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Abstract: In this work, a fractional-order form of a novel 3D chaotic system is intro-
duced. Firstly, this fractional system can display chaotic behavior for a given minimal
commensurate order. Secondly, theoretical and numerical solution representation is
given by exploiting the Adams–Bashforth–Moulton algorithm for the presented novel
fractional-order system. Thirdly, we have studied full-state hybrid projective synchro-
nization (FSHPS) type the novel 3D fractional-order system and the fractional-order
hyper-chaotic Lorenz system based on the definition of this kind of synchronization
and the Lyapunov theory of stability of linear fractional-order systems. Finally, nu-
merical simulations are given to show the effectiveness of the proposed controller via
the improved Adams–Bashforth–Moulton algorithm.
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1 Introduction

During these years the synchronization of chaotic dynamical systems has generated a
great interest among researchers in nonlinear sciences, in view of its practical applica-
tions, many types of synchronization have been reported in the literature; these include
complete, generalized, anticipated, lag, measure, projective, phase, reduced order and
adaptive synchronizations. These concepts of synchronization have led to the creation of
many methods of controlling chaos and synchronization by many researchers, including
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the active control method [2], sliding mode control [3, 40], backstepping control [4], adap-
tive control [5, 39, 40], fuzzy control [6], passive control [7], projective synchronization
method [8], function projective synchronization method [9], etc.

In recent years, fractional-order systems have become a hot research field addressed by
many researchers such as [10-16, 25-33 ]. Study of chaos and synchronization in fractional-
order dynamical systems has attracted considerable attention [17-19] due to its powerful
potential applications in different fields such as secure communication, telecommuni-
cations, cryptography [20-21]. Diverse techniques of different types of synchronization
have been proposed and developed for fractional-order systems. These include the sliding
mode control [22-23], active control technique [24-25], function projective synchroniza-
tion [26], and modified projective synchronization [27], hybrid projective synchronization
[28], full state hybrid projective synchronization [29], inverse full state hybrid projective
synchronization [35-36] and others, see, for example, [30-34, 40-41].

This paper is organized as follows. In Section 2, the Caputo fractional-order derivative
definition is given with some notes. In Section3, we described the new form of the three-
dimensional system in fractional order, Section 4 is devoted to the study of the FSHP
synchronization between the novel 3D fractional-order system and the fractional-order
hyper-chaotic Lorenz system based on the definition of this kind of synchronization and
the Lyapunov theory of stability. In Section 5, we present the numerical results to verify
the effectiveness of the method. Finally, the conclusion is mentioned in Section 6.

2 Preliminaries

In general, for fractional derivatives there are three well known definitions, that is, the
Riemann-Liouville, Grünwald-Letnikov and Caputo definitions. The Caputo fractional
derivative is much preferred since it is more popular in real application and the initial
conditions for fractional-order differential equations with the Caputo derivative are in
the same form as for integer-order differential equations.

The Caputo fractional derivative of f(t) is given as

Dq
t f (t) =

1

Γ (n− q)

∫ t

0

f (n) (τ)

(τ − n)
q−n+1 dτ (1)

for n− 1 < q ≤ n, n ∈ N, t > 0. Γ(·) is the gamma function.
Some other important properties of the fractional derivatives and integrals can be

found in several works ([10-15], etc). Geometric and physical interpretation of fractional
integration and fractional differentiation were exactly described in [16].

2.1 Problem Formulation

We consider the drive system given by

Dqi
t xi (t) = fi (X (t)) , i = 1, .., n, (2)

where X (t) = (x1, x2, ..., xn)
T

is the state vector of the system (2) , fi : Rn −→ Rn, for
i = 1, .., n, are nonlinear functions, and the response system is given by

Dqi
t yi (t) =

m∑
j=1

bijyj (t) + gi (Y (t)) + ui, i = 1, ..,m, (3)
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where Y (t) = (y1, y2, ..., ym)
T

is the state vector of the system (3) , gi : Rm −→ Rm, for
i = 1, ..,m, are nonlinear functions, 0 < qi < 1, Dqi

t is the Caputo fractional derivative
of order qi. ui, i = 1, ..,m, are controllers to be designed so that the system (2) and the
system (3) to be synchronized.

Lemma 2.1 The trivial solution of the following fractional-order system [35]:

Dq
tX (t) = F (X (t)) , (4)

where Dq
t is the Caputo fractional derivative of order q , 0 < q ≤ 1, F : Rn −→ Rn,

is asymptotically stable if there exists a positive definite function V (X (t)) such that
Dq
tV (X (t)) < 0 for all t > 0.

Lemma 2.2 ∀X (t) ∈ Rn,∀q ∈ [0, 1] , and ∀ t > 0

1

2
Dq
t

(
XT (t)X (t)

)
≤ XT (t)Dq

t (X (t)) . (5)

Now, we introduce the definition of FSHPS between the master and slave systems.

Definition 2.1 FSHPS occurs between the master and slave systems (2) and (3)
when there exist controllers ui, i = 1, 2, ..., n, and given real numbers (αij)1≤i≤m,1≤j≤n
such that the synchronization errors

ei (t) = yi (t)−
n∑
j=1

αijxj (t) , i = 1, ..,m (6)

satisfy limt→+∞ ei (t) = 0.

3 Description of the Novel Chaotic System

In this research work, we consider the fractional-order form of the integer-order 3D chaotic
system introduced in [38] and given by Dq1

t x = a(y − x) + byz,
Dq2
t y = (c− a)x+ cy − xz,

Dq3
t z = xy − z,

(7)

where a, b, c are positive real parameters with b 6= 1. In the first part of this paper, we
shall show that the system (7) is chaotic when the parameters a, b and c take the values

a = 15, b = 8/3, c = 10. (8)

3.1 Dynamical behavior

For the values of parameters (8), the system (7) has five equilibrium points E0 = (0, 0, 0) ,
E1,3 = (±4. 049,∓3. 165 9,−12. 819) ,
E2,4 = (±1. 746 4,±1. 256 3, 2. 194) .

(9)
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For E0, we obtain the eigenvalues

λ1 = −1, λ2 = −11. 514, λ3 = 6. 5139. (10)

This implies that E0 is an unstable saddle point.
With the same method, the eigenvalues of the Jacobian at E1 and E3 are

λ1 = 3. 370 6− 8. 318 4i, λ2 = 3. 370 6 + 8. 318 4i, λ3 = −12. 741 (11)

and the eigenvalues of the Jacobian at E2 and E4 are

λ1 = 1. 082 4 + 4. 510 5i, λ2 = 1. 082 4− 4. 510 5i, λ3 = −8. 1648, (12)

then E1 and E3 are two unstable saddle-focus points and E2 and E4 are two unstable
saddle-focus points because none of the eigenvalues have real part zero and λ1, λ2 are
complex.

In the case of the comensurate-order system, where q1 = q2 = q3, a necessary condi-

tion for the fractional-order nonlinear system (7) to be chaotic is q > 2
π arctan

(
|Im(λ)|
Re(λ)

)
,

where λ are the eigenvalues of the saddle equilibrium point of index two in system (7).
From the above eigenvalues we can determine a minimal commensurate order to keep
the system (7) chaotic and it is q > 0.75491 for E1 and E3 and q > 0.85006 for E2 and
E4. Thus, the necessary condition of existence of chaos in fractional-order system (7) is
q > 0.85006.

The necessary condition for the system (7) to exhibit chaotic oscillations in the in-
commensurate case is π

2M − mini(|arg(λi (JE))|) > 0, where λi (JE), i = 1, 2, 3, are
the eigenvalues of the Jacobian matrix JE of the system (7) at the equilibrium E, M
is the LCM of the fractional orders. For example, if q1 = 0.9, q2 = 0.9, q3 = 0.8, then
M = 10. The characteristic equation of the system evaluated at the equilibrium Ei is
det(diag[λMq1 , λMq2 , λMq3 ]−JEi) = 0 , i.e., det(diag[λ9, λ9, λ8]−JEi) = 0, i = 1, 2, 3, 4.

We get det(diag[λ9, λ9, λ8] − JE0
) = 0, det(diag[λ9, λ9, λ8] − JE1,3

) =
0, det(diag[λ9, λ9, λ8] − JE2,4

) = 0. This yields: λ26 + λ18 + 5λ17 + 5λ9 − 75λ8 − 75 =
0, λ26 + λ18 + 5λ17 − 5. 333 4λ9 − 3. 04 × 10−4λ8 + 1026. 4 = 0, λ26 + λ18 + 5λ17 + 3.
841 2λ9 + 2. 094× 10−3λ8 + 175. 67 = 0.

From the roots of the above equations, we find λ = 1. 231 5 whose argument is zero,
which is the minimum argument, and hence the necesary stability condition holds because
π

2M − 0 > 0.

3.2 Application of Adams–Bashforth–Moulton algorithm to the system (7)

By exploiting the Adams–Bashforth–Moulton algorithm [37], the novel fractional-order
chaotic system (7) can be written as

xn+1 = x0 + hq1

Γ(q1+2)

(
a
(
ypn+1 − x

p
n+1

)
+ bypn+1z

p
n+1

+
∑n
j=1 a1,j,n+1 (a (yj − xj) + byjzj)

)
,

yn+1 = y0 + hq2

Γ(q2+2)

(
(c− a)xpn+1 + cypn+1 − x

p
n+1z

p
n+1

+
∑n
j=1 a2,j,n+1 ((c− a)xj + cyj − xjzj)

)
,

zn+1 = z0 + hq3

Γ(q3+2)

(
xpn+1y

p
n+1 − z

p
n+1 +

∑n
j=1 a3,j,n+1 (xjyj − zj)

)
(13)
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in which 
xpn+1 = x0 + 1

Γ(q1)

∑n
j=1 b1,j,n+1 (a (yj − xj) + byjzj) ,

ypn+1 = y0 + 1
Γ(q2)

∑n
j=1 b2,j,n+1 ((c− a)xj + cyj − xjzj) ,

zpn+1 = z0 + 1
Γ(q3)

∑n
j=1 b3,j,n+1 (xjyj − zj)

(14)

with 
b1,j,n+1 = hq1

q1
((n− j + 1)

q1 − (n− j)q1) ,

b2,j,n+1 = hq2

q2
((n− j + 1)

q2 − (n− j)q2) ,

b3,j,n+1 = hq3

q3
((n− j + 1)

q3 − (n− j)q3)

(15)

and

ai,j,n+1 =

 (n)
qi+1 − (n− qi) (n+ 1)

qi , j = 0,

(n− j + 2)
qi+1 − (n− j)qi+1 − 2 (n− j + 1)

qi+1
, 1 ≤ j ≤ n,

1, j = n+ 1.

i = 1, 2, 3,

(16)
Applying the above algorithm, numerical solution of a fractional-order system can be

computed.
Fig.1 depicts the simulation result (double scroll-attractor) for the fractional-order

system (7) projected onto the x − z plane, computed for the simulation time Tsim =
100s and q1 = q2 = q3 = 0.88 and time step h = 0.005, a = 15, b = 8/3, c = 10,
(x(0), y(0), z(0)) = (1,−1, 2).
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Figure 1: Simulation result for the fractional-order system (7) projected onto the x− z plane.

Also, the simulation result for the fractional-order system (7) projected onto the z−y
plane for a = 15, b = 8/3, c = 10 , q1 = q2 = q3 = 0.95, (x(0), y(0), z(0)) = (−2, 5,−10) is
shown in Fig.2.

4 FSHP Synchronization of Fractional-Fractional Order Systems

In this section, the new fractional-order chaotic system (7) and fractional-order hyper-
chaotic Lorenz system are used to achieve FSHPS between these systems. Thus, as the
driving system, we consider the novel fractional-order chaotic system given by Dq1

t x1 = a(x2 − x1) + bx2x3,
Dq2
t x2 = (c− a)x1 + cx2 − x1x3,

Dq3
t x3 = x1x2 − x3,

(17)
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Figure 2: Simulation result for the fractional-order system (7) projected onto the z − y plane.

−5

0

5

−4

−2

0

2

4
0

1

2

3

4

5

x(t)y(t)

z(
t)

Figure 3: Simulation result for the fractional-order system (7) projected onto the x − y − z
plane for q1 = q2 = 0.9, q3 = 0.8, (x(0), y(0), z(0)) = (1,−1, 2).

where a = 15, b = 8/3, c = 10, and as the response system, we consider the controlled
fractional-order hyper-chaotic Lorenz system given by

Dq1
t y1 = a (y2 − y1) + y4 + u1,

Dq2
t y2 = cy1 − y2 − y1y3 + u2,

Dq3
t y3 = −by3 + y1y2 + u3,

Dq4
t y4 = −y2y3 + dy4 + u4,

(18)

where a = 10, b = 28, c = 8/3, d = −1 and with the fractional-orders of the system
(q1, q2, q3, q4) = (0.98, 0.98, 0.98, 0.98) .

In view of Definition 2.1, the state errors for (17) and (18) are

ei = yi −
3∑
j=1

αijxj , i = 1, 2, 3, 4. (19)

This gives

Dqi
t ei = Dqi

t yi −D
qi
t

 3∑
j=1

αijxj

 , i = 1, 2, 3, 4. (20)
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Consequently, the error dynamic system is given by

Dq1
t e1 = Dq1

t y1 −Dq1
t

(∑3
j=1 α1jxj

)
,

Dq2
t e2 = Dq2

t y2 −Dq2
t

(∑3
j=1 α2jxj

)
,

Dq3
t e3 = Dq3

t y3 −Dq3
t

(∑3
j=1 α3jxj

)
,

Dq4
t e4 = Dq4

t y4 −Dq4
t

(∑3
j=1 α4jxj

)
,

(21)

i.e., 
Dq1
t e1 = a (y2 − y1) + y4 + u1 −Dq1

t (α11x1 + α12x2 + α13x3) ,
Dq2
t e2 = cy1 − y2 − y1y3 + u2 −Dq2

t (α21x1 + α22x2 + α23x3) ,
Dq3
t e3 = −by3 + y1y2 + u3 −Dq3

t (α31x1 + α32x2 + α33x3) ,
Dq4
t e4 = −y2y3 + dy4 + u4 −Dq4

t (α41x1 + α42x2 + α43x3) .

(22)

The system (22) can be described asDqi
t ei =

4∑
j=1

bijej (t) +Ri + ui, i = 1, 2, 3, 4, (23)

where
R1 = −Dq1

t (α11x1 + α12x2 + α13x3) +
∑4
j=1 b1j (yj (t)− ej (t)) ,

R2 = −y1y3 −Dq2
t (α21x1 + α22x2 + α23x3) +

∑4
j=1 b2j (yj (t)− ej (t)) ,

R3 = y1y2 −Dq3
t (α31x1 + α32x2 + α33x3) +

∑4
j=1 b3j (yj (t)− ej (t)) ,

R4 = −y2y3 −Dq4
t (α41x1 + α42x2 + α43x3) +

∑4
j=1 b4j (yj (t)− ej (t)) .

(24)

Rewrite error system (23) in the compact form

Dq
t e = Be+R+ U, (25)

where B = (bij)4×4 and e = (e1, e2, e3, e4)
T
, R = (Ri)1≤i≤4 , U = (ui)1≤i≤4.

Theorem 4.1 FSHPS between the master system (17) and the slave system (18)
occurs under the following control law:

U = − (R+De) , (26)

where D is a 4 × 4 feedback gain matrix selected so that B − D is a negative definite
matrix.

Proof. By inserting (26) into (25), we get

Dq
t e = (B −D) e, (27)

where B = (bij) , D = (dij) are two 4 × 4 matrices and e = (e1, e2, e3, e4)
T

is the error
vector of the system. If we choose matrix D such that B − D is negative, then all the
eigenvalues λi, i = 1, 2, 3, 4, of B −D stay in the left-half plane, i.e., Re (λi) < 0, and if
a candidate Lyapunov function is chosen as

V =
4∑
i=1

1

2
e2
i , (28)
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then the time Caputo fractional derivative of order 0.98 of V along the trajectory of
system (27) is as follows:

D0.98
t V =

4∑
j=1

D0.98
t

(
1

2
e2
i

)
. (29)

Using Lemma 2.2, we get

D0.98
t V ≤

4∑
j=1

eiD
0.98
t ei (30)

= λ1e
2
1 + λ2e

2
2 + λ3e

2
3 + λ4e

2
4 < 0, (31)

which ensures, according to Lemma 2.1, that the trivial solution of the fractional-order
system (27) is asymptotically stable. Hence the FSHP synchronization between the
system (17) and the system (18) is achieved. This completes the proof.

5 Numerical Simulation

According to the above method, for FSHPS we have

B =


−10 10 0 1
8/3 −1 0 0
0 0 −28 0
0 0 0 −1

 , (32)

and
R1 = 10e1−10e2−e4 + 25x1−35x2+5x3−10y1+10y2+y4−5x1x2+2x1x3− 8

3x2x3,
R2 = e2 − 8

3e1 + 35x1 − 40x2 − 3x3 + 8
3y1 − y2 + 3x1x2 + x1x3 − 16

3 x2x3 − y1y3,
R3 = 28e3 + 75x1 − 90x2 + 2x3 − 28y3 − 2x1x2 + 3x1x3 − 32

3 x2x3 + y1y2,
R4 = e4 + 100x1 − 110x2 + 7x3 − y4 − 7x1x2 + 2x1x3 − 16x2x3 − y2y3,

(33)
and

(u1, u2, u3, u4)
T

= −
(
R+D (e1, e2, e3, e4)

T
)
, (34)

i.e.,
u1 = 35x2 − 25x1 − 15e1 − 5x3 + 10y1 − 10y2 − y4 + 5x1x2 − 2x1x3 + 8

3x2x3,
u2 = 40x2 − 35x1 − 5e2 + 3x3 − 8

3y1 + y2 − 3x1x2 − x1x3 + 16
3 x2x3 + y1y3,

u3 = 90x2 − 75x1 − 30e3 − 2x3 + 28y3 + 2x1x2 − 3x1x3 + 32
3 x2x3 − y1y2,

u4 = 110x2 − 100x1 − 10e4 − 7x3 + y4 + 7x1x2 − 2x1x3 + 16x2x3 + y2y3

(35)

for the chosen (αij)4×3 =


1 2 5
2 1 −3
4 3 2
6 2 7

 , D =


5 10 0 1

8/3 4 0 0
0 0 2 0
0 0 0 9

 .

Then the error system is given by
Dq1
t e1

Dq2
t e2

Dq3
t e3

Dq4
t e4

 =


−15 0 0 0

0 −5 0 0
0 0 −30 0
0 0 0 −10




e1

e2

e3

e4

 (36)
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and then the eigenvalues of the matrix (B −D) are given by λ1 = −15, λ2 = −5,
λ3 = −30, λ4 = −10, which all are negative. Hence the error system is asymptotically
stable and the synchronization between the two systems (17) and (18) is achieved.

We used the improved classical Adams–Bashforth–Moulton method to show
the effectiveness of the proposed controller by solving the system (36) for
(q1, q2, q3, q4) = (0.98, 0.98, 0.98, 0.98) and with the initial conditions chosen as
(e1 (0) , e2 (0) , e3 (0) , e4 (0)) = (−2, 1,−5, 1) . In Figs.4-7, the time-history of the syn-
chronization errors e1(t); e2(t); e3(t); e4(t) is depicted.
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Figure 4: Time-response of the error e1(t) under the controller (35) forFSHP.
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Figure 5: Time-response of the error e2(t) under the controller (35) forFSHP.
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Figure 6: Time-response of the error e3(t) under the controller (35) forFSHP.
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Figure 7: Time-response of the error e4(t) under the controller (35) forFSHP.

6 Conclusion

In this work, we have presented a fractional-order form of a new 3D chaotic system based
on the Caputo derivative definition, where we have proven that this system has chaotic
behavior starting with a specific value of minimal commensurate order. A theoretical
and numerical solution representation was given using the Adams–Bashforth–Moulton
algorithm for this system. Also, full-state hybrid projective synchronization (FSHPS) be-
tween the novel 3D fractional-order system and the fractional-order hyper-chaotic Lorenz
system has been studied based on the definition of this kind of synchronization and the
Lyapunov theory of stability for linear fractional-order systems. Numerical simulations
are given to validate the effectiveness of the proposed controller via the improved Adams–
Bashforth–Moulton algorithm in Matlab. Further studies regarding practical applications
of this fractional system will be carried out in our next works.
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