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1 Introduction

Chaos synchronization is a key issue in the study of nonlinear dynamical systems
described by differential equations (continuous-time systems) or difference equations
(discrete-time systems). Starting from that concept, in the last three decades, differ-
ent types of chaos synchronization have been conceived for both integer-order systems
and fractional-order systems described by non-integer order derivative [1–6, 8, 9]. For
example, when each response system variable synchronizes with a linear combination of
drive system variables, full state hybrid projective synchronization is achieved [2]. On
the other hand, when each response system variable synchronizes with the opposite of
the drive system variable, antiphase synchronization is obtained [4]. These synchroniza-
tion types have been applied to both integer-order systems [1–4] and fractional systems
described by non-integer order derivative [5–7]. In particular, a recent paper has ana-
lyzed the coexistence of some synchronization types in two chaotic systems described by
fractional derivatives [7].

It should be noted that, differently from fractional systems described by non-integer
order derivative, few synchronization types have been introduced for fractional systems
described by non-integer order difference operators [10–14]. For example, in [10], the
complete synchronization of two chaotic fractional Grass-Miller maps is proved. In [11],
full state hybrid projective synchronization is achieved between two fractional discrete
systems of different dimensions. In [12], the complete synchronization of two fractional
forms of the discrete double scroll is illustrated. In [13], the full state hybrid projective
synchronization between an integer-order discrete system and a fractional-order discrete
system is achieved. In [14], the complete synchronization between two fractional forms
of a novel generalized Hénon map is reported. When considering fractional discrete-time
neural networks, which represent a class of discrete systems described by non-integer
order difference operators [15–19], it should be noted that very few examples of synchro-
nization have been published to date. For example, in [20], the complete synchronization
of fractional discrete neural networks with time delays is discussed. In [21], the com-
plete synchronization of discrete-time fractional-order complex-valued neural networks
has been illustrated. To the best of the authors’ knowledge, no synchronization method
for fractional discrete neural networks, different from the complete synchronization, has
been reported to date. Additionally, the topic related to the coexistence of different
synchronization types in fractional discrete neural networks is unexplored.

The paper is organized as follows. In Section 2, some basic notions regarding discrete
fractional calculus are given. In Section 3, the two-dimensional fractional discrete neu-
ral network, considered as a master system, and the three-dimensional fractional discrete
neural network, considered as a slave system, are illustrated. In Section 4, a new theorem
is proved, which assures the coexistence of complete synchronization, antiphase synchro-
nization and full state hybrid projective synchronization in the two neural networks with
different dimensions considered in the previous section. Finally, simulation results are
reported to confirm the effectiveness of the synchronization approach illustrated herein.

2 Discrete Fractional Operators

In the following we recall some definitions and preliminaries of the discrete fractional
calculus. The notation Na denotes the isolated time scale and Na = {a, a+ 1, a+ 2, ...} ,
(a ∈ R fixed) .
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Definition 2.1 [22] The ν–th fractional sum is defined by

∆−νa X (t) =
1

Γ (υ)

t−ν∑
s=a

(t− s− 1)
(ν−1)

X (s) , t ∈ Na+ν , ν > 0, (1)

where X (t) : Na → R, and the term t(υ) denotes the falling function defined in terms of
the Gamma function Γ as

t(ν) =
Γ (t+ 1)

Γ (t+ 1− ν)
. (2)

Definition 2.2 [23] For 0 < ν < 1, and X (t) defined on Na, the Caputo-like delta
difference is defined by

C∆ν
aX (t) =

1

Γ (n− ν)

t−(n−ν)∑
s=a

(t− s− 1)
(−ν)

∆X (s) , t ∈ Na+1−ν . (3)

To deal with fractional-order systems in discrete time and to employ our numerical
tools, we recall the following result.

Theorem 2.1 [24] For the delta fractional difference equation{
C∆ν

au(t) = f(t+ υ − 1, u(t+ ν − 1)),
∆k = uk, n = [ν] + 1, k = 0, 1, ..., n− 1,

(4)

the equivalent discrete integral equation can be obtained as

u(t) = u0(t) +
1

Γ(ν)

t−ν∑
s=a+n−ν

(t− σ(s))(ν−1)f(s+ ν − 1, u(s+ ν − 1)), t ∈ Nα+n, (5)

where

u0(t) =

m−1∑
k=0

(t− a)k

k
∆ku(a). (6)

3 Master and Slave Fractional Discrete Neural Networks

In this section, we will endeavour to show that the two fractional maps, even though
they have different dimensions, can still be synchronized within time in the light of an
appropriate synchronization scheme.

3.1 The master system

One may consider the two-dimensional fractional discrete neural network introduced
in [19] as a master system and distinguish its states by typing the subscript m for each
of them. That is,{

C∆ν
ax1m(t) = −0.7x1m(t+ ν − 1) + a11tanh(x1m(t+ ν − 1)) + a12tanh(x2m(t+ ν − 1)),

C∆ν
ax2m(t) = −0.85x2m(t+ ν − 1) + a21tanh(x1m(t+ ν − 1)) + a22tanh(x2m(t+ ν − 1)),

(7)
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where C∆ν
a denotes the Caputo difference operator, 0 ≤ ν ≤ 1, t ∈ Na+(1−ν), a is the

starting point and (
a11 a12

a21 a22

)
=

(
0.1 0.11
0.12 0.13

)
.

According to Theorem 2.1, the equivalent implicit discrete formula can be written in
the formx1m(n) = x1m(0) + 1

Γ(ν)

∑n
j=1

Γ(n−j+ν)
Γ(n−j+1)

[−0.7x1m(j) + a11tanh(x1m(j)) + a12tanh(x2m(j)] ,

x2m(n) = x2m(0) + 1
Γ(ν)

∑n
j=1

Γ(n−j+ν)
Γ(n−j+1)

[−0.85x2m(j) + a21tanh(x1m(j)) + a22tanh(x2m(j))] .

(8)

3.2 The slave system

On the other hand, the three-dimensional fractional discrete neural network, proposed
in [16], is considered as slave and all its states are distinguished by typing another
subscript, say s, for each of them, i.e.,



C∆ν
ay1s(t) = −y1s(t+ ν − 1) + b11tanh(y1s(t+ ν − 1)) + b12tanh(y2s(t+ ν − 1))

+ b13tanh(y3s(t+ ν − 1)) + C1,
C∆ν

ay2s(t) = −y2s(t+ ν − 1) + b21tanh(y1s(t+ ν − 1)) + b22tanh(y2s(t+ ν − 1))

+ b23tanh(y3s(t+ ν − 1)) + C2,
C∆ν

ay3s(t) = −y3s(t+ ν − 1) + b33tanh(y1s(t+ ν − 1)) + b32tanh(y2s(t+ ν − 1))

+ b33tanh(y3s(t+ ν − 1)) + C3,

(9)
where the system parameters are given as b11 b12 b13

b21 b22 b23

b31 b31 b33

 =

 2 −1.2 0
2 1.71 1.15

−4.75 0 1.1

 ,

and C1,C2, C3 are synchronization controllers that have to be designed. On the other
hand, the numerical formulae can be given accordingly
y1s(n) = y1s(0) + 1

Γ(ν)

∑n
j=1

Γ(n−j+ν)
Γ(n−j+1) − y1s(j) + 2tanh(y1s(j)) + 1.2tanh(y2s(j)),

y2s(n) = y2s(0) + 1
Γ(ν)

∑n
j=1

Γ(n−j+ν)
Γ(n−j+1) − y2s(j) + 2tanh(y1s(j)) + 1.71tanh(y2s(j))

+1.15tanh(y3s(j)),

y3s(n) = y3s(0) + 1
Γ(ν)

∑n
j=1

Γ(n−j+ν)
Γ(n−j+1) − y3s(j)− 4.75tanh(y1s(j)) + 1.1tanh(y3s(j)).

(10)

4 Synchronization

In this section, we will endeavor to show that the two fractional discrete neural networks,
even though they have different dimensions, can still be synchronized within time in the
light of an appropriate synchronization scheme. Actually, the process of picking up an



414 M. MELLAH, A. OUANNAS, A.A. KHENNAOUI AND G. GRASSI

adaptive controll law (C1,C2,C3)T aims to compel the following synchronization errors:
e1 = y1s − x1m,

e2 = y2s + x2m,

e3 = y3s − (x1m + x2m)

(11)

to be asymptotically tended to the origin, i.e.,

lim
t→+∞

|ei(t)| = 0, for i = 1, 2, 3. (12)

Remark 4.1 From the error system (11), it is obvious that states y1s and x1m are
complete synchronized, y2s is anti-synchronized with x2m, and y3s is full state synchro-
nized with x1m and x2m. So, complete synchronization, anti-synchronization and full
state hybrid projective synchronization co-exist between the fractional discrete neural
networks (7) and the slave system (9).

Before stating the proposed control law and establishing its stability, it is important
to state the following theorem, which is essential for our proof. Interested readers are
referred to [25] for the proof of this result.

Theorem 4.1 The zero equilibrium of the linear fractional-order discrete–time sys-
tem

C∆ν
aX (t) = MX (t+ ν − 1) , (13)

where X(t) = (x1(t), ..., xn(t))
T
, 0 < ν ≤ 1, M ∈ Rn×n and ∀t ∈ Na+1−ν , is asymptoti-

cally stable if

λ ∈
{
z ∈ C : |z| <

(
2 cos

|arg z| − π
2− ν

)ν
and |arg z| > νπ

2

}
(14)

for all the eigenvalues λ of M.

With this stability result, we are now ready to state the following theorem which is
considered the main result of this work.

Theorem 4.2 Complete synchronization, antiphase synchronization and full state
hybrid projective synchronization coexist in the synchronization of the master system (7)
and the slave system (9) if the control law is selected as follows:

C1(t) = 0.3x1m (t)− b11tanh(y1(t))− b12tanh(y2(t))

+ a11tanh(x1m (t)) + a12tanh(x2m (t)),

C2(t) = −b21tanh(y1s (t))− b22tanh(y2s (t))

− b23tanh(y3s (t))− 0.15x2m (t)

− a21tanh(x1m (t))− a22tanh(x2m (t)),

C3(t) = 0.3x1m (t) + 0.15x2m (t)

− b31tanh(y1s (t))− b33tanh(y3s (t))

+ a11tanh(x1m (t)) + a12tanh(x2m (t))

+ a21tanh(x1m (t)) + a22tanh(x2m (t)),

(15)

where t ∈ Na+1−ν .
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Proof. For the purpose of establishing an asymptotic convergence of the synchro-
nization errors, given in (11), to zero, we start applying the Caputo-type fractional-order
differences to (11), which yields

C
h ∆ν

ae1(t) = −y1s (t+ ν − 1) + b11tanh(y1s (t+ ν − 1))

+ b12tanh(y2s (t+ ν − 1))

+ 0.7x1m (t+ ν − 1)− a11tanh(x1m (t+ ν − 1))

− a12tanh(x2m (t+ ν − 1)) + C1,
C
h ∆ν

ae2(t) = −y2s (t+ ν − 1) + b21tanh(y1s (t+ ν − 1))

+ b22tanh(y2s (t+ ν − 1)) + b23tanh(y3s (t+ ν − 1))

− 0.85x2m (t+ ν − 1) + a21tanh(x1m (t+ ν − 1))

+ a22tanh(x2m (t+ ν − 1)) + C2,
C
h ∆ν

ae3(t) = −y3s (t+ ν − 1) + b31tanh(y1s (t+ ν − 1))

+ b33tanh(y3s (t+ ν − 1)) + 0.7x1m (t+ ν − 1)

− a11tanh(x1m (t+ ν − 1))− a12tanh(x2m (t+ ν − 1))

+ 0.85x2m (t+ ν − 1)− a21tanh(x1m (t+ ν − 1))

− a22tanh(x2m (t+ ν − 1)) + C3.

(16)

Substituting the proposed control law given in (15) into (16) leads to the following new
discrete system: 

C∆ν
ae1 (t) = −e1 (t+ ν − 1) ,

C∆ν
ae2 (t) = −e2 (t+ ν − 1) ,

C∆ν
ae3 (t) = −e3 (t+ ν − 1) .

(17)

It can be described more compactly as

C∆ν
a (e1, e2, e3) (t)

T
= M× (e1, e2, e3) (t+ ν − 1)

T
, (18)

where

M =

 −1 0 0
0 −1 0
0 0 −1

 . (19)

We aim to show that the zero solution of (18) is globally asymptotically stable, which
guarantees that all states converge towards zero at infinite time. In order to do so, we
make use of the stability theory described in Theorem 4.2. Simply, we can show that
the eigenvalues of the matrix M are: λ1 = λ2 = λ3 = −1. It is easy to see that all the

eigenvalues of the matrix M satisfy |arg λi| = π > νπ
2 and |λi| <

(
2 cos |arg λi|−π

2−ν

)ν
for

i = 1, 2, 3. According to Theorem 4.2, the zero solution of (18) is globally asymptotically
stable. Hence, the master system (7) and the slave system (9) has been synchronized by
means of control laws (15).

Here, some numerical experiments are considered to verify the effectiveness of the
proposed approach. The initial values of the master system (7) are set as x1m(0) = 0.2,
x2m(0) = 0.3, and the initial values of the slave system are considered as y1s = 0.02, y2s =
−0.5 and y3s = 0.8. Figure 1 illustrates the hybrid synchronization error system (14)
with µ = 0.05. It is very clear that the error states e1, e2 and e3 can converge to zero
when the controller functions C1, C2 and C3 are added to the slave systems, which implies
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that the synchronization is realized. Furthermore, we plot the evolution of states of the
master and slave systems for the fractional-order value µ = 0.05. Figure 2 illustrates
the results. Clearly, the state variables of the master and slave systems are synchronized
completely. Thus, the numerical results show very well that the two fractional maps
achieve hybrid synchronization.

0 20 40 60 80 100 120 140 160 180 200
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0
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0.4

0.6

0.8

1

t

e 1
,e

2
,e

3

Figure 1: Hybrid synchronization error between the master system (7) and the slave system
(9) with ν = 0.05.

5 Conclusion

This paper has shown the coexistence of some synchronization types in two fractional
discrete neural networks with different dimensions. At first, a two-dimensional frac-
tional discrete neural network (considered as a master system) and a three-dimensional
fractional discrete neural network (considered as a slave system) have been introduced.
Then a new theorem has been proved, which assures the coexistence of complete syn-
chronization, antiphase synchronization and full state hybrid projective synchronization
in different dimensional fractional discrete neural networks. Finally, simulation results
have been obtained to highlight the effectiveness of the conceived approach.
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Figure 2: The time history of the master system (7) and the slave system (9) with ν = 0.05.
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