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Abstract: This paper proposes a centralized and decentralized nonlinear model pre-
dictive control (NMPC) for multiple robots in the trajectory tracking problem with
collision avoidance. The kinematic model of mobile robot is employed to implement
these concepts. The path of each robot is constructed such that there exist some in-
tersections between some paths of the robots. Additionally, the initial conditions and
parameters of the model are taken so that the robots will collide on the intersections
of their paths. Based on the simulation results, both centralized and decentralized
schemes can avoid collision between one robot and another one by satisfying the in-
equality constraints. All solutions of the optimization problems in both schemes are
feasible as well, so this indicates that local minimum solutions are found. According
to the simulations, the decentralized scheme is better than the centralized scheme in
terms of the computational complexity and error tracking.

Keywords: nonlinear optimization; multiple robots dynamics; nonlinear model pre-
dictive control; centralized and decentralized schemes.
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1 Introduction

During the last years, the research interests in robotics area have grown exponentially
from some publications (refer to [1–3]), but are not limited to those. Nowadays, to employ
a robot for many kinds of tasks is very common in various fields such as agriculture,
logistics, and even service for some of Covid-19 patients in hospital [4–6]. In those
applications, it is expected that the robot can be navigated in different situations and
environments [7]. The strategy can be done by controlling its position, so that it can
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move from its current position to the final destination. This concept is usually called the
point stabilization control. When the robot has to follow the given path, it is commonly
known as the trajectory tracking.

To address many ways in controlling the robot, several techniques have been im-
plemented such as the PID controller [8], sliding mode control [3], sliding PID [9] and
others. Two mentioned methods specifically do not use multivariable controls, whereas
most robots are a system with multivariable inputs and states usually called the multi-
input-multi-output (MIMO) type. Especially for these cases, we have to design many
controllers for each input and state by assuming a decoupling control. Through this
approach, the system can be treated as the single-input-single-output (SISO) type, so a
single loop controller can be developed as well [10].

One of the controllers having a capability to deal with the MIMO systems is a model
predictive control (MPC). A version of the MPC for nonlinear systems is a nonlinear
model predictive control (NMPC). Because of its ability to handle the limitation of a
system, this controller becomes the most popular control method in some sectors such
as chemical processes [11], autonomous vehicles [12], and others. As time goes by, the
NMPC was also implemented for multi-object systems. Some approaches were proposed,
namely, centralized [13], decentralized [14,15], and distributed [13]. Based on the previous
study, in this paper, we implement the centralized and decentralized scheme-based NMPC
in trajectory tracking, where each path of the robots has some intersections. The aim
is to examine our proposed method by defining collision avoidance constraint in the
optimization problem of NMPC.

This paper is constructed as follows. The kinematic model of nonholonomic robots in
terms of a MIMO system is defined in Section 2. Next, Section 3 explains the centralized
and decentralized scheme-based NMPC for multi-agent systems. In this section, the
collision avoidance constraint is defined to avoid collision among the robots. Then,
Section 4 contains some discussions based on our simulation results. Lastly, Section 5 is
the conclusion and development of the future research.

2 Kinematic Model of Mobile Robot

Kinematics is the fundamental study that learns about how an object can move from one
position to other positions without considering the forces working on the object. In order
to design mobile robots for some purpose, it is essential to understand the mechanical
behavior of a robot [16]. The behavior of a mobile robot can be expressed in the following
mathematical model [16]:

ẋ = v cosψ,

ẏ = v sinψ, (1)

ψ̇ = ω,

where (x, y) represents the position of a mobile robot in the X-axis and Y-axis, respec-
tively, ψ is the heading angle of a mobile robot, v and ω, respectively, denote the linear
and angular velocity.

Model (1) is a nonlinear system and it can be written in a state space form as follows:

χ̇ = f(χ,u), (2)
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where χ = [x, y, ψ]
T

denotes the state variables and u = [v, ω]
T

indicates the input or
control variables for the system. Equation (2) is a continuous-time system, so it can be
converted into a discrete-time system using a discretization method. Based on the Euler
approach, equation (2) is stated as

χ(k + 1) = χ(k) + Tsf(χ(k),u(k)), (3)

where Ts is the sampling time used to transform the continuous-time system into a
discrete-time system.

3 Nonlinear Model Predictive Control

The NMPC is an optimization-based method for nonlinear systems [17]. Generally, the
difference between the MPC and the NMPC lies in their systems. However, it is not
limited to those, since the MPC can be implemented on the nonlinear systems by using
the linearization method around operating points (refer to [18]).The idea of the NMPC is
to predict the future system behavior by utilizing the model (3). The aim of the NMPC
is to minimize an objective function subject to its constraints, so it is possible to obtain
the optimal inputs along the prediction horizon.

Assuming that the prediction horizon is equal to the control horizon at every discrete-
time k, the optimization formula of the NMPC can be written as follows:

VN (k) =

N∑
i=1

‖ri(k)− ŷi(k)‖2Q + ‖ui−1(k)‖2R (4)

subject to

χi+1(k) = fd(χi(k),ui(k)), i = 0, 1, · · · , N − 1,

ŷi(k) = g(χi(k)), i = 1, 2, · · · , N,
χ0(k) = χ(k),

χmin ≤ χi(k) ≤ χmax, i = 0, 1, · · · , N,
umin ≤ ui(k) ≤ umax, i = 0, 1, · · · , N − 1,

where VN is a quadratic cost function, N is the prediction horizon, Q and R are the
weighting matrices being positive semi-definite and positive definite, where their sizes are
appropriate to the dimension of outputs and inputs, r is the reference or desired value,
ŷ is the predicted outputs of the system, χmin, χmax, umin, umax are the lower and
upper bounds for the states and inputs, respectively, and the notation in (4) is given as
follows:

‖ri(k)− ŷi(k)‖2Q = [ri(k)− ŷi(k)]
T
Q [ri(k)− ŷi(k)] ,

‖ui−1(k)‖2R = (ui−1(k))
T
Rui−1(k).

By solving the optimization problem (4), we obtain a sequence of optimal inputs
{u∗

0(k),u∗
1(k), · · · ,u∗

N−1(k)}, but only the first element of the sequence, i.e., u∗
0(k), is

injected to the system.
To implement the NMPC for multi-robot systems, it is important to formulate the

constraints appropriately to avoid collision among the agents. The following approach is
used to manifest the concept.
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Collision avoidance among the robots: to ensure safety during the trajectory execu-
tion, it is necessary to formulate the following inequality constraints using the Euclidean
distance in optimization problem (4). By considering the discrete system for each pre-
diction window, we define the constraint as follows:√

(xji (k)− xli(k))2 + (yji (k)− yli(k))2 ≥ 1

2
(rjd + rld), j 6= l,

∀j, l = 1, 2, · · · , Nr, ∀i = 0, 1, · · · , N, (5)

where (xi(k), yi(k)) is the position of robots at time k, rd is the diameter of robots, Nr
represents the number of robots, and the superscript denotes the robot index.

To design the NMPC controller for multiple robots, some schemes that can be utilized
are the centralized and decentralized schemes. The explanation about the schemes is
discussed in the following subsection.

3.1 Centralized NMPC

The centralized scheme is a classical control scheme, where the whole system is controlled
by one controller [13]. Since we treat all robots as a single entity, the system can be
written as a large-scale system as follows:

χ̄(k + 1) =


f1
d(χ

1(k),u1(k))

f2
d(χ

2(k),u2(k))
...

fNr

d (χNr (k),uNr (k))

 = f̄d(χ̄(k), ū(k)), (6)

where the state and input variables are defined as χ̄(k) = [χ1(k),χ2(k), · · · ,χNr (k)]T

and ū(k) = [u1(k),u2(k), · · · ,uNr (k)]T , respectively. These changes also influence the
formula of objective function and constraints for our optimization problem. The new
objective function and constraints can be stated as

V̄N (k) =

N∑
i=1

∥∥r̄i(k)− ¯̂yi(k)
∥∥2
Q̄

+ ‖ūi−1(k)‖2R̄ (7)

subject to

χ̄i+1(k) = f̄d(χ̄i(k), ūi(k)), i = 0, 1, · · · , N − 1,

¯̂yi(k) = ḡ(χ̄i(k)), i = 1, 2, · · · , N,
χ̄0(k) = χ̄(k),

χ̄min ≤ χ̄i(k) ≤ χ̄max, i = 0, 1, · · · , N,
ūmin ≤ ūi(k) ≤ ūmax, i = 0, 1, · · · , N − 1,√

(xji (k)− xli(k))2 + (yji (k)− yli(k))2 ≥ 1

2
(rjd + rld), j 6= l,∀j, l = 1, 2, · · · , Nr,

∀i = 0, 1, · · · , N,

where r̄(k) = [r1(k), · · · , rNr (k)]T , ¯̂y(k) = [ŷ1(k), · · · , ŷNr (k)]T and the weighting ma-
trices Q̄ and R̄ are defined as Q̄ = diag(Q,Q, · · · ,Q) and R̄ = diag(R,R, · · · ,R) with
respect to the size of ¯̂y and ū, respectively.

At each sampling time, Algorithm 3.1 is used to obtain the optimal input in the case
of the centralized NMPC scheme.
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Algorithm 3.1 The Centralized NMPC for Multi-Agent Systems.

1: Predict future outputs ¯̂yi(k), i = 1, 2, · · · , N , as a function of future inputs ūi(k),
i = 0, 1, · · · , N − 1, using the current states χ̄(k).

2: Solve the optimization problem (7) using a fmincon MATLAB function by
utilizing an anonymous function to obtain the sequence of optimal inputs
{ū0(k), ū1(k), · · · , ūN−1(k)}.

3: Only the first element of the optimal input sequence ū0(k) is applied to the systems
by extracting it into {u1

0(k),u2
0(k), · · · ,uNr

0 (k)} for each system.

4: Save the data and update the current states.

5: At time-k + 1, repeat step 1.

The drawback of this scheme is the computational complexity that grows significantly
when the number of agents increases, so it is not suitable for the case with too many
agents. Next, the alternative scheme will be presented to control multi-agent systems.

3.2 Decentralized NMPC

In this architecture, the optimization problem is solved in parallel, i.e., each robot solves
the optimization separately [15]. As in (5), to avoid collision among robots, each opti-
mizer needs other robots’ future states information. By using communication, this study
assumes that all robots can share required information such as the current states and
optimal inputs over the prediction horizon in the previous calculation at every sampling
time [14]. If the communication is failed, the current and one-step previous states are
used by each optimizer to estimate the last input commands of other robots, then it
is used to predict other robots’ future state information by reduplicating it over the
prediction horizon [15]. The illustration of this method can be seen in [13, 15]. In the
decentralized control, there are multiple NMPCs for each robot. Algorithm 3.2 shows
the process to obtain the sequence of optimal inputs for each agent by using information
from other agents.

Algorithm 3.2 The Decentralized NMPC for Multi-Agent Systems.

1: Guess the suitable initial inputs over the prediction horizon to check the inequality
constraints (5) for collision avoidance by using current states information from
other agents via communication.

2: Predict future outputs ŷji (k), i = 1, 2, · · · , N , as a function of future inputs uji (k),
i = 0, 1, · · · , N − 1, using the current states χj(k) for the j-th agent.

3: Solve the optimization problem (4) by adding (5) for every agent using fmincon
MATLAB by utilizing an anonymous function to obtain a sequence of optimal
inputs {uj0(k),uj1(k), · · · ,ujN−1(k)}.

4: Only the first element of the optimal input sequence uj0(k) is applied to the system
of the j-th agent.

5: Save the data and update the current states.
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6: At time-k + 1, the obtained optimal input over the prediction horizon from (3)
and updated current states are needed to check the inequality constraints by other
agents via communication.

7: Repeat step 2.

Algorithm 3.2 is used by every agent to obtain its optimal inputs. This scheme is
more efficient than the centralized one w.r.t both computational time and control design.

4 Simulation Results and Discussion

In this paper, both centralized and decentralized NMPC use the same prediction horizon
N and sampling time Ts. The weighting matrices in the objective function and simulation

time for each robot are given by Q =

[
1 0
0 1

]
, R =

[
0.5 0
0 0.5

]
and tend = 400 s. The

initial conditions and references of all simulations are shown in Table 1, the diameter of
all robots is assumed 0.3 m and the upper and lower bounds of the inputs are defined as
v ∈ [−0.6, 0.6] for linear velocity and for angular velocity ω ∈ [−π4 ,

π
4 ], respectively.

Table 1: The initial conditions and references of each robot.

Robot Initial conditions References
xref (t) yref (t)

1 [−2, 3.5, 0]T −1 + 2 sin(0.02t) 1 + 2 cos(0.02t)
2 [−2,−3.5, 0]T −1 + 2 sin(0.02t) −1− 2 cos(0.02t)
3 [2, 3.5, π]T 1− 2 sin(0.02t) 1 + 2 cos(0.02t)
4 [2,−3.5, π]T 1− 2 sin(0.02t) −1− 2 cos(0.02t)

All simulations are performed in MATLAB 2019b on a computer with 8GB RAM
and a core i5-1035G4. For the first running simulation, we use Ts = 0.5 s and N = 8
(equal to 4 s) with the initial conditions as in Table 1. The simulation result of the
centralized scheme to follow the specified references can be seen in Figure 1 while for the
decentralized scheme it is shown in Figure 2.

Figures 1 and 2 show all robots can follow their references using both centralized
and decentralized schemes from the initial conditions of each robot. The tracking errors
of each robot are caused by avoiding the collision among them, so these results are
appropriate to our desire. From the figures, we can see the decentralized scheme is better
than the centralized one if it is seen from the tracking error between their trajectories
and references. The intersections among references are constructed to verify whether the
proposed approach through the algorithms can work perfectly.

To ensure that the inequality constraints for collision avoidance are satisfied by each
robot, we show the distance between one robot and other robots. The results of our
simulation about this idea are presented in Figures 3 and 4 for each proposed scheme.

In Figures 3 and 4, the requested minimum distance so that the collision does not
occur is a half of the total diameter of each robot, i.e., 0.3 m. The symbol of Djl(k)
represents the distance between the i-th and j-th robot at time k computed by the
following formula:

Djl(k) =
√

(xj(k)− xl(k))2 + (yj(k)− yl(k))2, j 6= l, j, l = 1, 2, 3, 4.
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Figure 1: Trajectory Tracking for Each Robot using the Centralized NMPC.
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Figure 2: Trajectory Tracking for Each Robot using the Decentralized NMPC.
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Figure 3: The Distance Between One Robot and Other Robots Based on the Centralized
Scheme.
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Figure 4: The Distance Between One Robot and Other Robots Based on the Decentralized
Scheme.
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Based on Figures 3 and 4, it can be seen that the distance among the robots satisfies
the safe distance to avoid collision. It can be realized since we defined inequality con-
straint (5) in our optimization problem based on the NMPC approach at every discrete-
time k. The optimal inputs of each robot shown in Figures 5 and 6 also satisfy the lower
and upper bounds that we defined previously. This indicates that the solutions of our
optimization problem are feasible at every discrete-time k. Figures 5 and 6 also inform
that the NMPC tries to keep the inputs to be convergent to 0 in order to minimize costs
when the robots move away from each other.

To compare the computational time for the centralized and decentralized schemes,
the different groups of prediction horizon and sampling time (N,Ts) are shown in Table
2. This is used to show which method is more effective to control and guide all robots
in order that they are on their trajectories.

Table 2: Parameters for different simulations.

Parameters Scenario 1 Scenario 2
Prediction horizon (N) 5 8

Sampling time (Ts) 1 s 0.5 s

Based on Table 2, the complexity of computational time for both proposed schemes in
the case of controlling 4 robots can be investigated. The results of this idea are presented
in Table 3.

Table 3: The computational time between the centralized and decentralized schemes.

Scenario Centralized Decentralized
1 59.7629 s 39.3990 s
2 244.6630 s 184.7699 s

Based on Table 3, it is clear that the increase of prediction horizon implies the increase
of computational time for both centralized and decentralized schemes. The suggestion
of this issue is needed to choose an appropriate prediction horizon and sampling time to
reduce the complexity time while satisfying a desired performance. Table 3 also gives an
information that the decentralized scheme is more effective than the centralized one in
terms of computational time since the decentralized scheme provides fast computational
time with good performance as shown in the previous simulation in Figures 2 and 4.

5 Conclusion

In this study, two different schemes are proposed, namely, a centralized and decentralized
NMPC to control multi-robot systems. These schemes are implemented for the trajectory
tracking problem where there are some intersections among the robot paths. Based on our
simulation, both schemes give satisfying results as all robots can follow their references
without a collision between one robot and another robot. In addition, the distance
between one robot and another robot is greater than or equal to the safe distance, so this
ensures that all robots can avoid collision between each other. For control inputs, the
NMPC also guarantees that the actuator saturation limits are satisfied. In our simulation,
it can be concluded that the decentralized scheme is better than the centralized scheme.
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Figure 5: The Control Inputs of Each Robot Based on the Centralized Scheme.
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Figure 6: The Control Inputs of Each Robot Based on the Decentralized Scheme.
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This is shown in the computational complexity that gives the fast computational time
as the prediction horizon increases. For the future research, we will include disturbance
and consider some obstacles in the more complex cases such as unmanned aerial vehicles
(UAVs) and autonomous surface vehicles (ASVs).
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