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1 Introduction

Reaction-diffusion systems are widely used in biology, ecology, engineering, physics and
chemistry. What we observe in modern scientific studies is the great interest of scientists
in studying this type of systems; this confirms once again its importance in the devel-
opment of applied and technological sciences. Various models and real examples can
be found in various scientific fields, see Murray [13, 14]. The propagation of epidemics
(Coronavirus, Hepatitis, ...), population dynamics, migration of biological species are
among many examples of such phenomena. There are many methods and techniques
for studying these issues. The reader can see some of them in the works of Alaa and
Mesbahi [2,3,11,12], Abbassi et al. [1], Lions [10], Raheem [19] and the references therein.

In recent years, special attention has been paid to degenerate systems. However, most
of the discussions relate to systems of two equations of the porous reaction medium type
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diffusion and with diffusion coefficients and specific reaction functions. This is because
of their wide applications in various sciences. Among the important works on degenerate
systems, we mention, for example, Alaa et al. [3], Al-Hdaibat et al. [4], Anderson [5],
where we find techniques and methods of treatment.

The aim of this paper is to show the existence of positive maximal and minimal solu-
tions for a quasilinear elliptic degenerate system, including the uniqueness of the positive
solution. The two elliptic operators of the system under consideration can degenerate in
the sense that D1 (0) = 0 or D2 (0) = 0. To answer these questions, we use a technique
described by Pao, based on the upper and lower solutions. For more details on this
technique, see Deuel and Hess [6], Pao et al. [15]- [18]. So, we need to construct suitable
upper and lower solutions. We are therefore interested in studying the following system: −div (D1 (u)∇u) = f (x, u, v) in Ω,

−div (D2 (v)∇v) = g (x, u, v) in Ω,
u (x) = u0 (x) , v (x) = v0 (x) on ∂Ω,

(1)

where Ω is a bounded domain in Rn (n ≥ 2) with the boundary ∂Ω. D1, D2, f and
g are prescribed functions satisfying the conditions in hypotheses (H1) and (H3). We
remark that these two functions f and g verify simple properties, this allows us to choose
them from a wide range. Below we will denote Cα (Ω) to the space of Hölder continuous
functions in Ω.

The results obtained in this paper can be applied to a large number of reaction-
diffusion models, which arise in various fields of the applied science such as theory of
shells, Brownian motion theory and many problems of physics and biology. In addition
to the classical problems in the fields of mass-heat transfer, chemical reactors, and nu-
clear reactor dynamics, there are many recently developed models from enzyme kinetics,
population growth, nerve axion problems, and others.

The system (1) can model the circulation of an ideal gas in a homogeneous porous
medium with an isentropic flow. It can also model the steady state of phenomena such
as the heat propagation in a two-components combustible mixture, chemical processes,
the interaction of two non-self-limiting biological groups, etc. We send the reader to
see many models and applications in Deuel and Hess [6], Friedman [7], Ladyženskaja et
al. [8], Lei and Zheng [9], especially Pao [16,17] and the references therein. For example,
the steady state of the Gas-Liquid Interaction Problem, when considering a dissolved gas
A and a dissolved reactant B that interact in a bounded diffusion medium, is a special
case of (1) with the reaction terms f(u, v) = −σ1uv, g(u, v) = −σ2uv, where σ1 is the
rate constant and σ2 = k1σ1. In a more general reaction scheme called the (m,n) order
reaction, the resulting equations are given by (1) with f(x, u, v) = −σ1u

mvn + q1(x),
g(x, u, v) = −σ2u

mvn + q2(x), m,n ≥ 1 are constants and q1(x), q2 (x) ≥ 0 are possible
internal sources.

In the problems of molecular interactions and subsonic flows, a simple model for
the density function u is given by (1) with the reaction function f (u) = σup, with
σ > 0, p ≥ 1.

This model also describes the temperature in radiating bodies or gases and in nuclear
reactors with positive temperature feedback. For more information on this model, and
also to see other models, we refer the reader to Pao [17].

The rest of this paper is organized as follows. In the next section, we state our main
result. In the third section, we provide some preliminary results on the scalar problem
which we need in the proof of the main theorem. Next, we give some results concerning
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the approximate problem. The fifth section is devoted to proving the main result. Finally,
we give an application to the problem under study. The paper ends with a concluding
remarks and some perspectives.

2 Statement of the Main Result

In all that follows, we denote u ≡ (u, v), ũs ≡ (ũ, ṽ), ûs ≡ (û, v̂). The inequality ûs ≤ ũs
means that û ≤ ũ and v̂ ≤ ṽ.

2.1 Assumptions

First, we have to clarify in which sense we want to solve our problem.

Definition 2.1 A pair of functions ũs ≡ (ũ, ṽ), ûs ≡ (û, v̂) in C2 (Ω) ∩ C
(
Ω̄
)

are
called ordered upper and lower solutions of (1) if ûs ≤ ũs and −div (D (û)∇û) ≤ f (x, û, v̂) in Ω,

−div (D (v̂)∇v̂) ≤ g (x, û, v̂) in Ω,
û (x) ≤ u0 (x) , v̂ (x) ≤ v0 (x) on ∂Ω,

(2)

and ũ, ṽ satisfies (2) with inequalities reversed.

For a given pair of ordered upper and lower solutions ũs and ûs, we define

S∗1 =
{
u ∈ C

(
Ω̄
)
| û ≤ u ≤ ũ

}
, S∗2 =

{
v ∈ C

(
Ω̄
)
| v̂ ≤ v ≤ ṽ

}
,

S∗ =
{

u = (u, v) ∈
(
C
(
Ω̄
))2 | ûs ≤ u ≤ ũs

}
.

Now, we make the following assumptions:

(H1) f (x, ·), g (x, ·) ∈ Cα
(
Ω̄
)

and u0 (x), v0 (x) ∈ Cα (∂Ω).

(H2) D1 (u) ∈ C2 ([0,M1]), D1 (u) > 0 in (0, M1], and D1 (0) ≥ 0 with M1 = ‖ũ‖C(Ω̄).

D2 (v) ∈ C2 ([0,M2]), D2 (v) > 0 in (0, M2], and D2 (0) ≥ 0 with M2 = ‖ṽ‖C(Ω̄).

(H3) f (·,u) , g (·,u) ∈ C1 (S∗), and

∂f

∂v
(·,u) ≥ 0 and

∂g

∂u
(·,u) ≥ 0 for all u ∈ S∗.

(H4) There exists a constant δ0 > 0 such that for any x0 ∈ ∂Ω there exists a ball K
outside of Ω with radius r ≥ δ0 such that K ∩ Ω̄ = {x0}.

In the above system, we further assume D1 (0) = 0 or D2 (0) = 0.
Let γ1 (x) and γ2 (x) be smooth positive functions satisfying

γ1 (x) ≥ max

{
−∂f
∂u

(x, u) ; u ∈ S∗
}

and γ1 (x) ≥ C1 (x) + δ1, (3)

γ2 (x) ≥ max

{
−∂g
∂v

(x, u) ; u ∈ S∗
}

and γ2 (x) ≥ C2 (x) + δ2 (4)
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for some constants δ1, δ2 > 0, where C1 (x) and C2 (x) are analogous to C (x) defined in
Section 3 by the relations (11), i.e.,

C1 (x) = −div∇ (ũ)D′1 (θ1)− fu (x, θ2) ,

C2 (x) = −div∇ (ṽ)D′2
(
θ̄1

)
− gv

(
x, θ̄2

)
.

We define for all u ∈ S∗

F (x,u) = γ1 (x)u+ f (x,u) and G (x,u) = γ2 (x) v + g (x,u) . (5)

A typical example where the result of this paper can be applied is −∆uλ = p (x)ujvk in Ω,
−∆vµ = q (x)u`vm in Ω,
u = v = 0 on ∂Ω,

(6)

where λ, µ > 1, j, k, `, m > 0 and p (x), q (x) > 0 in Ω.
It is obvious that the problem (6) is a special case of (1) with

D1 (u) = λuλ−1 , D2 (v) = µuµ−1 , u0 (x) = v0 (x) = 0,

f (x, u, v) = p (x)ujvk , g (x, u, v) = q (x)u`vm.

Lemma 2.1 F (x,u) and G (x,u) are nondecreasing functions in u for all u ∈ S∗.

Proof. According to (H3) and (5), we have for all u ∈ S∗

∂F

∂v
(x,u) =

∂f

∂v
(x,u) ≥ 0 and

∂G

∂u
(x,u) =

∂g

∂u
(x,u) ≥ 0.

By (3)− (5), we obtain

∂F

∂u
(x,u) = γ1 (x) +

∂f

∂u
(x,u) ≥ 0 and

∂G

∂v
(x,u) = γ2 (x) +

∂g

∂v
(x,u) ≥ 0,

which implies the desired result.

2.2 The main result

Now, we can state the main result of this paper.

Theorem 2.1 Let ũs, ûs be ordered positive upper and lower solutions of (1), and
let hypotheses (H1) − (H4) hold. Then problem (1) has a minimal solution us and a
maximal solution us such that ûs ≤ us ≤ us ≤ ũs . If us = us (≡ u∗s), then u∗s is the
unique positive solution in S∗.

3 Preliminary Results for the Scalar Problem

To illustrate our basic approach to the coupled system (1), we first consider the following
scalar quasilinear elliptic boundary problem:{

−div (D (w)∇w) = h (x,w) in Ω,
u (x) = h (x) on ∂Ω,

(7)

where D and h are prescribed functions satisfying hypotheses (H1)− (H4) above.
The following theorem ensures the existence of positive solutions to the scalar problem

(7). For the proof, we refer to Friedman [7], Ladyženskaja et al. [8], Pao and Ruan [15].
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Theorem 3.1 Let w̃s (x), ŵs (x) be a pair of upper and lower solutions of (7) such
that w̃s (x) ≥ ŵs (x) > 0 in Ω, and let hypotheses (H1) and (H3) hold. Then problem
(7) has a classical solution ws (x) such that ŵs (x) ≤ ws (x) ≤ w̃s (x) in Ω. Furthermore,
there are maximal and minimal solutions ws (x) and ws (x) such that every solution
ws ∈ S∗0 satisfies ws (x) ≤ ws (x) ≤ ws (x).

Remark 3.1 We consider the scalar problem (7) for w. In this case, we can write

− div (D (ŵ)∇ŵ) ≤ h (x, ŵ) in Ω, (8)

− div (D (w̃)∇w̃) ≥ h (x, w̃) in Ω. (9)

Subtracting (9) from (8), we find

−div

[
D1 (ŵ)∇ (ŵ − w̃) +∇w̃

(
D (ŵ)−D (w̃)

ŵ − w̃
(ŵ − w̃)

)]
≤ h (x, ŵ)− h (x, w̃)

ŵ − w̃
(ŵ − w̃) .

According to the mean value theorem, there exist θ1, θ2 ∈ [0,M ] , where M =
‖w̃‖C(Ω̄), such that

−div [D (ŵ)∇z +∇w̃ (D′ (θ1) z)] ≤ hw (x, θ2) z

with z = ŵ − w̃, then

−div (∇z) (D (ŵ))−∇ (D (ŵ))∇z
−div (∇w̃ (D′ (θ1) z))−∇ (w̃)D′ (θ1)∇z − hw (x, θ2) z ≤ 0.

We get

−D (ŵ) ∆z + [−∇D (ŵ)−D′ (θ1)∇ (w̃)]∇z + [−∇.∇ (w̃)D′ (θ1)− hw (x, θ2)] z ≤ 0.

We denote

B (x) = −∇D (ŵ)−D′ (θ1)∇ (w̃) , (10)

C (x) = −div∇ (w̃)D′ (θ1)− hw (x, θ2) . (11)

To understand the calculations well, see Deuel and Hess [6], Friedman [7],
Ladyženskaja et al. [8], Pao and Ruan [15].

Another important result is the following.

Lemma 3.1 If z, z are in C2 (Ω) ∩ C
(
Ω̄
)

and satisfy the relation{
−Γ [z] + γz ≤ −Γ [z] + γz in Ω,
z (x) ≤ z (x) on ∂Ω

with Γ [u] = div (D (w)∇w), then z (x) ≤ z (x) on Ω.
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Proof. Let z (x) = z (x)− z (x). Firstly, we have

−Γ [z] + γz ≤ −Γ [z] + γz = γz + h (x, z̄) ≡ z (x, z̄) ,

then

− Γ [z] + γ (z − z̄)− h (x, z̄) ≤ 0. (12)

On the other hand, we have

Γ [z] + γ (z − z) + h (x, z) ≤ 0. (13)

Adding (12) and (13), we obtain

−div
[
D (z)∇ (z − z) +∇z

(
D(z)−D(z)

z−z (z − z)
)]

+2γ (z − z̄) + h(x,z)−h(x,z)
z−z (z − z) ≤ 0.

According to the mean value theorem, ∃ θ1, θ2 ∈ [0,M ] such that

−div [D (z)∇z +∇z (D′ (θ1) z)] + 2γ (z − z̄) +
h (x, z)− h (x, z)

z − z
(z − z) ≤ 0

with z = z − z, then we get

−div (∇z) (D (z))−∇ (D (z))∇z

−div (∇z (D′ (θ1) z))−∇ (z)D′ (θ1)∇z + hw (x, θ2) z ≤ 0.

We obtain then

−D (z) ∆z − [∇D (z)−D′ (θ1)∇ (z)]∇z

−div∇ (z)D′ (θ1) z + 2γz + hw (x, θ2) z ≤ 0,

−D (z) ∆z + [−∇D (z)−D′ (θ1)∇ (z)]∇z+

[γ + div∇ (z)D′ (θ1) + hw (x, θ2)] z ≤ 0.

We come to

−D (z) ∆z + (B (x))∇z + (γ −C (x)) z ≤ 0,

where B (x) and C (x) are defined in the same way as B (x) and C (x) of relations (10)
and (11), i.e.,

B (x) = −∇D (z)−D′ (θ1)∇ (z) ,

C (x) = −div∇ (z)D′ (θ1) + hw (x, θ2) .

Assume, by contradiction, that z (x) has a positive maximum at some point x0 ∈ Ω.
Then x0 ∈ Ω and ∆z (x0) ≤ 0, ∇z (x0) = 0. This implies that (γ − C) z (x0) ≤ 0, which
is a contradiction because γ − C = δ > 0.



440 K. I. SAFFIDINE AND S. MESBAHI

4 Approximating Scheme

To prove the main theorem, we use the method of upper and lower solutions and its
associated monotonic iteration. The basic idea of this method is that when using an
upper solution or a lower solution as the initial iteration in a suitable iterative process, the
resulting sequence of iterations is monotone and converges to a solution of the problem.

Using then either ûs or ũs as the initial iteration, we construct a sequence
{

u
(m)
s

}
from

the iteration process
−Φ

[
u(m)

]
+ γ1u

(m) = F
(
x,u

(m−1)
s

)
in Ω,

−Ψ
[
v(m)

]
+ γ2v

(m) = G
(
x,u

(m−1)
s

)
in Ω,

u(m) (x) = u0 (x) , v(m) (x) = v0 (x) on ∂Ω

(14)

with
Φ [u] = div (D1 (u)∇u) , Ψ [v] = div (D2 (v)∇v) .

We denote the sequence by
{

u
(m)
s

}
if u

(0)
s = ûs, and by

{
u(m)
s

}
if u

(0)
s = ũs. We call

them minimal and maximal sequences, respectively. The existence of these sequences is
ensured by the previous Lemma 3.1.

Lemma 4.1 The minimal and maximal sequences
{

u
(m)
s

}
,
{

u(m)
s

}
exist and pos-

sess the monotone property

ûs ≤ u(m)
s ≤ u(m+1)

s ≤ u(m+1)
s ≤ u(m)

s ≤ ũs for all m ≥ 1. (15)

Proof. Firstly, we consider the scalar problem{
−Φ

[
u(m)

]
+ γ1u

(m) = F
(
x,u

(m−1)
s

)
in Ω

u(m) (x) = u0 (x) on ∂Ω.
(16)

We prove by induction. Start from m = 1 and u
(0)
s = ûs. By Definition 2.1, the

components û of ûs satisfy the relation{
−Φ [û] + γ1û ≤ F (x, ûs) = F

(
x,u

(0)
s

)
in Ω,

û (x) ≤ u0 (x) on ∂Ω
(17)

and the components ũ of ũs satisfy the above inequalities (17) in reverse order, i.e.,{
−Φ [ũ] + γ1ũ ≥ F (x, ũs) ≥ F

(
x,u

(0)
s

)
in Ω,

ũ (x) ≥ u0 (x) on ∂Ω.

Similarly, by considering the case m = 1 and u
(0)
s = ũs, we have{

−Φ [û] + γ1û ≤ F (x, ûs) ≤ F (x, ũs) = F
(
x,u(0)

s

)
in Ω,

û (x) ≤ u0 (x) on ∂Ω
(18)

and the components ũ of ũs satisfy the above inequalities (18) in reverse order, i.e.,{
−Φ [ũ] + γ1ũ ≥ F (x, ũs) = F

(
x,u(0)

s

)
in Ω,

ũ (x) ≥ u0 (x) on ∂Ω.
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We see that ũ and û are ordered upper and lower solutions of (16) for the case m = 1.
By Theorem 3.1, problem (16) has also a minimal solution u and a maximal solution u

such that û ≤ u ≤ u ≤ ũ. We choose u (or u) as u(1) if u
(0)
s = ûs and u (or u) as u(1) if

u
(0)
s = ũs. So, we get û ≤ u(1) ≤ u(1) ≤ ũ.

The same works if we consider the problem{
−Ψ

[
v(m)

]
+ γ2v

(m) = G
(
x,u

(m−1)
s

)
in Ω,

v(m) (x) = v0 (x) on ∂Ω,

which gives v̂ ≤ v(1) ≤ v(1) ≤ ṽ.

This shows that u
(1)
s ≡

(
u(1), v(1)

)
and u(1)

s ≡
(
u(1), v(1)

)
are solutions of (14) for

m = 1 and satisfy ûs ≤ u
(1)
s ≤ u(1)

s ≤ ũs.

Assume, by induction, that u
(m−1)
s ≤ u

(m)
s ≤ u(m)

s ≤ u(m−1)
s for some m > 1. Then,

by the nondecreasing property of F (.,u), for u ∈ S∗, we have
−Φ

[
u(m)

]
+ γ1u

(m) = F
(
x,u

(m−1)
s

)
≤ F

(
x,u

(m)
s

)
,

−Φ
[
u(m)

]
+ γ1u

(m) = F
(
x,u(m−1)

s

)
≥ F

(
x,u(m)

s

)
,

u(m) = u(m) = u0 (x) .

This implies that u(m), u(m) are ordered upper and lower solutions of (16) when

(m− 1) is replaced by m and u
(m)
s is either u

(m)
s or u(m)

s . Again, by Theorem 3.1,
problem (16) has a minimal solution u and a maximal solution u. We choose u (or

u) as u(m+1) if u
(m)
s = u

(m)
s and u (or u) as u(m+1) if u

(m)
s = u(m)

s , which gives us
u(m) ≤ u(m+1) ≤ u(m+1) ≤ u(m).

This choice ensures that u
(m+1)
s ≡

(
u(m+1), v(m+1)

)
and u(m+1)

s ≡
(
u(m+1), v(m+1)

)
are solutions of (14) and possess the monotone property (15), which implies, by induction,
the truth of the relation (15).

5 Proof of the Main Result

We are now ready to prove the main result of this work.
Proof. [Proof of Theorem 2.1] In view of Lemma 4.1 the pointwise limits

lim
m−→∞

u(m)
s = us, lim

m−→∞
u(m)
s = us (19)

exist and satisfy ûs ≤ us ≤ us ≤ ũs. To prove that us and us are, respectively, the

minimal and maximal solutions of (1), we first consider the minimal sequence
{

u
(m)
s

}
≡{

u(m), v(m)
}

. Define for each m w
(m)
1 (x) = I1

(
u(m)

)
=
∫ u(m)

0
D1 (s) ds,

Q(m)

1
(x) = −γ1 (x)u(m) + F

(
x,u(m−1)

)
,

and  w
(m)
2 (x) = I2

(
v(m)

)
=
∫ v(m)

0
D2 (s) ds,

Q(m)

2
(x) = −γ2 (x) v(m) + F

(
x,u(m−1)

)
.



442 K. I. SAFFIDINE AND S. MESBAHI

We remark that I ′1 (u) = D1 (u) and I ′2 (v) = D2 (v). The inverse of I1 (u) and I2 (v)
exist and are denoted, respectively, by q1 (w1) and q2 (w2).

The quasilinear problem (14) may be written as the scalar linear problem
−∇2w

(m)
1 = Q(m)

1
(x) in Ω,

−∇2w
(m)
2 = Q(m)

2
(x) in Ω,

w
(m)
1 (x) = u∗0 (x) , w

(m)
2 (x) = v∗0 (x) on ∂Ω,

where u∗0 (x) = I1 (u0) ≥ 0 and v∗0 (x) = I2 (v0) ≥ 0. It is clear from (19) and (5) that

w
(m)
1 → w1 ≡ I1 (u) , w

(m)
2 → w2 ≡ I2 (v) and Q(m)

1
→ f (x,us) , Q

(m)

2
→ g (x,us) as

m→∞.
By the argument in the proof for the scalar problem (7), w1 is the unique solution of

the linear problem {
−∇2w

(m)
1 (x) = Q(m)

1
(x) ,

w
(m)
1 (x) = u∗0 (x)

and w2 is the unique solution of the linear problem{
−∇2w

(m)
2 (x) = Q(m)

2
(x) ,

w
(m)
2 (x) = v∗0 (x) .

This shows that us ≡ (u, v) , where u = q1 (w1) and v = q2 (w2) are solutions of (1)
and us ∈ S∗.

Now, we show that us is a solution of (1) in S∗, for this we consider the maximal

sequence
{

u(m)
s

}
≡
{
u(m), v(m)

}
. Define for each m w

(m)
1 (x) = I1

(
u(m)

)
=
∫ u(m)

0
D1 (s) ds,

Q
(m)

1 (x) = −γ1 (x)u(m) + F
(
x,u(m−1)

)
and  w

(m)
2 (x) = I2

(
v(m)

)
=
∫ v(m)

0
D2 (s) ds,

Q
(m)

2 (x) = −γ2 (x) v(m) +G
(
x,u(m−1)

)
.

Then the quasilinear problem (14) may be written as the scalar linear problem
−∇2w

(m)
1 = Q

(m)

1 (x) in Ω,

−∇2w
(m)
2 = Q

(m)

2 (x) in Ω,

w
(m)
1 (x) = u∗0 (x) , w

(m)
2 (x) = v∗0 (x) on ∂Ω.

It is clear from (19) and (5) that w
(m)
1 → w1 ≡ I1 (u), w

(m)
2 → w2 ≡ I2 (v) and

Q
(m)

1 → f (x,us), Q
(m)

2 → g (x,us) as m→∞.
By the argument in the proof for the scalar problem, w1 is the unique solution of the

linear problem {
−∇2w

(m)
1 (x) = Q

(m)

1 (x) ,

w
(m)
1 (x) = u∗0 (x)
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and w2 is the unique solution of the linear problem{
−∇2w

(m)
2 (x) = Q

(m)

2 (x) ,

w
(m)
2 (x) = v∗0 (x) .

This shows that us ≡ (u, v) , where u = q1 (w1) and v = q2 (w2) are solutions of (1)
and us ∈ S∗.

To show that us and us are, respectively, minimal and maximal solutions of (1) in
S∗, we observe that every solution u = (u, v) of (1) in S∗ satisfies{

−Φ [u] + γ1u = F (x,us) ≥ F
(
x,u

(0)
s

)
in Ω,

u (x) = u0 (x) on ∂Ω

and {
−Ψ [v] + γ1v = G (x,us) ≥ G

(
x,u

(0)
s

)
in Ω,

v (x) = v0 (x) on ∂Ω.

By (14) (with m = 1 and u(1) = u(1) and v(1) = v(1)) we have

F
(
x,u(0)

s

)
= −Φ

[
u(1)

]
+ γ1u

(1),

G
(
x,u(0)

s

)
= −Ψ

[
v(1)

]
+ γ1v

(1),

then

−Φ [u] + γ1u ≥ −Φ
[
u(1)

]
+ γ1u

(1),

−Ψ [v] + γ1v ≥ −Ψ
[
v(1)

]
+ γ1v

(1).

By Lemma 3.1 we have u ≥ u(1) and v ≥ v(1), i.e. u ≥ u
(1)
s . This implies, by Lemma

2.1, that F (x,u) ≥ F
(
x,u

(1)
s

)
and G (x,u) ≥ G

(
x,u

(1)
s

)
. It follows by an induction

argument that

F (x,u) ≥ F
(
x,u(1)

s

)
≥ F

(
x,u(2)

s

)
≥ ... ≥ F

(
x,u(m)

s

)
,

G (x,u) ≥ G
(
x,u(1)

s

)
≥ G

(
x,u(2)

s

)
≥ ... ≥ G

(
x,u(m)

s

)
,

then u ≥ u
(m)
s , for every m ≥ 1.

In the same way, we observe that every solution u = (u, v) of (1) in S∗ satisfies{
−Φ [u] + γ1u = F (x,u) ≤ F

(
x,u(0)

s

)
in Ω,

u (x) = u0 (x) on ∂Ω

and {
−Ψ [v] + γ1v = G (x,u) ≤ G

(
x,u(0)

s

)
in Ω,

v (x) = v0 (x) on ∂Ω.
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By (14) (with m = 1 and u(1) = u(1) and v(1) = v(1)) we have

F
(
x,u(0)

s

)
= −Φ

[
u(1)

]
+ γ1u

(1),

G
(
x,u(0)

s

)
= −Ψ

[
v(1)

]
+ γ1v

(1),

then

−Φ [u] + γ1u ≤ −Φ
[
u(1)

]
+ γ1u

(1),

−Ψ [v] + γ1v ≤ −Ψ
[
v(1)

]
+ γ1v

(1).

By Lemma 3.1, we have u ≤ u(1) and v ≤ v(1), i.e., us ≤ u(1)
s . This implies, by

Lemma 2.1, that F (x,u) ≤ F
(
x,u(1)

s

)
and G (x,u) ≤ G

(
x,u(1)

s

)
. It follows by an

induction argument that

F (x,u) ≤ F
(
x,u(1)

s

)
≤ F

(
x,u(2)

s

)
≤ ... ≤ F

(
x,u(m)

s

)
,

G (x,u) ≤ G
(
x,u(1)

s

)
≤ G

(
x,u(2)

s

)
≤ ... ≤ G

(
x,u(m)

s

)
,

which implies us ≤ u(m)
s .

Letting m → ∞ and using relation (19) lead to us ≤ u ≤ us. This proves the
minimal and maximal property of usand us. Finally, if us = us (≡ u∗s) , then this
maximal-minimal property ensures that u∗s is the unique positive solution in S∗.

6 Application

As an application of the obtained theorem, we give a model concerning the type of dif-
fusion in porous media, where the diffusion coefficients are degenerate; it is the following
two-species Lotka–Volterra competition steady-state model: −D1 (x)∇2uα = u (a1 − b1u− c1v) ,

−D2 (x)∇2vβ = v (a2 − b2u− c2v) ,
u (x) = u0 (x) > 0 , v (x) = v0 (x) > 0,

t > 0, x ∈ Ω, (20)

where for each i = 1, 2, α, β, ai, bi, ci are positive constants, and α > 1, β > 1, with
Di (x) > 0 on Ω̄. For more details on this model, we refer the reader to Pao in [16,17].

7 Concluding Remarks and Perspectives

This work has mainly focused on the question of the existence and the uniqueness of
positive maximal and minimal solutions for a class of degenerate reaction-diffusion sys-
tems. It should be noted that the results obtained can be applied to a number of models
arising from biology, ecology and biochemistry as well as to models in several fields of
applied sciences and engineering. We have developed original methods to overcome cer-
tain difficulties, and despite the complexity of the model studied, we have succeeded in
obtaining an existence result.

There are many additional important open problems, which we hope to address in
the near future, they are: Numerical simulation, Generalization to the parabolic case,
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Generalization to the case of a higher order system. This list of questions corresponds
to a work in progress or prospective work. Some are a continuation of the work already
done, and some are new research projects. This not only makes it possible to delve deeper
into the theoretical study, but also goes beyond the theoretical framework by developing
models and techniques.
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