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Abstract: A competition with mutual inhibition is a form of direct competition
between the populations of two species where each actively inhibits the other. In this
paper, we consider a mathematical system of ordinary differential equations describing
two species, with mutual inhibition, competing for a limiting substrate in the presence
of two viruses. A detailed local qualitative analysis of the restriction of the system
to the attractor set is carried out. We prove that for general nonlinear response
functions, the Competitive Exclusion Principle is still fulfilled so that at most one
species can survive. Initial species concentrations are important in determining which
is the winning species. The results obtained were validated by numerical simulations
using Matlab software.
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1 Introduction

A chemostat is a laboratory device (bioreactor) in which organisms grow on the available nutrient
in a controlled manner. In many applications, it is simply a vessel used as a wastewater treatment
process [18]. In ecology, it refers to an artificial lake for the continuous culture of bacteria which
allows us to analyse inter-specific interactions between bacteria. A large number of mathematical
studies have been published [18]. The most used mathematical system modelling the bacterial
competition for a single obligate limiting substrate predicts competitive exclusion [12], that is, at
least one competitor bacteria loses the competition [18]. Hsu et al. [15] in 1977, were among the first
to study the problem of competition in a chemostat. They considered n populations in competition
for the same nutrient and showed that competitive exclusion was verified, namely, the competitor
which is better at using the substrate in small quantities survives and the others are extinguished.
In the case of nonmonotonic growth functions, Butler and Wolkowicz [2] in 1985, also verified
the competitive exclusion principle. In 1992, Wolkowicz and Lu [19] used Lyapunov functions to
also verify the competitive exclusion principle in the case of general shape-growth functions, but
with different mortality rates. For each species, the competitive exclusion principle was further
checked (the resulting equilibrium being globally stable). Li [16] recently extended this result to
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an even wider class of growth functions. In 1994, Smith and Waltman [17] verified this principle
for the Droop model. Wolkowicz and Xia [20] and Wolkowicz et al. [21] studied competition in a
chemostat with the recycling of dead organisms for different types of delays (discrete, distributed).
This theoretical result (Competitive Exclusion Principle) was confirmed experimentally by Hansen
and Hubbell [11].

In many cases, the competing bacteria can produce a plethora of secondary metabolites to
increase their competitiveness against other bacteria. For example, the production of Nisin by a
number of strains of Lactococcus lactis, which exert a high antibacterial activity against Gram-
positive bacteria, has been widely studied [13,14]. This inter-specific interaction is classified as an
inhibition relationship. Viruses are the most abundant and diverse form of life on the Earth. They
can infect all types of organisms (Vertebrates, Invertebrates, Plants, Fungi, Bacteria, Archaea).
Viruses that infect bacteria are called bacteriophages or phages.

In this work, we extend the chemostat model [18] to general growth rates taking into account the
reversible inhibition between species as in [3,4,6], but in the presence of two viruses. As our study is
qualitative, we assume that the two species are feeding on a nonreproducing limiting substrate that
is essential for both species. We also assume that the chemostat is well-mixed so that environmental
conditions are homogeneous. We neglect the natural mortality of the species and the viruses,
compared to the removal rate D. We prove that with general nonlinear response functions, the
mutual inhibitory relationship between two competing species confirms the competitive exclusion
principle (CEP). We have shown that at least one of the species becomes extinct and that initial
species concentrations are important in determining which is the winning species.

The rest of the paper is structured as follows. In Section 2, we propose a mathematical model
for this association and we recall some useful results of the chemostat theory. In Section 3, we
restrict the model to four dimensions since the conservation of the total biomass is fulfilled. In
Sections 4, 5 and 6, three cases are considered, where the main results of the local stability are
presented. Finally, in Section 7, some numerical examples are presented to illustrate the obtained
results confirming the competitive exclusion principle.

2 Mathematical Model and Properties

The proposed normalised mathematical model is given by
ṡ = Dsin − f1(s, x2) x1 − f2(s, x1) x2 −Ds,
ẋ1 = f1(s, x2)x1 − α1 x1v1 −Dx1,
ẋ2 = f2(s, x1)x2 − α2 x2v2 −Dx2 ,
v̇1 = α1 x1v1 −Dv1,
v̇2 = α2 x2v2 −Dv2,

(1)

where sin > 0 is the input concentration of substrate into the chemostat, D > 0 is the dilution rate.
αi > 0 is the rate of infection, s(t) is the concentration of substrate in the chemostat at time t.

xi(t) is the ith species concentration in the chemostat at time t, vi(t) is the ith virus concentration
in the chemostat at time t, fi(s, xj) is the species growth rate depending on substrate and the
concentration of the other species. The functions fi : R2

+ → R+, i = 1, 2, are of class C1, and
satisfy

A1 f1(0, x2) = f2(0, x1) = 0, ∀ x1, x2 ∈ R+ .

A2
∂f1
∂s

(s, x2) > 0, ∀ (s, x2) ∈ R2
+

∂f2
∂s

(s, x1) > 0, ∀ (s, x1) ∈ R2
+ .

A3
∂f1
∂x2

(s, x2) < −α1 < 0, ∀ (s, x2) ∈ R2
+,

∂f2
∂x1

(s, x1) < −α2 < 0, ∀ (s, x1) ∈ R2
+ .

Hypothesis A1 states that the substrate is essential for the bacteria growth; hypothesis A2 states
that the growth rate increases with substrate. Hypothesis A3 states that species inhibit each other
and that each species is more sensitive to the other species than to the virus.

The system (1) plus A1-A3 is not a realistic model for the biological system under consid-
eration. To be more realistic, we should introduce two other variables describing intermediate
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proteins. Each protein produced by species xi inhibits the growth of species j, where i, j = 1, 2
and i 6= j. In this case, the model will be huge (R7) and then difficult to study.

El Hajji [3] considered two species feeding on limiting substrate in a chemostat assuming a
mutual inhibitory relationship between both species. The proposed model is the same as the one
we have proposed here, but with α1 = α2 = 0 (no viruses associated with both species). The author
proved that at most one species can survive, which confirms the competitive exclusion principle.
The author also proved that, in the case where there are two locally stable equilibrium points, the
initial concentrations of species are of great importance in determining which species is the winner.

s, x1, x2 v1, v2

sin s, x1, x2, v1, v2

Figure 1: A simple chemostat shematic [3]: a continuous stirring mechanism at equal inflow and outflow
rates (D), where two species (x1, x2) are competing for a limiting substrate (s) in the presence of two
viruses (v1, v2), with an input concentration of substrate (sin) and an output concentration of substrate
(s), species concentrations (x1, x2) and virus concentrations (v1, v2).

Proposition 2.1 1. Let the initial condition
(
s(0), x1(0), x2(0), v1(0), v2(0)

)
∈ R5

+, the so-

lution of model (1) admit positive bounded components and then be definite for all t ≥ 0.

2. Ω =
{

(s, x1, x2, v1, v2) ∈ R5
+ /s + x1 + x2 + v1 + v2 = sin

}
is an invariant attractor set of

all solutions of model (1).

Proof. The solutions’ positivity can be proved as follows. If s = 0, then ṡ = Dsin > 0, and if
xi = 0, then ẋi = 0 for i = 1, 2. If vi = 0, then v̇i = 0 for i = 1, 2.

Next we prove the boundedness of solutions of model (1). Let B(t) = s(t) + x1(t) + x2(t) +
v1(t) + v2(t)− sin, then one obtains a single equation given by

Ḃ(t) = ṡ(t) + ẋ1(t) + ẋ2(t) + v̇1(t) + v̇2(t)=D
(
sin−s(t)−x1(t)−x2(t)−v1(t)−v2(t)

)
= −DB(t),

then B(t) = B(0)e−Dt, which means that

s(t) + x1(t) + x2(t) + v1(t) + v2(t) = sin + (s(0) + x1(0) + x2(0) + v1(0) + v2(0)− sin)e−Dt. (2)

Since s, x1, x2, v1 and v2 are positive, the solution of model (1) is bounded.
The invariance of the attractor Ω is a consequence of equation (2).

3 Restriction of System (1) to the Invariant Attractor Set Ω

The solutions of model (1) converge exponentially into Ω. Since we are studying the asymptotic
behavior of (1), it is sufficient to restrict the study of model (1) to Ω. The projection of the
restriction of model (1) to Ω on the plane (x1, x2, v1, v2) is given as follows:

ẋ1 = f1
(
sin − (x1 + x2 + v1 + v2), x2

)
x1 − α1 x1v1 −Dx1,

ẋ2 = f2
(
sin − (x1 + x2 + v1 + v2), x1

)
x2 − α2 x2v2 −Dx2,

v̇1 = α1 x1v1 −Dv1,
v̇2 = α2 x2v2 −Dv2,

(3)
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where the state vector (x1, x2, v1, v2) inside the sub-set is defined by

S =
{

(x1, x2, v1, v2) ∈ R4
+ : x1 + x2 + v1 + v2 ≤ sin

}
.

In this section, the equilibria of system (3) are determined and their local stability properties
are established. Define the parameters x̄1, x̄2, v̄1, v̄2, ¯̄x1, ¯̄x2, ¯̄̄x1, ¯̄̄x2, ¯̄̄v1, ¯̄̄v2, as follows:

• x̄1 is the solution of the equation f1(sin − x̄1, 0) = D.

• x̄2 is the solution of the equation f2(sin − x̄2, 0) = D.

• v̄1 is the solution of the equation f1(sin − D

α1
− v̄1, 0) = D + α1v̄1.

• v̄2 is the solution of the equation f2(sin − D

α2
− v̄2, 0) = D + α2v̄2.

• ( ¯̄x1, ¯̄x2) is the solution of the equations f1(sin − ¯̄x1 − ¯̄x2, ¯̄x2) = f2(sin − ¯̄x1 − ¯̄x2, ¯̄x1) = D.

• (¯̄̄x1, ¯̄̄v2) is the solution of the equations f1(sin − ¯̄̄x1 −
D

α2
− ¯̄̄v2,

D

α2
) = D and f2(sin − ¯̄̄x1 −

D

α2
− ¯̄̄v2, ¯̄̄x1)− α2

¯̄̄v2 = D.

• (¯̄̄x2, ¯̄̄v1) is the solution of the equations f1(sin − D

α1
− ¯̄̄x2 − ¯̄̄v1, ¯̄̄x2)− α1

¯̄̄v1 = D and f2(sin −
D

α1
− ¯̄̄x2 − ¯̄̄v1,

D

α1
) = D.

Then the system (3) admits F0 = (0, 0, 0, 0), F1 = (x̄1, 0, 0, 0), F2 = (0, x̄2, 0, 0), F3 =

(
D

α1
, 0, v̄1, 0), F4 = (0,

D

α2
, 0, v̄2), F5 = (¯̄x1, ¯̄x2, 0, 0), F6 = (¯̄̄x1,

D

α2
, 0, ¯̄̄v2) and F7 = (

D

α1
, ¯̄̄x2, ¯̄̄v1, 0) as

equilibrium points.

Let D1 = f1(sin, 0), D2 = f2(sin, 0), D3 = f1(sin− D

α1
, 0), D4 = f2(sin− D

α2
, 0), D5 = f1(sin−

D

α2
− v̄2,

D

α2
), D6 = f2(sin − D

α1
− v̄1,

D

α1
), D7 = f1(sin − x̄2, x̄2), D8 = f2(sin − x̄1, x̄1), D9 =

f1(sin−v̄1−
D

α1
, v̄1) and D10 = f2(sin−v̄2−

D

α2
, v̄2). Note that D9 < D3 < D1, D5 < D1, D7 < D1,

D10 < D4 < D2, D6 < D2 and D8 < D2.

In the rest of the paper, for simplicity and without any loss of generality, we will assume that

α1 > α2, then
D

α1
<
D

α2
and we will consider only three situations, where sin <

D

α1
,
D

α1
< sin <

D

α2

and
D

α2
< sin <

D

α1
+
D

α2
.

4 First Case : sin <
D

α1

The system (3) admits F0, F1, F2 and F5 as equilibria with x̄1, x̄2, ¯̄x1, ¯̄x2 <
D

α1
<
D

α2
.

The conditions of existence of the equilibria are given in the lemmas hereafter.

Lemma 4.1 The trivial equilibrium point F0 exists always. If D < max(D1, D2), then F0 is a
saddle point, however, if D > max(D1, D2), then F0 is a stable node.

Proof. The Jacobian matrix J0 of system (3) on F0 is then given by

J0 =


D1 −D 0 0 0

0 D2 −D 0 0
0 0 −D 0
0 0 0 −D

 .
Its eigenvalues are given by λ1 = λ2 = −D < 0, λ3 = D1 − D and λ4 = D2 − D. Therefore, if
D < max(D1, D2), then F0 is a saddle point, and if D > max(D1, D2), then F0 is a stable node.
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Lemma 4.2 The equilibrium point F1 exists if and only if D < D1. If D > D8, then F1 is a
stable node, however, if D < D8, then F1 is a saddle point.

Proof. An equilibrium F1 exists if and only if x̄1 ∈]0, sin[ is a solution of

f1(sin − x̄1, 0) = D. (4)

Let ψ1(x1) = f1(sin − x1, 0) − D. Since ψ′1(x1) = −∂f1
∂s

(sin − x1, 0) < 0, ψ1(0) = D1 − D and

ψ1(sin) = −D < 0, equation (4) admits a unique positive solution x̄1 ∈]0, sin[ if and only if
D < D1.

Assume that F1 exists (D < D1). The Jacobian matrix J1 of model (3) at F1 is given by

J1 =


−x̄1

∂f1
∂s

x̄1
∂f1
∂x2
− x̄1

∂f1
∂s

−α1 x̄1 − x̄1
∂f1
∂s

−x̄1
∂f1
∂s

0 D8 −D 0 0
0 0 α1x̄1 −D 0
0 0 0 −D

 .

J1 admits four eigenvalues given by λ1 = −x̄1
∂f1
∂s

(sin − x̄1, 0) < 0, λ2 = −(D−D8), λ3 = α1(x̄1 −
D

α1
) < 0 and λ4 = −D < 0. It follows that if D > D8, then F1 is a stable node, and if D < D8,

then F1 is a saddle point.

Lemma 4.3 The equilibrium point F2 exists if and only if D < D2. If D > D7, then F2 is a
stable node, and if D < D7, then F2 is a saddle point.

Proof. An equilibrium F2 exists if and only if x̄2 ∈]0, sin[ is a solution of

f2(sin − x̄2, 0) = D. (5)

Let ψ2(x2) = f2(sin − x2, 0) − D. Since ψ′2(x2) = −∂f2
∂s

(sin − x̄2, 0) < 0, ψ2(0) = D2 − D and

ψ2(sin) = −D < 0, equation (5) admits a unique positive solution x̄2 ∈]0, sin[ if and only if
D < D2.

Assume that F2 exists (D < D2). The Jacobian matrix J2 of system (3) at F2 is given by

J2 =


D7 −D 0 0 0

x2
∂f2
∂x1
− x2

∂f2
∂s

−x̄2
∂f2
∂s

−x̄2
∂f2
∂s

−α2 x̄2 − x̄2
∂f2
∂s

0 0 −D 0
0 0 0 α2x̄2 −D

 .

J2 admits four eigenvalues given by λ1 = −x̄2
∂f2
∂s

(sin − x̄2, 0) < 0, λ2 = −(D−D7), λ3 = α2(x̄2 −
D

α2
) < 0 and λ4 = −D < 0. It follows that if D > D7, then F2 is a stable node, however, if

D < D7, then F2 is a saddle point.

Lemma 4.4 The situation D < min(D7, D8) is impossible.

Proof. Assume that 0 < D < min(D7, D8). From Lemmas 4.2 and 4.3, F1 and F2 exist.

1. If x̄1 ≥ x̄2, then D = f2(sin − x̄2, 0) ≥ f2(sin − x̄1, 0) > f2(sin − x̄1, x̄1) = D8 > D, which is
impossible.

2. If x̄1 ≤ x̄2, then D = f1(sin − x̄1, 0) ≥ f1(sin − x̄2, 0) > f1(sin − x̄2, x̄2) = D7 > D, which is
impossible.

Lemma 4.5 An equilibrium F5 exists if and only if max(D7, D8) < D < min(D1, D2). If it
exists, then F1 and F2 exist and satisfy ¯̄x1 < x̄1 and ¯̄x2 < x̄2. F5 is always a saddle point.
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Proof. Since the functions x2 → f1(sin − x1 − x2, x2) and x2 → f2(sin − x1 − x2, x1) are
noncreasing, one deduces that the isoclines are the graphs of two functions x2 = ϕ1(x1) and
x2 = ϕ2(x1) and then 0 = ϕ1(x̄1) and x̄2 = ϕ2(0). ¯̄x1 is a solution of ψ5(¯̄x1) = 0, where

ψ5(x1) = ϕ2(x1) − ϕ1(x1). The derivatives of ϕ1 and ϕ2 are given by ϕ′2(x1) = −1 +
∂f2
∂x1

/
∂f2
∂s

<

−1 < ϕ′1(x1) = −1 +
∂f1
∂x2

/(
∂f1
∂x2
− ∂f1

∂s
) < 0. One deduces that ψ′5(x1) = ϕ′2(x1) − ϕ′1(x1) < 0 .

ψ5(0) = ϕ2(0) − ϕ1(0) = x̄2 − ϕ1(0) and ψ5(x̄1) = ϕ2(x̄1), then ¯̄x1 exists and is unique if and
only if x̄2 > ϕ1(0) and ϕ2(x̄1) < 0, and these are satisfied only if D = f1(sin − ϕ1(0), ϕ1(0)) >
f1(sin − x̄2, x̄2) = D7 and D = f2(sin − x̄1 − ϕ2(x̄1), x̄1) > f2(sin − x̄1, x̄1) = D8. The existence
and the uniqueness of ¯̄x2 = ϕ1(¯̄x1) = ϕ2(¯̄x1) are easily deduced since the two functions ϕ1(.) and
ϕ2(.) are decreasing.

Assume that F5 exists. One has

ψ3(¯̄x1) = 0 = f1(sin − ¯̄x1, 0)−D > f1(sin − ¯̄x1 − ¯̄x2, ¯̄x2)−D = 0 = ψ3(x̄1),

then ψ3(¯̄x1) > ψ3(x̄1) since the function ψ3(.) is decreasing, x̄1 > ¯̄x1.

ψ4(¯̄x2) = f2(sin − ¯̄x2, 0)−D > f2(sin − ¯̄x1 − ¯̄x2, ¯̄x1)−D = 0 = ψ4(x̄2),

then ψ4(x̄2) < ψ4(¯̄x2) since the function ψ4(.) is decreasing, x̄2 > ¯̄x2.
Assume that F5 exists. The Jacobian matrix J5 of system (3) at F5 = (¯̄x1, ¯̄x2, 0, 0) is given by

J5 =


−¯̄x1

∂f1
∂s

¯̄x1
∂f1
∂x2
− ¯̄x1

∂f1
∂s

−α1 ¯̄x1 − ¯̄x1
∂f1
∂s

−¯̄x1
∂f1
∂s

¯̄x2
∂f2
∂x1
− ¯̄x2

∂f2
∂s

−¯̄x2
∂f2
∂s

−¯̄x2
∂f2
∂s

−α2 ¯̄x2 − ¯̄x2
∂f2
∂s

0 0 α1 ¯̄x1 −D 0
0 0 0 α2 ¯̄x2 −D

 .

J5 admits four eigenvalues given by λ1 = α1(¯̄x1 −
D

α1
) < 0, λ2 = α2(¯̄x2 −

D

α2
) < 0 and two other

eigenvalues of the solutions of
λ2 + aλ+ b = 0,

where

a = ¯̄x1
∂f1
∂s

+ ¯̄x2
∂f2
∂s

> 0

and

b = ¯̄x1 ¯̄x2

[
− ∂f1
∂x2

∂f2
∂x1

+
∂f1
∂x2

∂f2
∂s

+
∂f1
∂s

∂f2
∂x1

]
< 0.

It follows that F5 is a saddle point.
The number and the nature of equilibria of system (3) are summarized in the theorem below.

Theorem 4.1

A) If min(D7, D8) < D < max(D7, D8), then

(i) if D8 < D7 and D8 < D < min(D2, D7), then system (3) admits three equilibria F0, F1

and F2. F1 is a stable node, however, F0 and F2 are two saddle points.

(ii) if D8 < D7 and D2 < D < D7, then system (3) admits two equilibria F0 and F1. F1 is
a stable node and F0 is a saddle point.

(iii) if D7 < D8 and D7 < D < min(D8, D1), then system (3) admits three equilibria F0, F1

and F2. F2 is a stable node, however, F0 and F1 are two saddle points.

(iv) if D7 < D8 and D1 < D < D8, then system (3) admits two equilibria F0 and F2. F2 is
a stable node, however, F0 is a saddle point.
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B) If max(D7, D8) < D < min(D1, D2), then system (3) admits four equilibria F0, F1, F2 and
F5. F1 and F2 are two stable nodes, however, F0 and F5 are two saddle points.

C) If min(D1, D2) < D < max(D1, D2), then

(i) if D1 < D2, then system (3) admits two equilibria F0 and F2. F2 is a stable node,
however, F0 is a saddle point.

(ii) if D2 < D1, then system (3) admits two equilibria F0 and F1. F1 is a stable node,
however, F0 is a saddle point.

D) If max(D1, D2) < D, then system (3) admits one stationary point F0. F0 is a stable node.

5 Second Case :
D

α1
< sin <

D

α2

The system (3) admits F0, F1, F2, F3, F5 and F7 as equilibrium points with x̄1, x̄2, ¯̄x1, ¯̄x2, v̄1 <
D

α2
.

The conditions of existence of the equilibria are stated in the lemmas hereafter.

Lemma 5.1 F0 exists always. If D < max(D1, D2), then F0 is a saddle point. If D >
max(D1, D2), then F0 is a stable node.

Proof. See the proof of Lemma 4.1.

Lemma 5.2 The equilibrium point F2 exists if and only if D < D2. If D > D7, then F2 is a
stable node, however, if D < D7, then F2 is a saddle point.

Proof. See the proof of Lemma 4.3.

Lemma 5.3 The situation D < min(D7, D8) is impossible.

Proof. See the proof of Lemma 4.4.

Lemma 5.4 An equilibrium F5 exists if and only if max(D7, D8) < D < min(D1, D2). If it
exists, then F1 and F2 exist and satisfy ¯̄x1 < x̄1 and ¯̄x2 < x̄2. F5 is always a saddle point.

Proof. See the proof of Lemma 4.5.

Lemma 5.5 F1 exists if and only if D < D1. If D > max(D3, D8), then F1 is a stable node,
however, if D < D3 or D3 < D < D8, then F1 is a saddle point.

Proof. The proof of existence and uniqueness of F1 is given in the proof of Lemma 4.2.
Assume that F1 exists (D < D1). One has

• If D < D3, then f1(sin − x̄1, 0) = D < D3 = f1(sin − D

α1
, 0) and then x̄1 >

D

α1
.

• If D > D3, then f1(sin − x̄1, 0) = D > D3 = f1(sin − D

α1
, 0) and then x̄1 <

D

α1
.

The Jacobian matrix J1 of system (3) at F1 is given by

J1 =


−x̄1

∂f1
∂s

x̄1
∂f1
∂x2
− x̄1

∂f1
∂s

−α1 x̄1 − x̄1
∂f1
∂s

−x̄1
∂f1
∂s

0 D8 −D 0 0
0 0 α1x̄1 −D 0
0 0 0 −D

 .

J1 admits four eigenvalues given by λ1 = −x̄1
∂f1
∂s

(sin − x̄1, 0) < 0, λ2 = −(D−D8), λ3 = α1(x̄1 −
D

α1
) and λ4 = −D < 0. It follows that
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• F1 is a saddle point if D < D3.

• F1 is a stable node if D > D3 and D > D8.

• F1 is a saddle point if D > D3 and D < D8.

Lemma 5.6 F3 exists if and only if D < D3. If D6 < D < D3, then F3 is locally asymptotically
stable. If D < min(D3, D6), then F3 is unstable.

Proof. An equilibrium F3 exists if and only if v̄1 ∈]0, sin − D

α1
[ is a solution of

f1(sin − D

α1
− v̄1, 0) = D + α1v̄1. (6)

Let ψ3(v1) = f1(sin − D

α1
− v1, 0) −D − α1v1. Since ψ′3(v1) = −∂f1

∂s
(sin − D

α1
− v1, 0) − α1 < 0,

ψ3(0) = D3−D and ψ3(sin− D

α1
) = −D−α1(sin− D

α1
) < 0, equation (6) admits a unique positive

solution v̄1 ∈]0, sin − D

α1
[ if and only if D < D3.

If F3 exists, the Jacobian matrix J1 of model (3) at F3 is stated as follows:

J3 =


−D
α1

∂f1
∂s

D

α1

∂f1
∂x2
− D

α1

∂f1
∂s

−D − D

α1

∂f1
∂s

−D
α1

∂f1
∂s

0 D6 −D 0 0
α1v̄1 0 0 0

0 0 0 −D

 .
J3 admits four eigenvalues given by λ1 = −D < 0 and λ2 = −(D−D6) and two other eigenvalues
of the solution of the equation

λ2 + aλ+ b = 0,

where a =
D

α1

∂f1
∂s

(sin − D

α1
− v̄1, 0) > 0 and b = α1v̄1

(
D +

D

α1

∂f1
∂s

(sin − D

α1
− v̄1, 0)

)
> 0. It

follows that

• If D6 < D < D3, then λ1 < 0, λ2 < 0, λ3 < 0, λ4 < 0 and F3 is then locally asymptotically
stable.

• If D < min(D3, D6), then F3 is a saddle point.

Lemma 5.7 An equilibrium F7 exists if and only if max(D6, D9) < D < D3. If F7 exists, it
follows that ¯̄̄v1 < v̄1 and F7 is always unstable.

Proof. Since the functions x2 → f1(sin−x2−
D

α1
−v1, x2)−α1v1 and x2 → f2(sin−x2−

D

α1
−

v1,
D

α1
) are decreasing, one deduces that the isoclines are the graphs of two functions x2 = ϕ5(v1)

and x2 = ϕ6(v1). ¯̄̄v1 is a solution of ψ7(¯̄̄v1) = 0, where ψ7(v1) = ϕ6(v1) − ϕ5(v1). The derivatives

of ϕ5 and ϕ6 are given by ϕ′6(v1) = −1 < ϕ′5(v1) = −1 +

(
∂f1
∂x2

+ α1

)
/

(
∂f1
∂x2
− ∂f1

∂s

)
< 0. One

deduces that ψ′7(v1) = ϕ′6(v1)− ϕ′5(v1) < 0 . ψ7(0) = ϕ6(0)− ϕ5(0) and ψ7(v̄1) = ϕ6(v̄1)− ϕ5(v̄1),
then ¯̄̄v1 exists and is unique if and only if ϕ5(0) < ϕ6(0) and ϕ6(v̄1) < ϕ5(v̄1). Note that ϕ5(v̄1) = 0

and ϕ6(0) < v̄1. Then the existence is satisfied only if D = f1(sin − ϕ5(0) − D

α1
, ϕ5(0)) >

f1(sin− v̄1−
D

α1
, v̄1) = D9 and D = f2(sin−ϕ6(v̄1)− v̄1−

D

α1
,
D

α1
) > f2(sin− v̄1−

D

α1
,
D

α1
) = D6.

Assume that F7 exists. One has

ψ4(¯̄̄x2) = f2(sin − ¯̄̄x2, 0)−D ≥ f2(sin − ¯̄̄x2 −
D

α1
− ¯̄̄v1,

D

α1
)−D = 0 = ψ4(x̄2),
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then ψ4(x̄2) < ψ4(¯̄̄x2) since the function ψ4(.) is decreasing, x̄2 > ¯̄̄x2. The Jacobian matrix J7 of

system (3) at F7 = (
D

α1
, ¯̄̄x2, ¯̄̄v1, 0) is given by

J7 =


−D
α1

∂f1
∂s

D

α1

∂f1
∂x2
− D

α1

∂f1
∂s

−D − D

α1

∂f1
∂s

−D
α1

∂f1
∂s

¯̄̄x2
∂f2
∂x1
− ¯̄̄x2

∂f2
∂s

− ¯̄̄x2
∂f2
∂s

− ¯̄̄x2
∂f2
∂s

−α2
¯̄̄x2 − ¯̄̄x2

∂f2
∂s

α1
¯̄̄v1 0 0 0

0 0 0 α2
¯̄̄x2 −D

 .

J7 admits four eigenvalues given by λ1 = α2
¯̄̄x2 −D and three other eigenvalues of the roots of the

following characteristic polynomial:

P7(X) =

∣∣∣∣∣∣∣∣∣
−X − D

α1

∂f1
∂s

D

α1

∂f1
∂x2
− D

α1

∂f1
∂s

−D − D

α1

∂f1
∂s

¯̄̄x2
∂f2
∂x1
− ¯̄̄x2

∂f2
∂s

−X − ¯̄̄x2
∂f2
∂s

− ¯̄̄x2
∂f2
∂s

α1
¯̄̄v1 0 −X

∣∣∣∣∣∣∣∣∣ ,

P7(X) = −X

∣∣∣∣∣∣∣
−X − D

α1

∂f1
∂s

D

α1

∂f1
∂x2
− D

α1

∂f1
∂s

¯̄̄x2
∂f2
∂x1
− ¯̄̄x2

∂f2
∂s

−X − ¯̄̄x2
∂f2
∂s

∣∣∣∣∣∣∣+α1
¯̄̄v1

∣∣∣∣∣∣∣
D

α1

∂f1
∂x2
− D

α1

∂f1
∂s

−D − D

α1

∂f1
∂s

−X − ¯̄̄x2
∂f2
∂s

− ¯̄̄x2
∂f2
∂s

∣∣∣∣∣∣∣ ,

P7(X) = −X
∣∣∣∣ (X +

D

α1

∂f1
∂s

)(X + ¯̄̄x2
∂f2
∂s

)− (
D

α1

∂f1
∂x2
− D

α1

∂f1
∂s

)(¯̄̄x2
∂f2
∂x1
− ¯̄̄x2

∂f2
∂s

)

∣∣∣∣
+α1

¯̄̄v1

∣∣∣∣ − ¯̄̄x2
∂f2
∂s

(
D

α1

∂f1
∂x2
− D

α1

∂f1
∂s

)− (D +
D

α1

∂f1
∂s

)(X + ¯̄̄x2
∂f2
∂s

)

∣∣∣∣ ,
P7(X) = −X

∣∣∣∣ X2 +X(
D

α1

∂f1
∂s

+ ¯̄̄x2
∂f2
∂s

)− D

α1

¯̄̄x2
∂f1
∂x2

∂f2
∂x1

+
D

α1

¯̄̄x2
∂f1
∂x2

∂f2
∂s

+
D

α1

¯̄̄x2
∂f1
∂s

∂f2
∂x1

∣∣∣∣
−α1

¯̄̄v1

∣∣∣∣ D

α1

¯̄̄x2
∂f2
∂s

∂f1
∂x2

+ (D +
D

α1

∂f1
∂s

)X +D ¯̄̄x2
∂f2
∂s

∣∣∣∣ ,
P7(X) = −X3 −X2

(D
α1

∂f1
∂s

+ ¯̄̄x2
∂f2
∂s

)
−X

(
− D

α1

¯̄̄x2
∂f1
∂x2

∂f2
∂x1

+
D

α1

¯̄̄x2
∂f1
∂x2

∂f2
∂s

+
D

α1

¯̄̄x2
∂f1
∂s

∂f2
∂x1

+ α1
¯̄̄v1(D +

D

α1

∂f1
∂s

)
)

−α1
¯̄̄v1

(
D

α1

¯̄̄x2
∂f2
∂s

∂f1
∂x2

+D ¯̄̄x2
∂f2
∂s

)
.

Then

P7(X) = −(X3 + b1X
2 + b2X + b3)

with

b1 =
(D
α1

∂f1
∂s

+ ¯̄̄x2
∂f2
∂s

)
> 0,

b2 =
(
− D

α1

¯̄̄x2
∂f1
∂x2

∂f2
∂x1

+
D

α1

¯̄̄x2
∂f1
∂x2

∂f2
∂s

+
D

α1

¯̄̄x2
∂f1
∂s

∂f2
∂x1

+ α1
¯̄̄v1(D +

D

α1

∂f1
∂s

)
)
,

b3 = α1
¯̄̄v1

(
D

α1

¯̄̄x2
∂f2
∂s

∂f1
∂x2

+D ¯̄̄x2
∂f2
∂s

)
= D ¯̄̄v1 ¯̄̄x2

∂f2
∂s

(
∂f1
∂x2

+ α1

)
< 0.

So, the conditions for the stability of F7 are not satisfied, then F7 is unstable.
The number and the nature of equilibria of model (3) are given in the theorem hereafter.
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Theorem 5.1 A) If min(D7, D8) < D < max(D7, D8), then

(i) if D8 < D7, then

1. if max(D2, D3) < D < D7, then system (3) admits two equilibria F0 and F1. F1 is
a stable node, however, F0 is a saddle point.

2. if max(D2, D9) < D < min(D3, D7), then system (3) admits four equilibria
F0, F1, F3 and F7. F0, F1 and F7 are three saddle points, however, F3 is a sta-
ble node.

3. if D2 < D < min(D9, D7), then system (3) admits three equilibria F0, F1 and F3.
F0 and F1 are two saddle points, however, F3 is a stable node.

4. if max(D3, D6, D8) < D < min(D2, D7), then system (3) admits three equilibria
F0, F1 and F2. F0 and F2 are two saddle points, however, F1 is a stable node.

5. if max(D6, D8, D9) < D < min(D2, D3, D7), then system (3) admits five equilibria
F0, F1, F2, F3 and F7. F0, F1, F2 and F7 are four saddle points, however, F3 is a
stable node.

6. if max(D6, D8) < D < min(D2, D9, D7), then system (3) admits four equilibria
F0, F1, F2 and F3. F0, F1 and F2 are three saddle points, however, F3 is a stable
node.

7. if max(D3, D8) < D < min(D6, D7), then system (3) admits three equilibria F0, F1

and F2. F0 and F2 are two saddle points, however, F1 is a stable node.

8. if D8 < D < min(D3, D6, D7), then system (3) admits four equilibria F0, F1, F2 and
F3, all of them are saddle points.

(ii) if D7 < D8, then

1. if D7 < D < min(D9, D6, D8), then system (3) admits four equilibria F0, F1, F2 and
F3. F0, F1 and F3 are three saddle points, however, F2 is a stable node.

2. if max(D9, D7) < D < min(D3, D6, D8), then system (3) admits four equilibria
F0, F1, F2 and F3. F0, F1 and F3 are three saddle points, however, F2 is a stable
node.

3. if max(D3, D7) < D < min(D1, D6, D8), then system (3) admits three equilibria
F0, F1 and F2. F0 and F1 are two saddle points, however, F2 is a stable node.

4. if D1 < D < min(D6, D8), then system (3) admits two equilibria F0 and F2. F0 is
a saddle point, however, F2 is a stable node.

5. if max(D6, D7) < D < min(D8, D9), then system (3) admits four equilibria
F0, F1, F2 and F3. F0 and F1 are two saddle points, however, F2 and F3 are two
stable nodes.

6. if max(D6, D7, D9) < D < min(D3, D8), then system (3) admits five equilibria
F0, F1, F2, F3 and F7. F0, F1 and F7 are three saddle points, however, F2 and F3

are two stable nodes.

7. if max(D6, D7, D3) < D < min(D1, D8), then system (3) admits three equilibria
F0, F1 and F2. F0 and F1 are two saddle points, however, F2 is a stable node.

8. if max(D6, D1) < D < D8, then system (3) admits two equilibria F0 and F2. F0 is
a saddle point, however, F2 is a stable node.

B) If max(D7, D8) < D < min(D1, D2), then

(i) If max(D3, D6, D7, D8) < D < min(D1, D2), then system (3) admits four equilibria
F0, F1, F2 and F5. F0 and F5 are saddle points, F1 and F2 are stable nodes.

(ii) If max(D6, D7, D8, D9) < D < min(D2, D3), then system (3) admits six equilibria
F0, F1, F2, F3, F5 and F7. F0, F1, F5 and F7 are saddle points, F2 and F3 are stable
nodes.

(iii) If max(D3, D7, D8) < D < min(D1, D6), then system (3) admits four equilibria
F0, F1, F2 and F5. F0 and F5 are saddle points, F1 and F2 are stable nodes.

(iv) If max(D7, D8, D9) < D < min(D3, D6), then system (3) admits five equilibria
F0, F1, F2, F3 and F5. F0, F1, F3 and F5 are saddle points, F2 is a stable node.
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(v) If max(D7, D8) < D < min(D6, D9), then system (3) admits five equilibria F0, F1, F2, F3

and F5. F0, F1, F3 and F5 are saddle points, F2 is a stable node.

(vi) If max(D6, D7, D8) < D < min(D2, D9), then system (3) admits five equilibria
F0, F1, F2, F3 and F5. F0, F1 and F5 are saddle points, F2 and F3 are stable nodes.

C) If min(D1, D2) < D < max(D1, D2), then

(i) If D1 < D < D2, then system (3) admits two equilibria F0 and F2. F0 is a saddle point,
however, F2 is a stable node.

(ii) If D2 < D < D1, then

1. if D2 < D < D9, then system (3) admits three equilibria F0, F1 and F3. F0 and F1

are two saddle points, however, F3 is a stable node.

2. if max(D2, D9) < D < D3, then system (3) admits four equilibria F0, F1, F3 and
F7. F0, F1 and F7 are three saddle points, however, F3 is a stable node.

3. if max(D2, D3) < D < D1, then system (3) admits two equilibria F0 and F1. F0 is
a saddle point, however, F1 is a stable node.

D) If max(D1, D2) < D, then model (3) admits only F0 as an equilibrium point. F0 is a stable
node.

6 Third Case :
D

α2
< sin <

D

α1
+
D

α2

The system (3) admits F0, F1, F2, F3, F4, F5, F6 and F7 as equilibrium points with

v̄1 < min(sin − D

α1
,
D

α2
) and v̄2 < min(sin − D

α2
,
D

α1
).

The conditions of existence of the equilibria are stated in the lemmas hereafter.

Lemma 6.1 F0 exists always. If D < max(D1, D2), then F0 is a saddle point, however, if
D > max(D1, D2), then F0 is a stable node.

Proof. See the proof of Lemma 4.1.

Lemma 6.2 The equilibrium point F1 exists if and only if D < D1. If D > max(D3, D8), then
F1 is a stable node, however, if D < D3 or D3 < D < D8, then F1 is a saddle point.

Proof. See the proof of Lemma 5.5.

Lemma 6.3 The equilibrium point F3 exists if and only if D < D3. If D6 < D < D3, then F3

is locally asymptotically stable. If D < min(D3, D6), then F3 is unstable.

Proof. See the proof of Lemma 5.6.

Lemma 6.4 The situation D < min(D7, D8) is impossible.

Proof. See the proof of Lemma 4.4.

Lemma 6.5 An equilibrium F5 exists if and only if max(D7, D8) < D < min(D1, D2). If it
exists, then F1 and F2 exist and satisfy ¯̄x1 < x̄1 and ¯̄x2 < x̄2. F5 is always a saddle point.

Proof. See the proof of Lemma 4.5.

Lemma 6.6 An equilibrium F7 exists if and only if max(D6, D9) < D < D3. Therefore,
¯̄̄v1 < v̄1 and F7 is always unstable.

Proof. See the proof of Lemma 5.7.

Lemma 6.7 The equilibrium point F2 exists if and only if D < D2. If D > max(D4, D7), then
F2 is a stable node, however, if D < D4 or D4 < D < D7, then F2 is a saddle point.
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Proof. Existence and uniqueness of F2 are given in the proof of Lemma 4.3.
Assume that F2 exists (D < D2). One has

• If D < D4, then f2(sin − x̄2, 0) = D < D4 = f2(sin − D

α2
, 0) and then x̄2 >

D

α2
.

• If D > D4, then f2(sin − x̄2, 0) = D > D4 = f2(sin − D

α2
, 0) and then x̄2 <

D

α2
.

The Jacobian matrix J2 of model (3) at F2 is given as follows:

J2 =


D7 −D 0 0 0

x2
∂f2
∂x1
− x2

∂f2
∂s

−x̄2
∂f2
∂s

−x̄2
∂f2
∂s

−α2 x̄2 − x̄2
∂f2
∂s

0 0 −D 0
0 0 0 α2x̄2 −D

 .

J2 admits four eigenvalues given by λ1 = −x̄2
∂f2
∂s

(sin − x̄2, 0) < 0, λ2 = −(D−D7), λ3 = α2(x̄2 −
D

α2
) and λ4 = −D < 0. It follows that

• If D < D4, then F2 is a saddle point.

• If D > D4 and D > D7, then F2 is a stable node.

• If D > D4 and D < D7, then F2 is a saddle point.

Lemma 6.8 F4 exists if and only if D < D4. If D5 < D < D4, then F4 is locally asymptotically
stable. If D < min(D4, D5), then F4 is unstable (saddle point).

Proof. An equilibrium F4 exists if and only if v̄2 ∈]0, sin − D

α2
[ is a solution of

f2(sin − D

α2
− v̄2, 0) = D + α2v̄2. (7)

Let ψ4(v2) = f2(sin− D

α2
− v2, 0)−D−α2v2. Since ψ′4(v2) = −∂f2

∂s
(sin− D

α2
− v2, 0)−α2 < 0,

ψ4(0) = D4 −D, ψ4(sin − D

α2
) = −D − α2(sin − D

α2
) < 0, equation (7) admits a unique positive

solution v̄2 ∈]0, sin − D

α2
[ if and only if D < D4.

If F4 exists, the Jacobian matrix J4 of system (3) at F4 is given by

J4 =


D5 −D 0 0 0

D

α2

∂f2
∂x1
− D

α2

∂f2
∂s

−D
α2

∂f2
∂s

−D
α2

∂f2
∂s

−D − D

α2

∂f2
∂s

0 0 −D 0
0 α2v̄2 0 0

 .
J4 admits four eigenvalues given by λ1 = −D < 0 and λ2 = −(D−D5) and two other eigenvalues
of the solution of the equation

λ2 + aλ+ b = 0,

where a =
D

α2

∂f2
∂s

(sin − D

α2
− v̄2, 0) > 0 and b = α2v̄2

(
D +

D

α2

∂f2
∂s

(sin − D

α2
− v̄2, 0)

)
> 0. It

follows that

• If D5 < D < D4, then λ1 < 0, λ2 < 0, λ3 < 0, λ4 < 0 and F4 is then locally asymptotically
stable.

• If D < min(D4, D5), then F4 is a saddle point.
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Lemma 6.9 An equilibrium F6 exists if and only if max(D5, D10) < D < D4. Therefore,
¯̄̄v2 < v̄2 and F6 is always unstable.

Proof. Since the functions x1 → f1(sin−x1−
D

α2
−v2,

D

α2
) and x1 → f2(sin−x1−

D

α2
−v2, x1)−

α2v2 are nonincreasing, one deduces that the isoclines are the graphs of two functions x1 = ϕ3(v2)
and x1 = ϕ4(v2). ¯̄̄v2 is the solution of ψ6(¯̄̄v2) = 0, where ψ6(v2) = ϕ4(v2) − ϕ3(v2) . The derivatives

of ϕ3 and ϕ4 are given by ϕ′3(v2) = −1 < ϕ′4(v2) = −1 +

(
∂f2
∂x1

+ α2

)
/

(
∂f2
∂x1
− ∂f2

∂s

)
< 0. One

deduces that ψ′6(v2) = ϕ′4(v2)− ϕ′3(v2) > 0 . ψ6(0) = ϕ4(0)− ϕ3(0) and ψ6(v̄2) = ϕ4(v̄2)− ϕ3(v̄2),
then ¯̄̄v2 exists and is unique if and only if ϕ4(0) < ϕ3(0) and ϕ3(v̄2) < ϕ4(v̄2). Note that ϕ4(v̄2) = 0
and ϕ3(0) < v̄2. The existence is satisfied only if

D = f2(sin − ϕ4(0)− D

α2
, ϕ4(0)) > f2(sin − v̄2 −

D

α2
, v̄2) = D10

and

D = f1(sin − ϕ3(v̄2)− v̄2 −
D

α2
,
D

α2
) > f1(sin − v̄2 −

D

α2
,
D

α2
) = D5.

Assume that F6 exists. One has

ψ3(¯̄̄x1) = f1(sin − ¯̄̄x1, 0)−D ≥ f1(sin − ¯̄̄x1 −
D

α2
− ¯̄̄v2,

D

α2
)−D = 0 = ψ3(x̄1),

then ψ3(x̄1) < ψ3(¯̄̄x1) since the function ψ3(.) is decreasing, x̄1 > ¯̄̄x1. The Jacobian matrix J6 of

system (3) at F6 = (¯̄̄x1,
D

α2
, 0, ¯̄̄v2) is given by

J6 =


− ¯̄̄x1

∂f1
∂s

¯̄̄x1
∂f1
∂x2
− ¯̄̄x1

∂f1
∂s

−α1
¯̄̄x1 − ¯̄̄x1

∂f1
∂s

− ¯̄̄x1
∂f1
∂s

D

α2

∂f2
∂x1
− D

α2

∂f2
∂s

−D
α2

∂f2
∂s

−D
α2

∂f2
∂s

−D − D

α2

∂f2
∂s

0 0 α1
¯̄̄x1 −D 0

0 α2
¯̄̄v2 0 0

 .
J6 admits four eigenvalues given by λ1 = α1

¯̄̄x1 −D and three other eigenvalues of the roots of the
following characteristic polynomial:

P6(X) =

∣∣∣∣∣∣∣∣∣
−X − ¯̄̄x1

∂f1
∂s

¯̄̄x1
∂f1
∂x2
− ¯̄̄x1

∂f1
∂s

− ¯̄̄x1
∂f1
∂s

D

α2

∂f2
∂x1
− D

α2

∂f2
∂s

−X − D

α2

∂f2
∂s

−D − D

α2

∂f2
∂s

0 α2
¯̄̄v2 −X

∣∣∣∣∣∣∣∣∣ ,

P6(X) = −X

∣∣∣∣∣∣∣
−X − ¯̄̄x1

∂f1
∂s

¯̄̄x1
∂f1
∂x2
− ¯̄̄x1

∂f1
∂s

D

α2

∂f2
∂x1
− D

α2

∂f2
∂s

−X − D

α2

∂f2
∂s

∣∣∣∣∣∣∣− α2
¯̄̄v2

∣∣∣∣∣∣∣
−X − ¯̄̄x1

∂f1
∂s

− ¯̄̄x1
∂f1
∂s

D

α2

∂f2
∂x1
− D

α2

∂f2
∂s

−D − D

α2

∂f2
∂s

∣∣∣∣∣∣∣ ,
P6(X) = −X

[(
X + ¯̄̄x1

∂f1
∂s

)(
X +

D

α2

∂f2
∂s

)
−
(

¯̄̄x1
∂f1
∂x2
− ¯̄̄x1

∂f1
∂s

)(D
α2

∂f2
∂x1
− D

α2

∂f2
∂s

)]
−α2

¯̄̄v2

[(
X + ¯̄̄x1

∂f1
∂s

)(
D +

D

α2

∂f2
∂s

)
+ ¯̄̄x1

∂f1
∂s

(D
α2

∂f2
∂x1
− D

α2

∂f2
∂s

)]
= −X

[
X2 +X

(
¯̄̄x1
∂f1
∂s

+
D

α2

∂f2
∂s

)
− ¯̄̄x1

D

α2

∂f1
∂x2

∂f2
∂x1

+ ¯̄̄x1
D

α2

∂f1
∂x2

∂f2
∂s

+ ¯̄̄x1
D

α2

∂f1
∂s

∂f2
∂x1

]
−α2

¯̄̄v2

[
X
(
D +

D

α2

∂f2
∂s

)
+D ¯̄̄x1

∂f1
∂s

+ ¯̄̄x1
D

α2

∂f1
∂s

∂f2
∂x1

]
= −X3 −X2

(
¯̄̄x1
∂f1
∂s

+
D

α2

∂f2
∂s

)
−X

(
− ¯̄̄x1

D

α2

∂f1
∂x2

∂f2
∂x1

+ ¯̄̄x1
D

α2

∂f1
∂x2

∂f2
∂s

+ ¯̄̄x1
D

α2

∂f1
∂s

∂f2
∂x1

+ α2
¯̄̄v2

(
D +

D

α2

∂f2
∂s

))
−D ¯̄̄v2 ¯̄̄x1

∂f1
∂s

[
α2 +

∂f2
∂x1

]
.
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Then P6(X) = −(X3 + b1X
2 + b2X + b3) with

b1 =
(

¯̄̄x1
∂f1
∂s

+
D

α2

∂f2
∂s

)
> 0,

b2 =
(
− ¯̄̄x1

D

α2

∂f1
∂x2

∂f2
∂x1

+ ¯̄̄x1
D

α2

∂f1
∂x2

∂f2
∂s

+ ¯̄̄x1
D

α2

∂f1
∂s

∂f2
∂x1

+ α2
¯̄̄v2

(
D +

D

α2

∂f2
∂s

))
,

b3 = D ¯̄̄v2 ¯̄̄x1
∂f1
∂s

[
α2 +

∂f2
∂x1

]
< 0.

So, the conditions for the stability of F6 are not satisfied, then F6 is unstable.
The number and the nature of equilibrium points of model (3) are stated in the following

theorem.

Theorem 6.1 A) If min(D7, D8) < D < max(D7, D8), then

(i) if D8 < D7, then

1. if max(D2, D3) < D < D7, then system (3) admits two equilibria F0 and F1. F0 is
a saddle point, however, F1 is a stable node.

2. if max(D2, D9) < D < min(D3, D7), then system (3) admits four equilibria
F0, F1, F3 and F7. F0, F1 and F7 are three saddle points, however, F3 is a sta-
ble node.

3. if D2 < D < min(D7, D9), then system (3) admits three equilibria F0, F1 and F3.
F0 and F1 are two saddle points, however, F3 is a stable node.

4. if max(D3, D4, D6, D8) < D < min(D2, D7), then system (3) admits three equilibria
F0, F1 and F2. F0 and F2 are two saddle points, however, F1 is a stable node.

5. if max(D3, D5, D6, D8, D10) < D < min(D4, D7), then system (3) admits five equi-
libria F0, F1, F2, F4 and F6. F0, F2 and F6 are three saddle points, however, F1 and
F4 are two stable nodes.

6. if max(D3, D5, D6, D8) < D < min(D7, D10), then system (3) admits four equilibria
F0, F1, F2 and F4. F0 and F2 are saddle points, however, F1 and F4 are two stable
nodes.

7. if max(D3, D6, D8) < D < min(D4, D5, D7), then system (3) admits four equilibria
F0, F1, F2 and F4. F0, F2 and F4 are three saddle points, however, F1 is a stable
node.

8. if max(D4, D6, D8, D9) < D < min(D2, D3, D7), then system (3) admits five equi-
libria F0, F1, F2, F3 and F7. F0, F1, F2 and F7 are four saddle points, however, F3

is a stable node.

9. if max(D5, D6, D8, D9, D10) < D < min(D3, D4, D7), then system (3) admits seven
equilibria F0, F1, F2, F3, F4, F6 and F7. F0, F1, F2, F6 and F7 are five saddle points,
however, F3 and F4 are two stable nodes.

10. if max(D5, D6, D8, D9) < D < min(D3, D7, D10), then system (3) admits six equi-
libria F0, F1, F2, F3, F4 and F7. F0, F1, F2 and F7 are four saddle points, however,
F3 and F4 are two stable nodes.

11. if max(D6, D8, D9) < D < min(D3, D4, D5, D7), then system (3) admits six equilib-
ria F0, F1, F2, F3, F4 and F7. F0, F1, F2, F4 and F7 are five saddle points, however,
F3 is a stable node.

12. if max(D4, D6, D8) < D < min(D2, D7, D9), then system (3) admits four equilibria
F0, F1, F2 and F3. F0, F1 and F2 are three saddle points, however, F3 is a stable
node.

13. if max(D5, D6, D8, D10) < D < min(D4, D7, D9), then system (3) admits six equi-
libria F0, F1, F2, F3, F4 and F6. F0, F1, F2 and F6 are four saddle points, however,
F3 and F4 are stable nodes.

14. if max(D5, D6, D8) < D < min(D7, D9, D10), then system (3) admits five equilibria
F0, F1, F2, F3 and F4. F0, F1 and F2 are three saddle points, however, F3 and F4

are stable nodes.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (4) (2021) 337–359 351

15. if max(D6, D8) < D < min(D4, D5, D7, D9), then system (3) admits five equilibria
F0, F1, F2, F3 and F4. F0, F1, F2 and F4 are four saddle points, however, F3 is a
stable node.

16. if max(D3, D4, D8) < D < min(D6, D7), then system (3) admits three equilibria
F0, F1 and F2. F0 and F2 are two saddle points, however, F1 is a stable node.

17. if max(D3, D5, D8, D10) < D < min(D4, D6, D7), then system (3) admits five equi-
libria F0, F1, F2, F4 and F6. F0, F1, F2 and F6 are three saddle points, however, F1

and F4 are stable nodes.

18. if max(D3, D5, D8) < D < min(D6, D7, D10), then system (3) admits four equilibria
F0, F1, F2 and F4. F0 and F2 are two saddle points, however, F1 and F4 are stable
nodes.

19. if max(D3, D8) < D < min(D4, D5, D6, D7), then system (3) admits four equilibria
F0, F1, F2 and F4. F0, F2 and F4 are three saddle points, however, F1 is a stable
node.

20. if max(D4, D8, D9) < D < min(D3, D6, D7), then system (3) admits four equilibria
F0, F1, F2 and F3, all of them are saddle points.

21. if max(D5, D8, D9, D10) < D < min(D3, D4, D6, D7), then system (3) admits six
equilibria F0, F1, F2, F3, F4 and F6. F0, F1, F2, F3 and F6 are five saddle points,
however, F4 is a stable node.

22. if max(D5, D8, D9) < D < min(D3, D6, D7, D10), then system (3) admits five equi-
libria F0, F1, F2, F3 and F4. F0, F1, F2 and F3 are four saddle points, however, F4

is a stable node.

23. if max(D8, D9) < D < min(D3, D4, D5, D6, D7), then system (3) admits five equi-
libria F0, F1, F2, F3 and F4, all of them are saddle points.

24. if max(D4, D8) < D < min(D6, D7, D9), then system (3) admits four equilibria
F0, F1, F2 and F3, all of them are saddle points.

25. if max(D5, D8, D10) < D < min(D4, D6, D7, D9), then system (3) admits six equi-
libria F0, F1, F2, F3, F4 and F6. F0, F1, F2, F3 and F6 are five saddle points, however,
F4 is a stable node.

26. if max(D5, D8) < D < min(D6, D7, D9, D10), then system (3) admits five equilibria
F0, F1, F2, F3 and F4. F0, F1, F2 and F3 are four saddle points, however, F4 is a
stable node.

27. if D8 < D < min(D4, D5, D6, D7, D9), then system (3) admits five equilibria
F0, F1, F2, F3 and F4, all of them are saddle points.

(ii) if D7 < D8, then

1. if max(D4, D7) < D < min(D6, D8, D9), then system (3) admits four equilibria
F0, F1, F2 and F3. F0, F1 and F3 are three saddle points, however, F2 is a stable
node.

2. if max, D5, D7, D10) < D < min(D4, D6, D8, D9), then system (3) admits six equi-
libria F0, F1, F2, F3, F4 and F6. F0, F1, F2, F3 and F6 are five saddle points, however,
F4 is a stable node.

3. if max(D5, D7) < D < min(D6, D8, D9, D10), then system (3) admits five equilibria
F0, F1, F2, F3 and F4. F0, F1, F2 and F3 are four saddle points, however, F4 is a
stable node.

4. if D7 < D < min(D4, D5, D6, D8, D9), then system (3) admits five equilibria
F0, F1, F2, F3 and F4, all of them are saddle points.

5. if max(D4, D7, D9) < D < min(D3, D6, D8), then system (3) admits four equilibria
F0, F1, F2 and F3. F0, F1 and F3 are three saddle points, however, F2 is a stable
node.

6. if max(D5, D7, D9, D10) < D < min(D3, D4, D6, D8), then system (3) admits six
equilibria F0, F1, F2, F3, F4 and F6. F0, F1, F2, F3 and F6 are five saddle points,
however, F4 is a stable node.
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7. if max(D5, D7, D9) < D < min(D3, D6, D8, D10), then system (3) admits five equi-
libria F0, F1, F2, F3 and F4. F0, F1, F2 and F3 are four saddle points, however, F4

is a stable node.

8. if max(D7, D9) < D < min(D3, D4, D5, D6, D8), then system (3) admits five equi-
libria F0, F1, F2, F3 and F4, all of them are saddle points.

9. if max(D3, D4, D7) < D < min(D1, D6, D8), then system (3) admits three equilibria
F0, F1 and F2. F0 and F1 are two saddle points, however, F2 is a stable node.

10. if max(D3, D5, D7, D10) < D < min(D1, D4, D6, D8), then system (3) admits five
equilibria F0, F1, F2, F4 and F6. F0, F1, F2 and F6 are four saddle points, however,
F4 is a stable node.

11. if max(D3, D5, D7) < D < min(D1, D6, D8, D10), then system (3) admits four equi-
libria F0, F1, F2 and F4. F0, F1 and F2 are three saddle points, however, F4 is a
stable node.

12. if max(D3, D7) < D < min(D4, D5, D6, D8), then system (3) admits four equilibria
F0, F1, F2 and F4, all of them are saddle points.

13. if max(D4, D1) < D < min(D6, D8), then system (3) admits two equilibria F0 and
F2. F0 is a saddle point, however, F2 is a stable node.

14. if max(D10, D1) < D < min(D4, D6, D8), then system (3) admits four equilibria
F0, F2, F4 and F6. F0, F2 and F6 are three saddle points, however, F4 is a stable
node.

15. if D1 < D < min(D6, D8, D10), then system (3) admits three equilibria F0, F2 and
F4. F0 and F2 are two saddle points, however, F4 is a stable node.

16. if max(D4, D6, D7) < D < min(D8, D9), then system (3) admits four equilibria
F0, F1, F2 and F3. F0 and F1 are two saddle points, however, F2 and F3 are two
stable nodes.

17. if max(D5, D6, D7, D10) < D < min(D4, D8, D9), then system (3) admits six equi-
libria F0, F1, F2, F3, F4 and F6. F0, F1, F2 and F6 are four saddle points, however,
F3 and F4 are two stable nodes.

18. if max(D5, D6, D7) < D < min(D8, D9, D10), then system (3) admits five equilibria
F0, F1, F2, F3 and F4. F0, F1 and F2 are three saddle points, however, F3 and F4

are stable nodes.

19. if max(D6, D7) < D < min(D4, D5, D8, D9), then system (3) admits five equilibria
F0, F1, F2, F3 and F4. F0, F1, F2 and F4 are four saddle points, however, F3 is a
stable node.

20. if max(D4, D6, D7, D9) < D < min(D3, D8), then system (3) admits five equilibria
F0, F1, F2, F3 and F7. F0, F1 and F7 are three saddle points, however, F2 and F3

are two stable nodes.

21. if max(D5, D6, D7, D9, D10) < D < min(D3, D4, D8) , then system (3) admits seven
equilibria F0, F1, F2, F3, F4, F6 and F7. F0, F1, F2, F6 and F7 are five saddle points,
however, F3 and F4 are two stable nodes.

22. if max(D5, D6, D7, D9) < D < min(D3, D8, D10), then system (3) admits six equi-
libria F0, F1, F2, F3, F4 and F7. F0, F1, F2 and F7 are four saddle points, however,
F3 and F4 are two stable nodes.

23. if max(D6, D7, D9) < D < min(D3, D4, D5, D8), then system (3) admits six equilib-
ria F0, F1, F2, F3, F4 and F7. F0, F1, F2, F4 and F7 are five saddle points, however,
F3 is a stable node.

24. if max(D3, D4, D6, D7) < D < min(D1, D8), then system (3) admits three equilibria
F0, F1 and F2. F0 and F1 are two saddle points, however, F2 is a stable node.

25. if max(D3, D5, D6, D7, D10) < D < min(D1, D4, D8), then system (3) admits five
equilibria F0, F1, F2, F4 and F6. F0, F1, F2 and F6 are four saddle points, however,
F4 is a stable node.

26. if max(D3, D5, D6, D7) < D < min(D1, D8, D10), then system (3) admits four equi-
libria F0, F1, F2 and F4. F0, F1 and F2 are three saddle points, however, F4 is a
stable node.
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27. if max(D3, D6, D7) < D < min(D4, D5, D8), then system (3) admits four equilibria
F0, F1, F2 and F4, all of them are saddle points.

28. if max(D6, D4, D1) < D < D8, then system (3) admits two equilibria F0 and F2.
F0 is a saddle point, however, F2 is a stable node.

29. if max(D10, D6, D1) < D < min(D4, D8), then system (3) admits four equilibria
F0, F2, F4 and F6. F0, F2 and F6 are three saddle points, however, F4 is a stable
node.

30. if max(D6, D1) < D < min(D10, D8), then system (3) admits three equilibria F0, F2

and F4. F0 and F2 are two saddle points, however, F4 is a stable node.

B) If max(D7, D8) < D < min(D1, D2), then

1. If max(D3, D6, D7, D8, D4) < D < min(D1, D2), then system (3) admits four equilibria
F0, F1, F2 and F5. F0 and F5 are saddle points, F1 and F2 are stable nodes.

2. If max(D3, D5, D6, D7, D8, D10) < D < min(D1, D4), then system (3) admits six equi-
libria F0, F1, F2, F4, F5 and F6. F0, F2, F5 and F6 are saddle points, F1 and F4 are stable
nodes.

3. If max(D3, D5, D6, D7, D8) < D < min(D1, D10), then system (3) admits five equilibria
F0, F1, F2, F4 and F5. F0, F2 and F5 are saddle points, F1 and F4 are stable nodes.

4. If max(D3, D6, D7, D8) < D < min(D4, D5), then system (3) admits five equilibria
F0, F1, F2, F4 and F5. F0, F2, F4 and F5 are saddle points, F1 is a stable node.

5. If max(D4, D6, D7, D8, D9) < D < min(D2, D3), then system (3) admits six equilibria
F0, F1, F2, F3, F5 and F7. F0, F1, F5 and F7 are saddle points, F2 and F3 are stable
nodes.

6. If max(D5, D6, D7, D8, D9, D10) < D < min(D3, D4), then system (3) admits eight
equilibria F0, F1, F2, F3, F4, F5, F6 and F7. F0, F1, F2, F5, F6 and F7 are saddle points,
F3 and F4 are stable nodes.

7. If max(D5, D6, D7, D8, D9) < D < min(D3, D10), then system (3) admits seven equilib-
ria F0, F1, F2, F3, F4, F5 and F7. F0, F1, F2, F5 and F7 are saddle points, F3 and F4 are
stable nodes.

8. If max(D6, D7, D8, D9) < D < min(D3, D4, D5), then system (3) admits seven equilibria
F0, F1, F2, F3, F4, F5 and F7. F0, F1, F2, F4, F5 and F7 are saddle points, F3 is a stable
node.

9. If max(D3, D4, D7, D8) < D < min(D1, D6), then system (3) admits four equilibria
F0, F1, F2 and F5. F0 and F5 are saddle points, F1 and F2 are stable nodes.

10. If max(D3, D5, D7, D8, D10) < D < min(D1, D4, D6), then system (3) admits six equi-
libria F0, F1, F2, F4, F5 and F6. F0, F2, F5 and F6 are saddle points, F1 and F4 are stable
nodes.

11. If max(D3, D5, D7, D8) < D < min(D1, D6, D10), then system (3) admits five equilibria
F0, F1, F2, F4 and F5. F0, F2 and F5 are saddle points, F1 and F4 are stable nodes.

12. If max(D3, D7, D8) < D < min(D4, D5, D6), then system (3) admits five equilibria
F0, F1, F2, F4 and F5. F0, F2, F4 and F5 are saddle points, F1 is a stable node.

13. If max(D4, D7, D8, D9) < D < min(D3, D6), then system (3) admits five equilibria
F0, F1, F2, F3 and F5. F0, F1, F3 and F5 are saddle points, F2 is a stable node.

14. If max(D5, D7, D8, D9, D10) < D < min(D3, D4, D6), then system (3) admits seven
equilibria F0, F1, F2, F3, F4, F5 and F6. F0, F1, F2, F3, F5 and F6 are saddle points, F4

is a stable node.

15. If max(D5, D7, D8, D9) < D < min(D3, D6, D10), then system (3) admits six equilibria
F0, F1, F2, F3, F4 and F5. F0, F1, F2, F3 and F5 are saddle points, F4 is a stable node.

16. If max(D7, D8, D9) < D < min(D3, D4, D5, D6), then system (3) admits six equilibria
F0, F1, F2, F3, F4 and F5, all of them are saddle points.
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17. If max(D4, D7, D8) < D < min(D6, D9), then system (3) admits five equilibria
F0, F1, F2, F3 and F5. F0, F1, F3 and F5 are saddle points, F2 is a stable node.

18. If max(D5, D7, D8, D10) < D < min(D4, D6, D9), then system (3) admits seven equi-
libria F0, F1, F2, F3, F4, F5 and F6. F0, F1, F2, F3, F5 and F6 are saddle points, F4 is a
stable node.

19. If max(D5, D7, D8) < D < min(D6, D9, D10), then system (3) admits six equilibria
F0, F1, F2, F3, F4 and F5. F0, F1, F2, F3 and F5 are saddle points, F4 is a stable node.

20. If max(D7, D8) < D < min(D4, D5, D6, D9), then system (3) admits six equilibria
F0, F1, F2, F3, F4 and F5, all of them are saddle points.

21. If max(D4, D6, D7, D8) < D < min(D2, D9), then system (3) admits five equilibria
F0, F1, F2, F3 and F5. F0, F1 and F5 are saddle points, F2 and F3 are stable nodes.

22. If max(D5, D6, D7, D8, D10) < D < min(D4, D9), then system (3) admits seven equilib-
ria F0, F1, F2, F3, F4, F5 and F6. F0, F1, F2, F5 and F6 are saddle points, F3 and F4 are
stable nodes.

23. If max(D5, D6, D7, D8) < D < min(D9, D10), then system (3) admits six equilibria
F0, F1, F2, F3, F4 and F5. F0, F1, F2 and F5 are saddle points, F3 and F4 are stable
nodes.

24. If max(D6, D7, D8) < D < min(D4, D5, D9), then system (3) admits six equilibria
F0, F1, F2, F3, F4 and F5. F0, F1, F2, F4 and F5 are saddle points, F3 is a stable node.

C) If min(D1, D2) < D < max(D1, D2), then

(i) If D1 < D < D2, then

1. if D1 < D < D10, then system (3) admits three equilibria F0, F2 and F4. F0 and
F2 are two saddle points, however, F4 is a stable node.

2. if max(D1, D10) < D < D4, then system (3) admits four equilibria F0, F2, F4 and
F6. F0, F2 and F6 are three saddle points, however, F4 is a stable node.

3. if max(D1, D4) < D < D2, then system (3) admits two equilibria F0 and F2. F0 is
a saddle point, however, F2 is a stable node.

(ii) If D2 < D < D1, then

1. if D2 < D < D9, then system (3) admits three equilibria F0, F1 and F3. F0 and F1

are two saddle points, however, F3 is a stable node.

2. if max(D2, D9) < D < D3, then system (3) admits four equilibria F0, F1, F3 and
F7. F0, F1 and F7 are three saddle points, however, F3 is a stable node.

3. if max(D2, D3) < D < D1, then system (3) admits two equilibria F0 and F1. F0 is
a saddle point, however, F1 is a stable node.

D) If max(D1, D2) < D, then model (3) admits only F0 as an equilibrium point. F0 is a stable
node.

7 Numerical Simulations

We validated the obtained results by some numerical simulations on a system that uses Monod
growth rates and takes into account the reversible inhibition between species:

ṡ = D (sin − s)− 4 s x1
(1 + s)(1 + x2)

− 4 s x2
(2 + s)(1.5 + x1)

,

ẋ1 =

(
4 s

(1 + s)(1 + x2)
−D − 0.2v1

)
x1,

ẋ2 =

(
4 s

(2 + s)(1.5 + x1)
−D − 0.1v2

)
x2,

v̇1 = (0.2x1 −D)v1,
v̇2 = (0.1x2 −D)v2.

(8)

One can readily check that the functional responses satisfy Assumptions A1 to A3.
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7.1 First case

In Fig. 2, if the dilution rate D = 4 satisfying D2 = 2.42 < D1 = 3.8 < D = 4, each solution
with the initial condition inside the whole domain converges to the equilibrium F0, from where the
extinction of the two species. However, in Fig. 3, for D = 2.5 satisfying D2 = 2.3 < D < D1 = 3.7,
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Figure 2: x1 − x2 behaviour for D = 4, sin = 19.8.

each solution with the initial condition inside the whole domain is converging to the equilibrium
F1, from where only species 1 can survive.
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Figure 3: x1 − x2 behaviour for D = 2.5, sin = 12.38.

In Fig. 4, for D = 1.2 satisfying then D = 1.2 < D2 = 2 < D1 = 3.42, each solution with the
initial condition inside the red domain converges to the equilibrium F2 and each solution with the
initial condition inside the blue domain converges to the equilibrium F1. The competitive exclusion
principle is fulfilled here since at least one species goes extinct. As seen in Fig. 4, initial species
concentrations are important in determining which is the winning species.
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Figure 4: x1 − x2 behaviour for D = 1.2, sin = 5.94.
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7.2 Second case

In Fig. 5, if D = 4, which satisfies D2 = 2.5 < D1 = 3.87 < D = 4, each solution with the initial
condition inside the whole domain is converging to the equilibrium F0, from where the extinction
of the two species.

However, in Fig. 6, if D = 2.5, which satisfies D9 = 0.16 < D7 = 0.36 < D2 = 2.41 < D <
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Figure 5: x1 − x2 behaviour for D = 4, sin = 30.

D1 = 3.8, each solution with the initial condition inside the whole domain is converging to the
equilibrium F1, from where only species 1 can survive.
In Fig. 7, if D = 2, which satisfies D8 = 0.09 < D9 = 0.2 < D7 = 0.34 < D = 2 < D3 = 3.33 <
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Figure 6: x1 − x2 behaviour for D = 2.5, sin = 18.75.

D2 = 2.35 < D1 = 3.75, each solution with the initial condition inside the red domain converges to
the equilibrium F2 and each solution with the initial condition inside the blue domain converges to
the equilibrium F3. The competitive exclusion principle is fulfilled here since at least one species
goes extinct.

7.3 Third case

In Fig. 8, if D = 4, which satisfies D2 = 2.55 < D1 = 3.91 < D = 4, each solution with the initial
condition inside the whole domain is converging to the equilibrium F0, from where the extinction
of the two species.
However, in Fig. 9, if D = 2.5, which satisfies D2 = 2.49 < D < D1 = 3.86, each solution with

the initial condition inside the whole domain is converging to the equilibrium F3, from where only
species 1 can survive.
In Fig. 10, if D = 1.2, which satisfies D6 = 0.23 < D = 1.2 < D2 = 2.32 < D3 = 3.53 < D1 =

3.72, each solution with the initial condition inside the red domain converges to the equilibrium F2

and each solution with the initial condition inside the blue domain converges to the equilibrium
F3. The competitive exclusion principle is fulfilled here since at least one species goes extinct.
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Figure 7: x1 − x2 behaviour for D = 2, sin = 15.
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Figure 8: x1 − x2 behaviour for D = 4, sin = 45.
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Figure 9: x1 − x2 behaviour for D = 2.5, sin = 31.25.

In the case where we have two equilibrium points which are locally stable (Figures 4,7 and 10),
the initial concentrations of species are important in determining which species is the winner. If
the initial concentration is inside the attraction domain of the equilibrium point corresponding to
the persistence of species 1, then species 2 becomes extinct, and if the initial concentration is inside
the attraction domain of the equilibrium point corresponding to the persistence of species 2, then
species 1 becomes extinct.

8 Conclusion

The CEP has been widely studied in the scientific literature. In 1932, Gause conducted experi-
ments on the growth of yeasts and paramecia [10]. He deduced that the most competitive species
consistently wins the competition. In 1960, this principle became quite popular in ecology. In fact,
the CEP is still valid for many kinds of ecosystems [12]. Hsu et al. [15] in 1977, were among the
first to study the problem of competition in a chemostat. They considered n populations in com-
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Figure 10: x1 − x2 behaviour for D = 1.2, sin = 13.5.

petition for the same nutrient and verified the competitive exclusion, namely, that the competitor
which better uses the substrate in small quantities survives, whereas the others are extinguished.

In this paper, we proposed a mathematical model (1) describing a reversible inhibition re-
lationship between two competing bacteria for one resource in the presence of two viruses. We
locally analysed the restriction of system (1) to the attractor set Ω. We proved that in a continu-
ous reactor and under nonlinear general functional responses f1 and f2, the competitive exclusion
principle is still fulfilled with at least one species becoming extinct. Initial species concentrations
are important in determining which is the winning species.

References

[1] S. Alsahafi and S. Woodcock. Mutual inhibition in presence of a virus in continuous culture. Math.
Biosc. Eng. 18 (4) (2021) 3258–3273.

[2] G. J. Butler and G. S. K. Wolkowicz. A mathematical model of the chemostat with a general class of
functions describing nutrient uptake. SIAM J. Appl. Math. 45(1) (1985) 138–151.

[3] M. El Hajji. How can inter-specific interferences explain coexistence or confirm the competitive ex-
clusion principle in a chemostat. Int. J. Biomath. 11 (8) (2018) 1850111.

[4] M. El Hajji, N. Chorfi and M. Jleli. Mathematical modelling and analysis for a three-tiered microbial
food web in a chemostat. Electron. J. Diff. Eqns. 2017(255) (2017) 1–13.

[5] M. El Hajji, N. Chorfi and M. Jleli. Mathematical model for a membrane bioreactor process. Electron.
J. Diff. Eqns. 2015 (315) (2015) 1–7.

[6] M. El Hajji, J. Harmand, H. Chaker and C. Lobry. Association between competition and obligate
mutualism in a chemostat. J. Biol. Dynamics 3 (6) (2009) 635–647.

[7] M. El Hajji, S. Sayari, and A. Zaghdani. Mathematical analysis of an ”SIR” epidemic model in a
continuous reactor - deterministic and probabilistic approaches. J. Korean Math. Soc. 58 (1) (2021)
45–67.

[8] M. El Hajji. Modelling and optimal control for Chikungunya disease. Theory Biosci. 140 (1) (2021)
27–44.

[9] M. El Hajji. Boundedness and asymptotic stability of nonlinear Volterra integro-differential equations
using Lyapunov functional. J. King Saud Univ. Sci. 31 (4) (2019) 1516–1521.

[10] G. F. Gause. Experimental studies on the struggle for existence. J. Experimental Biology 9 (1932)
389–402.

[11] S. R. Hansen, and S. P. Hubbell. Single-nutrient microbial competition: qualitative agreement between
experimental and theoretically forecast outcomes. Science 207 (1980) 1491–1493.

[12] G. Hardin. The competition exclusion principle. Science 131 (1960) 1292–1298.

[13] A. Hurst. Nisin and other inhibitory substances from lactic acid bacteria. In: Antimicrobials in Foods,
Eds. A. L. Branen & P. M. Davidson. Marcel Dekker, New York, 1983, 327–351.

[14] A. Hurst. Nisin: its preservative effect and function in the growth cycle of the producer organism. In:
Streptococci, Eds. F. A. Skinner & L. B. Quesnel. Academic Press, London, 1978, 297–314.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (4) (2021) 337–359 359

[15] S. Hsu, S. Hubbell and P. Waltman. A mathematical theory for single-nutrient competition in con-
tinuous cultures of micro-organisms. SIAM J. Appl. Math. 32 (1977) 366.

[16] B. Li. Global asymptotic behavior of the chemostat: General response functions and different removal
rates. SIAM J. Appl. Math. 59 (2) (1999) 411–422.

[17] H. L. Smith and P. Waltman. Competition for a single limiting resource in continuous culture: The
variable-yield model. SIAM J. Appl. Math. 54(4) (1994) 1113–1131.

[18] H. L. Smith and P. Waltman. The Theory of the Chemostat, Dynamics of Microbial Competition.
Cambridge Studies in Mathematical Biology, Cambridge University Press. 1995.

[19] G. S. K. Wolkowicz and Z. Lu. Global dynamics of a mathematical model of competition in the
chemostat: general response functions and differential death rates. SIAM J. Appl. Math. 52(1) (1992)
222–233.

[20] G. S. K. Wolkowicz and H. Xia. Global asymptotic behavior of a chemostat model with discrete delays.
SIAM J. Appl. Math. 57 (4) (1997) 1019–1043.

[21] G. S. K. Wolkowicz, H. Xia and S. Ruan. Competition in the chemostat: A distributed delay model
and its global asymptotic behavior. SIAM J. Appl. Math. 57 (5) (1997) 1281–1310.


	Introduction
	Mathematical Model and Properties
	Restriction of System (1) to the Invariant Attractor Set 
	First Case :  sin <  30mmD1 
	Second Case :  30mmD1 < sin <  30mmD2 
	Third Case :   30mmD2 <sin <  30mmD1 +  30mmD2 
	Numerical Simulations
	First case
	Second case
	Third case

	Conclusion

