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Abstract: The numerous scientific feedbacks that the FitzHugh-Rinzel system
(FHR) is having in various scientific fields, lead to further studies on the deter-
mination of its explicit solutions. Indeed, such a study can help to get a better
understanding of several behaviours in the complex dynamics of biological systems.
In this note, a class of travelling wave solutions is determined and specific solutions
are achieved to explicitly show the contribution due to a diffusion term considered in
the FHR model.
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1 Introduction

One of the most commonly known models in biomathematics is the FitzHugh-Rinzel
(FHR) system [1–3]. It derives from the FitzHugh-Nagumo (FHN) model [4–12] and
unlike the latter, it has an additional variable suitable for evaluating and studying nerve
cell bursting phenomena.

In general, bursting oscillations can be described by a system variable that changes
periodically from a rapid spike oscillation to a silent phase during which the membrane
potential changes slowly [13].

Studies concerning bursting phenomena are increasingly present in various scientific
fields (see, for instance, [14] and references therein), and in particular, some applications
concern the restoration of synaptic connections. In fact, it seems that certain nanoscale
memristor devices have the potential to reproduce the behaviour of a biological synapse,
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suggesting that in the future electronic synapses may be introduced to directly connect
neurons [15,16].

The interest aroused the FHR system applications also leads to the research of ex-
plicit solutions. Indeed, in an attempt to understand the various phenomena that the
FitzHugh-Rinzel system is able to describe, knowing the expression of the solution can
lead to a more complete analysis of the phenomenon itself. In view of this, in this paper,
the exact solutions are determined by pointing the research to travelling wave solutions.

The paper is organized as follows. In Section 2, the mathematical problem is de-
fined. In Section 3, taking into account travelling waves, a class of explicit solutions is
determined, and in Section 4, a solution has been developed to show the incidence of
the diffusive term inserted in the FHR system. Finally, in Section 5, some concluding
remarks have been underlined.

2 Mathematical Considerations

Generally, the FitzHugh-Rinzel model under consideration is the following:

∂ u

∂ t
= u− u3/3 + I − w + y,

∂ w

∂ t
= ε(−βw + c+ u),

∂ y

∂ t
= δ(−u+ h− dy),

(1)

where I, ε, β, c, d, h, δ indicate arbitrary constants.
In this paper, in order to evaluate also the contribution due to a diffusion term, the

following FHR system is considered:

∂ u

∂ t
= D

∂2 u

∂ x2
− au + ku2 ( a+ 1 − u ) − w + y + I,

∂ w

∂ t
= ε(−βw + c+ u),

∂ y

∂ t
= δ(−u+ h− dy).

(2)

Indeed, the term with D > 0 represents just the diffusion contribution and it derives
from the Hodgkin-Huxley (HH) theory for nerve membranes when the spatial variation
in the potential V is considered [11].

When D = 0, k = 1/3 and a = −1, system (2) turns into (1).
After indicating by means of

u(x, 0) = u0 , w(x, 0) = w0, y(x, 0) = y0, (x ∈ < ) (3)

the initial values, from (2) it follows that
w = w0 e

− εβ t +
c

β
(1− e− ε β t) + ε

∫ t

0

e− ε β ( t−τ ) u(x, τ) dτ,

y = y0 e
− δ d t +

h

d
(1− e− δ d t) − δ

∫ t

0

e− δ d ( t−τ ) u(x, τ) dτ.

(4)
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So, when k = 1, problem (2) turns into
ut −Duxx + au+

∫ t

0

[εe−εβ(t−τ) + δe−δd(t−τ)]u(x, τ)dτ = F (x, t, u),

u(x, 0) = u0(x), x ∈ <,

(5)

where

F = u2(a+ 1− u) + I − w0e
−εβt + y0e

−δdt − c

β
(1− e−εβt) +

h

d
(1− e−δdt). (6)

By means of the Laplace transform, the solution of problem (5)-(6) can be expressed
through an integral equation involving the fundamental solution H(x, t). Indeed, in [14]
it has been proved that the solution assumes the following form:

u(x, t) =

∫
<
H(x− ξ, t) u0(ξ) dξ +

∫ t

0

dτ

∫
<
H(x− ξ, t− τ) F [ ξ, τ, u(ξ, τ ) ] dξ. (7)

Denoting by J1(z) the Bessel function of first kind and order 1, and considering the
following functions:

H1(x, t) =
e
−
x2

4D t

2
√
πDt

e− a t +

(8)

−1

2

∫ t

0

e
−

x2

4Dy
−a y

√
t− y

√
ε e−βε ( t− y )√

πD
J1( 2

√
ε y (t− y) ) }dy,

H2 =

∫ t

0

H1(x, y) e−δd(t−y)

√
δy

t− y
J1( 2

√
δ y (t− y) dy, (9)

one gets

H = H1 −H2. (10)

3 Explicit Solutions

Several methods have been developed to find exact solutions of the partial differential
equations [17–22].

Here, in order to find explicit solutions in the form of travelling solutions, from system
(2) the following equation is deduced:

utt = Duxxt − aut + 2uut(a+ 1)− 3u2ut + εβw − εc− εu− δu+ δh− δdy. (11)

Moreover, letting

βε = δd,
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one obtains

utt = Duxxt − aut + 2uut(a+ 1)− 3u2ut − εc− εu− δu+ δh+

(12)

εβ(−ut +Duxx − au+ u2(a+ 1)− u3 + I).

Now, if one introduces the variable wave

z = x− C t,

from (12) one gets

DC uzzz + (C2 − εβ D)uzz − 3Cu2uz + 2C(a+ 1)uuz + εβu3 +

(13)

−C (a + εβ)uz − εβ(a+ 1)u2 + εβ a u+ (ε+ δ)u−K = 0,

where

K = (δh− ε c) + εβ I.

The solutions to be determined are of the type

u(z) = A f(z) + b , (14)

where one assumes

f(z) =
1

1 + e(z−z0)
. (15)

Since
fz − f2 + f = 0,

it results in

uz = Af2(z)−Af,

uzz = 2Af3 − 3Af2 +Af,

uzzz = 6Af4(z)− 12Af3(z) + 7Af2 −Af,

u uz = A2 f3 + (−A2 +Ab)f2 −Abf,

u2 uz = A3f4 + (2A2 b −A3)f3 + (Ab2 − 2A2b)f2 −Ab2f.

In order to satisfy equation (13), one has to assume

A2 = 2D (16)

and
δ = −ε. (17)

Moreover, under the assumption that
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C >
√

3/4 ∧ D > 0

or

C < −
√

3/4 ∧ D > 0

or

0 < D <
1

12
(3−

√
3
√

3− 16C2 ∧ −
√

3/4 < C <
√

3/4

or

D >
1

12
(3 +

√
3
√

3− 16C2 ∧ −
√

3/4 < C <
√

3/4 ,

constants a, b, and K must satisfy the following relationships:

b =
1

6
√

2D

(√
2
√

2C2 + 6D2 − 3D + 2C − 6D + 3
√

2D
)
,

a = 3 b− C

A
+

3A

2
− 1,

K = εβb3 − εβ(a+ 1)b2 + [(ε+ δ) + εβa]b.

4 Application

The previous analysis allows us to make some applications. Indeed, in order to point out
the contribution of diffusion effects due to the second order term with the coefficient D,
let us assume, for instance, the following values:

C = 1; z0 = 0; ε β = 0.1 .

In this way, this results in

b =

√
6D2 − 3D + 2

6
√
D

−
√
D√
2

+
1

3
√

2D
+

1

2
(18)

and consequently, one has

u(z) =

√
2D

1 + ez
+

√
6D2 − 3D + 2

6
√
D

−
√
D√
2

+
1

3
√

2D
+

1

2
. (19)

Plotting the graph of function (19), it is possible to note how the diffusion term
influences the damping of the solution both when the coefficient D is equal to or less
than 1 and when D is greater than 1.

5 Remarks

• The paper is concerned with the ternary autonomous dynamical system of FitzHugh-
Rinzel (FHR) which, in biophysics, seems to be appropriate to describe some phenomena
such as bursting oscillations. In this note, the FHR system under consideration in-
cludes a diffusion term, represented by a second order term, that derives directly from
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Figure 1: Solution u(z) when εβ = 0.1, z0 = 0, C = 1. On the left: the values for the parameter
D are such that 0 < D ≤ 1, while in the right-hand graph: we have considered D > 1.

the Hodgkin-Huxley theory for nerve membranes and that is frequently inserted in the
FitzHugh-Nagumo model, too.

• Solutions can be expressed by means of an integral equation involving the funda-
mental solution. However, to give direct feedbacks related to the contribution due to the
diffusion term D, by means of the method of travelling wave, explicit solutions have been
determined.

• Once arbitrary parameters have been set, the trajectories of solutions are shown,
whether the parameter D is less than 1 or D is greater than 1.

• Of course, as the chosen constants change, the behaviour of the various solutions
can be pointed out.
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