ + λ(θref − θ), ÿr = θ̈ref + λ(θ̇ref − θ̇), whereas ηfθ and ηgθ are positive
constants. Based on the estimated fuzzy functions, the adaptive controller provides the
command iqref , which is given by

iqref = kdθs+
1

2
F0θ

∥∥∥θ̇∥∥∥ s+Wf (θ̇)θ̂f ÿr +Wg(θ̇)θ̂g + kθsign(s), (40)

where Kθ is the gain of the slip mode term, it is given by Kθ = ε̄fθ |ÿr|+ ε̄gθ .

5 Numerical Simulation

In this section, we present the results obtained from the simulation of the adaptive control
technique based on fuzzy systems applied to the permanent magnet synchronous machine.
The values of the tuning coefficients, imposing the desired dynamics, are gathered in
Tables 1 and 2.

ηfΩ ηgΩ kdΩ F0Ω ε̄fΩ ε̄gΩ
0.05 0.05 1 0.05 0.01 0.01

Table 1: Speed adjustment coefficients.
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ηfθ ηgθ kdθ F0θ ε̄fθ ε̄gθ λ
50.1 50.1 10 10 0.1 0.1 70.8

Table 2: Position adjustment coefficients.

Figure 3: Dynamic behavior of the MSAP during a start-up with load variation at time t =
0.7 s.
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Figure 4: Dynamic behavior of the MSAP during positioning with load variation at time t =
0.7 s.
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Figure 5: Dynamic behavior of the MSAP during a start-up with parametric variations at time
t = 0.8 s.
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Figure 6: Dynamic behavior of the MSAP during positioning with parametric variations at
time t = 0.8 s.

Figure 3 shows the responses obtained during a start-up for a speed setpoint of
300 rd/s with load variation. Figure 4 gives the responses obtained during positioning.
We note very interesting dynamic and static performances, the disturbance rejection is
effective, the decoupling of the d-q axes is not affected by the severe regime applied to the
machine. The speed and position drops are of the order of 0.076 and 0.03, respectively.
The times required to compensate for these are equal to 0.002s and 0.016s, respectively.
To evaluate the performance of this control scheme with respect to parametric variations,
we have tested the influence of parametric variations on the performance of the speed
and position control. We consider variations on the stator resistance, on the inductances
as well as on the magnet flux. The stator resistance is varied by 100, the inductances
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are varied by –50, and the magnet flux by –10. The obtained responses are shown in
Figures 5 and 6. From these results, we notice that the adaptive control based on fuzzy
systems presents a strong robustness towards parametric variations, which proves the
effectiveness of this control technique.

6 Conclusion

In this paper, we have presented and applied a new approach of adaptive control based on
fuzzy systems, in order to control the speed and position of the permanent magnet syn-
chronous machine. The fuzzy systems are used to approximate the non-linear functions,
which are determined by a self-learning or self-tuning according to a law that ensures
the global stability of the system. In the light of the recorded responses, the proposed
adaptive control based on fuzzy systems presents good performances. Indeed, the tests
carried out on the model of the synchronous machine with permanent magnets, allowed
us to judge positively the stability and the effectiveness of this algorithm.
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