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Abstract: In this work, we study the dynamics of a fractional-order Selkov model,
which is a classical mathematical model describing glycolysis, and its corresponding
discretized version. First, non-negativity, existence and uniqueness of the solution for
the model are discussed. We also investigate the local stability and the existence of
a Hopf bifurcation. The discrete fractional-order model is shown to exhibit very rich
behaviors and when considering the step size as a control parameter, a flip bifurcation,
Neimark-Sacker bifurcation and chaos are obtained. Finally, numerical simulations
are carried out to verify the correctness of the theoretical results obtained.
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1 Introduction

Glycolysis is the first step in the breakdown of glucose to extract energy for cellular
metabolism, it is present in nearly all living organisms. After many years of experimental
observations, Higgins [1] was the first to use mathematical modelling to understand the
process, he presented a model to explain sustained oscillations in the yeast glycolytic
system. His model, however, has no limit cycle for those values of its parameters with
which self oscillations are observed experimentally. In 1968, Selkov [2] introduced an
alternative mathematical model able to well reproduce the glycolytic oscillations in yeast,
it was shown that the Selkov model exhibits a Hopf bifurcation and thus there exist
parameter values for which it has a periodic solution. This model has sparked a number
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of further complementary studies. Results on the uniqueness and global attractivity of
the glycolytic oscillations were obtained by d’Onofrio [3]. Verveyko et al. [4] studied
the influence of periodic influx of glycolytic oscillations within the forced Selkov system,
in this work the quasi-periodic oscillations and chaos were obtained. In [5], several
properties of the dynamics of the solutions of the model were established, an analysis
of the Poincaré compactification of the system was given to study unbounded solutions.
Artés et al. [6] described the global dynamics in the Poincaré disc of the Selkov and
Higgins-Selkov models.

On the other hand, fractional calculus, defined as a generalisation of ordinary dif-
ferentiation and integration to arbitrary non-integer order, has ganed a considerable
importance during the past four decades and longer due to its use in many fields in
natural science and engineering applications such as neurons [7], finance systems [8, 9],
biological systems [10,11], chemical systems [12], nuclear magnetic resonance [13] and so
on. The main advantage of fractional-order differential equation models is that they are
naturally related to systems with memory, which exist in most biological systems, and
it allows greater degree of freedom than integer-order systems. Moreover, it was shown
that the stability region of the fractional-order models is greater than the stability region
of the integer-order ones.

In this paper, we investigate the dynamic behaviors of the fractional-order Selkov
model and its corresponding discretized version. First, we prove different mathematical
results such as non-negativity, existence and uniqueness of the solution for the model. We
also study the local stability of the unique equilibrium point and the existence of a Hopf
bifurcation. We implement a predictor-corrector scheme to do numerical simulations
and to illustrate our analytical findings. The discrete fractional-order model is shown to
exhibit very rich behaviors. A flip bifurcation, Neimark-Sacker bifurcation and chaos are
obtained.

2 Description of the Model

In [2], Selkov proposed the following simplified system:

dx

dt
= 1− xyγ ,

dy

dt
= αy

(
xyγ−1 − 1

) (1)

with the initial conditions x(0) > 0, y(0) > 0. The quantities x(t) and y(t) repre-
sent dimensionless concentrations of ATP and ADP at time t, respectively, while t is a
dimensionless time variable. γ > 1 is the stoichiometric parameter of the reaction

γADP + FF ↔ P,

the parameter α is a positive real number.
Selkov showed that the above planar system has only one equilibrium E = (1, 1) in a

finite part of the (x, y) phase plane, the characteristic equation in the neighbourhood of
E is ∣∣∣∣ −1− λ −γ

α α(γ − 1)− λ

∣∣∣∣ = 0,

its roots are

λ1,2 =
1

2
{α(γ − 1)− 1±

√
[α(γ − 1)− 1]2 − 4α}.
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Then E is a stable node at 0 < α ≤ α1, a stable focus at α1 < α < α0, an unstable focus
at α0 < α < α2 and an unstable node at α2 ≤ α <∞,
where

α0 =
1

γ − 1
and α1,2 =

(√
γ ± 1

γ − 1

)2

, (α1 < α2). (2)

Moreover, if we consider the real part of the eigenvalues as a function of α, then it passes
through zero when α = α0 and its derivative with respect to α at that point is non-zero.
Thus a Hopf bifurcation occurs. The first Lyapunov number σ of the bifurcation is found

to be σ = −3π(γ − 1)
1
2

4
(γ2(γ− 1) + 1) < 0. Thus the Hopf bifurcation is non-degenerate

and supercritical [5].

Remark 2.1 Selkov showed that the investigation of system (1) in infinity by means
of the Poincaré transformations [14] provides that this system has, in a positive quadrant
of infinity, two more equilibrium states: E1 = (∞, 0) and E2 = (0,∞), which explains
that some orbits may be unbounded. Here, we will consider only the equilibrium E =
(1, 1) in a finite part of the (x, y) phase plane.

The system considered in what follows is

c
0D

q
tx = 1− xyγ ,

c
0D

q
t y = αy

(
xyγ−1 − 1

)
,

(3)

where c
0D

q
t is the Caputo fractional derivative with the fractional order q (0 < q ≤ 1).

The main advantage of Caputo’s approach is that the initial conditions for the fractional
differential equations with Caputo derivatives take the similar form as for the integer-
order differential equations. We therefore study the system (3) with the same initial
conditions x(0) > 0, y(0) > 0 as in (1).

3 Non-Negativity, Existence and Uniqueness

Since x and y are the concentrations of ATP and ADP in living cells, respectively, we
are only interested in solutions that are non-negative. To prove the non-negativity of our
system, we shall use the following results.

Lemma 3.1 [15] Suppose that x(t) ∈ C[a, b] and Dq
ax(t) ∈ C(a, b] with 0 < q ≤ 1.

The Generalized Mean Value Theorem states that

x(t) = x(a) +
1

Γ(q)
(Dq

ax)(ξ).(t− a)q,

where a ≤ ξ ≤ t, ∀t ∈ (a, b].

Corollary 3.1 [15] Suppose that x(t) ∈ C[a, b] and c
t0D

q
ax(t) ∈ C(a, b] with 0 < q ≤

1. Then the following conditions hold:

1. If c
t0D

q
ax(t) ≥ 0, ∀t ∈ (a, b), then x(t) is a non-decreasing function for each

t ∈ [a, b].

2. If c
t0D

q
ax(t) ≤ 0, ∀t ∈ (a, b), then x(t) is a non-increasing function for each

t ∈ [a, b].
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We can now state the following theorem.

Theorem 3.1 All solutions of system (3) with the initial conditions x(0) ≥ 0 and
y(0) ≥ 0 are non-negative.

Proof. We will proof that x(t) ≥ 0 for all t ≥ 0. Suppose that the statement is not
true, then there is a constant t1 > 0 such that

x(t) > 0, 0 ≤ t < t1,
x(t1) = 0,
x(t+1 ) < 0.

(4)

Substituting the second equation of system (4) into the first equation of (3) gives

c
0D

q
tx(t)|t=t1 = 1. (5)

According to Corollary 3.1 we have x(t+1 ) ≥ 0, which contradicts the fact that x(t+1 ) < 0.
Therefore, we have x(t) ≥ 0, ∀t ≥ 0. Using the same argument we show that y(t) ≥
0, ∀t ≥ 0. 2

Now, we study the existence and uniqueness of the solution of our system (3).We
have the following lemma due to [16].

Lemma 3.2 Consider the system

c
t0D

q
tx(t) = f(t, x), t > t0,

with the initial condition xt0 , where 0 ≤ q ≤ 1, f : [t0,∞) × Ω → Rn, Ω ⊂ Rn.
If f(t, x) satisfies the locally Lipschitz condition with respect to x, then there exists a
unique solution of the above system on [t0,∞)× Ω.

We also need to use the following technical lemma.

Lemma 3.3 Let x and y be two positive real numbers and γ ≥ 1, then

|xγ − yγ | ≤ γ(sup(x, y))γ−1|x− y|.

Theorem 3.2 We consider system (3) with the initial conditions x(0) = x0 and
y(0) = y0 in the region [0,∞) × Ω, where Ω = {(x, y) ∈ R2/max{|x|, |y|} ≤ M} for
sufficiently large M . This initial value problem has a unique solution.

Proof. Let us define the functions f1(x, y) = 1− xyγ and f2(x, y) = αy(xyγ−1 − 1).
Further, we define F = (f1, f2)T and X = (x, y)T , then the differential equation can be
written as c

0D
q
tX = F (X).

We show that the function F : Ω → R2 is locally Lipschitz. Denote X1 = (x1, y1) and
X2 = (x2, y2). Then for any X1, X2 ∈ Ω we have

‖F (X1)− F (X2)‖ = |f1(x1, y1)− f1(x2, y2)|+ |f2(x1, y1)− f2(x2, y2)|
= |x1yγ1 − x2y

γ
2 |+ α|x1yγ1 − x2y

γ
2 − y1 + y2|

≤ (1 + α)|x1yγ1 − x2y
γ
2 |+ α|y1 − y2|,

noticing that

|x1yγ1 − x2y
γ
2 | =

1

2
[(x1 − x2)(yγ1 + yγ2 ) + (x1 + x2)(yγ1 − y

γ
2 )]
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and using the triangle inequality and Lemma 3.3 we have

‖F (X1)− F (X2)‖ ≤

≤ 1 + α

2
[|x1 − x2||yγ1 + yγ2 |+ |x1 + x2||yγ1 − y

γ
2 |] + α|y1 − y2|

≤ 1 + α

2

[
|x1 − x2||yγ1 + yγ2 |+ γ(sup(y1, y2))γ−1|x1 + x2||y1 − y2|

]
+ α|y1 − y2|

≤ (1 + α)Mγ |x1 − x2|+ ((1 + α)γMγ + α)|y1 − y2|
≤ L‖X1 −X2‖,

where L = (1 + α)γMγ + α. Thus F (X) satisfies the Lipschitz condition with respect
to X, following Lemma 3.2 , there exists a unique solution X(t) of system (3) with the
initial condition X(0) = (x(0), y(0)). 2

4 Local Stability and Hopf Bifurcation

The system (3) has only one equilibrium state E with coordinates x̄ = ȳ = 1. Linearising
the system about this point leads to the Jacobian matrix

J =

[
−1 −γ
α α(γ − 1)

]
,

the characteristic equation is then∣∣∣∣ −1− λ −γ
α α(γ − 1)− λ

∣∣∣∣ = 0,

its roots are

λ1,2 =
1

2
{α(γ − 1)− 1±

√
[α(γ − 1)− 1]2 − 4α}.

The system (3) is said to be locally asymptotically stable [17] around the equilibrium
point (x̄, ȳ) if

| arg(λi)| >
qπ

2
, i = 1, 2.

Hence it follows that

• If 0 < α ≤ α1: λ1,2 are real negative eigenvalues, E is asymptotically stable for all
q ∈ (0, 1].

• If α1 < α < α2: λ1,2 are complex conjugate eigenvalues, E is asymptotically stable

if and only if | arg(λ1,2)| > qπ

2
, that is, 0 < q < q∗, where

q∗ =
2

π

∣∣∣∣∣arctan

√
4α

[α(γ − 1)− 1]2
− 1

∣∣∣∣∣ .
• If α ≥ α2 λ1,2 are real positive eigenvalues, E is unstable for all q ∈ (0, 1],

where α0, α1 and α2 are defined as in (2).
Stability region of the fractional-order Selkov model for γ = 2 in the (α− q) plane is

shown in Fig. 1. The stable and unstable regions are separated by the curve of equation
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Figure 1: Stability region of the fractional-order Selkov model for γ = 2.

q(α) =
2

π

∣∣∣∣arctan

√
4α

[α(γ − 1)− 1]2
− 1

∣∣∣∣ . A Hopf bifurcation occurs when the system has

a pair of complex conjugate eigenvalues of the Jacobian matrix at an equilibrium point
and when the stability of the equilibrium point changes from stable to unstable as the
bifurcation parameter crosses a critical value. From the results of local stability, we
observe that the order of derivatives has an effect on the stability of model (3). Thus,
we can choose the order to be the bifurcation parameter. There are some studies that
considered the existence of the Hopf bifurcations in fractional-order systems [18–20]. In
this study, we use the conditions for the existence of a Hopf bifurcation which were
introduced by Xiang Li and Ranchao Wu [20].

Theorem 4.1 [20] When the bifurcation parameter q passes through the critical
value q∗ ∈ (0, 1), fractional-order system (3) undergoes a Hopf bifurcation at the equilib-
rium point if the following conditions hold:

(a) the Jacobian matrix of the system (3) at the equilibrium point has a pair of complex
conjugate eigenvalues λ1,2, where Re(λ1,2) > 0;

(b) m(q∗) = 0, where m(q) =
qπ

2
− min

1≤i≤2
| arg(λi)|;

(c)
dm(q)

dq

∣∣∣∣
q=q∗

6= 0.

If α0 < α < α2, then the Jacobian matrix of the system (3) at the equilibrium point
has a pair of complex conjugate eigenvalues λ1,2, where Re(λ1,2) > 0. Hence, condition
(a) in Theorem 4.1 holds. Moreover, when the bifurcation parameter takes the critical
value q = q∗, we obtain m(q∗) = 0 which is the condition (b) of the theorem.

Finally, from the definition of m(q), we have
dm(q)

dq

∣∣∣∣
q=q∗

=
π

2
6= 0. This implies that

condition (c) holds. Therefore, from Theorem 4.1 model (3) undergoes a Hopf bifurcation
at the equilibrium point E = (1, 1) when the bifurcation parameter passes through the
critical value q∗, where α0 < α < α2.



252 T. HOUMOR, H. ZERIMECHE AND A. BERKANE

Figure 2: The Hopf bifurcation curve q = q∗ separates the stability region of E into the stable
and unstable regions for γ = 2 and α0 < α < α2.

Remark 4.1 An important difference between the Hopf bifurcation in the integer-
and the fractional-order system is that in the integer-order system the limit cycle can be
a solution for this system, but in the fractional-order system, the limit cycle can not be
a solution of the system and the trajectories approach a limit cycle. In [21], the authors
proved that there are no periodic solutions in fractional-order systems. Thus, there is no
self-sustained solutions in the fractional-order Selkov model.

5 Discretized Fractional-Order Selkov Model and Its Analysis

In this section, we investigate some dynamical behavior of the discretized fractional-order
Selkov system (3). The discretization process can be done in the following manner [22,23].
Assume that x(0) = x0 and y(0) = y0 are the initial conditions of system (3). The
discretization with a piecewise constant argument is given as

c
0D

q
tx = 1− x([t/s]s)yγ([t/s]s),

c
0D

q
t y = αy([t/s]s)

(
x([t/s]s)yγ−1([t/s]s)− 1

)
.

(6)

We suppose that t ∈ [0, s), hence t/s ∈ [0, 1). So, we have

c
0D

q
tx = 1− x0yγ0 ,

c
0D

q
t y = αy0

(
x0y

γ−1
0 − 1

)
,

(7)

whose solution becomes

x1(t) = x0 + Iq0 (1− x0yγ0 ) ,

= x0 +
tq

qΓ(q)
(1− x0yγ0 ) ,

y1(t) = y0 + Iq0

(
αy0

(
x0y

γ−1
0 − 1

))
,

= y0 +
tq

qΓ(q)

(
αy0

(
x0y

γ−1
0 − 1

))
,

(8)
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where Iq0 =
1

Γ(q)

∫ t

0

(t− τ)q−1dτ, q > 0.

In the second step, we assume t ∈ [s, 2s) so that t/s ∈ [1, 2) and obtain

c
0D

q
tx = 1− x(s)yγ(s),

c
0D

q
t y = αy(s)

(
x(s)yγ−1(s)− 1

)
.

(9)

The solution of this equation is

x2(t) = x1(s) + Iqs (1− x1(s)yγ1 (s)) ,

= x1(s) +
(t− s)q

qΓ(q)
(1− x1(s)yγ1 (s)) ,

y2(t) = y1(s) + Iqs

(
αy1(s)

(
x1(s)yγ−1

1 (s)− 1
))

,

= y1(s) +
(t− s)q

qΓ(q)

(
αy1(s)

(
x1(s)yγ−1

1 (s)− 1
))

,

(10)

where Iqs =
1

Γ(q)

∫ t

s

(t− τ)q−1dτ, q > 0.

Repeating the discretization process n times, we have

xn+1(t) = xn(ns) +
(t− ns)q

qΓ(q)
(1− xn(ns)yγn(ns)) ,

yn+1(t) = yn(ns) +
(t− ns)q

qΓ(q)(
αyn(ns)

(
xn(ns)yγ−1

n (ns)− 1
))
,

(11)

where t ∈ [ns, (n + 1)s). Making t → (n + 1)s, we obtain the corresponding fractional
discrete model of the continuous fractional model (3) as

xn+1 = xn +
sq

qΓ(q)
(1− xnyγn) ,

yn+1 = yn +
sq

qΓ(q)

(
αyn

(
xny

γ−1
n − 1

))
.

(12)

It should be noticed that if the fractional parameter q converges to one in equation (12),
we have the forward Euler discretization of system (3).

5.1 Stability of the fixed point of the discretized system

In this subsection, we study the asymptotic stability of the fixed points of the model
(12). By solving the equations xn+1 = xn = x and yn+1 = yn = y, we can easily find
that (12) has the same unique fixed point as in the fractional-order system (3) given by
E = (1, 1) for every parameter value α and step size s. To investigate the stability of the
fixed point of model (12), we need the following lemma [24].

Lemma 5.1 Let F (λ) = λ2 − Trλ+Det. Suppose that F (1) > 0, λ1 and λ2 are the
two roots of F (λ). Then

(i) |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and Det < 1.

(ii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1 ) if and only if F (−1) < 0.
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(iii) |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and Det > 1.

(vi) λ1 = −1 and λ2 6= 1 if and only if F (−1) = 0 and Tr 6= 0, 2.

(v) λ1 and λ2 are complex and |λ1| = |λ2| if and only if Tr2 − 4Det < 0 and Det = 1.

To distinguish between the different topological types for the fixed point E, we need
the following lemma [25].

Lemma 5.2 (i) A fixed point E is called a sink if |λ1| < 1 and |λ2| < 1, so the
sink is locally asymptotically stable.

(ii) A fixed point E is called a source if |λ1| > 1 and |λ2| > 1, so the source is locally
unstable.

(iii) A fixed point E is called a saddle if |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1),
the saddle is locally unstable.

(iv) A fixed point E is called non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

Theorem 5.1 For all 0 < q ≤ 1 we have the following results:

• If 0 < α ≤ α1, then the fixed point E is a sink if 0 < s < s1, a saddle point if
s1 < s < s2, and a source if s ≥ s2.

• If α1 < α < α0, then the fixed point E is a sink if 0 < s < s0, non-hyperbolic if
s = s0, and a source if s > s0.

• If α ≥ α0, then the fixed point E is a source for all s > 0,

where

s0 =

[
qΓ(q)

α
(1− α(γ − 1))

]1/q
s1,2 =

[
qΓ(q)

α

(
(1− α(γ − 1))±

√
(α(γ − 1)− 1)2 − 4α

)]1/q
, s1 < s2.

Proof. The Jacobian matrix of system (12) at the fixed point E is

J∗ =

 1− sq

qΓ(q)
−γ sq

qΓ(q)

α
sq

qΓ(q)
1 + α(γ − 1)

sq

qΓ(q)

 .
The characteristic equation of the Jacobian matrix can be written as

λ2 − Trλ+Det = 0,

where Tr is the trace and Det is the determinant of the Jacobian matrix J∗, they are
given as

Tr = 2 +
sq

qΓ(q)
(α(γ − 1)− 1) ,

Det = 1 +
sq

qΓ(q)
(α(γ − 1)− 1) + α

(
sq

qΓ(q)

)2

.
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α 0 α1 α0 α2

Selkov Stable Stable Unstable Unstable

model Node Focus Focus Node

FO Selkov LA Stable LA Stable iff Unstable

model ∀q ∈ (0, 1] 0 < q < q∗ ∀q ∈ (0, 1]

a Sink for 0 < s < s1 a Sink for s < s0 a Source ∀s > 0

Discritized

FO Selkov a Saddle for s1 < s < s2 a Source for s > s0 ∀q ∈ (0, 1]

model

a Source for s ≥ s2 ∀q ∈ (0, 1]

∀q ∈ (0, 1]

Table 1: Comparison of dynamical behaviors of the Selkov model (1) with its corresponding
fractional-order system (3) and discretized fractional-order system (12).

Hence, the eigenvalues are

λ1,2 = 1 +
sq

2qΓ(q)

(
α(γ − 1)− 1±

√
(α(γ − 1)− 1)2 − 4α

)
.

We have

F (1) = α

(
sq

qΓ(q)

)2

> 0, for all α > 0, s > 0,

and

F (−1) = 4 + 2
sq

qΓ(q)
(α(γ − 1)− 1) + α

(
sq

qΓ(q)

)2

.

Applying Lemma 5.1 with some algebraic manipulations, one can obtain the results. 2 A
comparison table on dynamical behaviors of the Selkov model (1) with its corresponding
fractional-order system (3) and discretized fractional-order system (12) has been given
in Table 1.

5.2 Bifurcation analysis

The necessary and sufficient conditions ensuring that |λ1| < 1 and |λ2| < 2 are

F (1) > 0, F (−1) > 0 and Det > 1.

The violation of one of these conditions, with the other two being simultaneously fulfilled
leads to:

(i) a fold or transcritical bifurcation (a real eigenvalue that passes through +1). This
local bifurcation leads to the stability switching between two different steady states;
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(ii) a flip bifurcation (a real eigenvalue that passes through -1). This local bifurcation
entails the birth of a period 2-cycle;

(iii) a Neimark-Sacker bifurcation (i.e., the modulus of a complex eigenvalue pair that
passes through 1). This local bifurcation implies the birth of an invariant curve
in the phase plane. The Neimark-Sacker bifurcation is considered to be equivalent
to the Hopf bifurcation in continuous time and is indeed the major instrument to
prove the existence of quasi-periodic orbits for the map.

In [25], the author presents a complete study of the main types of bifurcations for two-
dimensional maps.

Now, we study the bifurcation types of the fixed point E.

Theorem 5.2 The fixed point E loses its stability

(i) via a flip bifurcation when 0 < α ≤ α1 and s = s1.

(ii) via a Neimark-Sacker bifurcation when α1 < α < α0 and s = s0.

Proof.

(i) When 0 < α ≤ α1, the Jacobian matrix J∗ has a pair of real eigenvalues. At s = s1,
we have λ1 6= 0 and λ2 = −1, thus the model (12) undergoes a flip bifurcation which
entails the birth of a period 2-cycle.

(ii) When α1 < α < α0, the Jacobian matrix J∗ has a pair of complex conjugate
eigenvalues. At s = s0, the modulus of λ1,2 is equal to 1, thus the model (12)
undergoes a Neimark-Sacker bifurcation. 2

6 Numerical Simulation

In this section, we perform numerical simulation to confirm the above theoretical anal-
ysis and to illustrate the dynamics of both the fractional-order Selkov model and its
discretization.

There are many numerical methods for solving nonlinear fractional differential equa-
tions such as the Adomian decomposition method [26], variational iteration method [27]
and homotopy perturbation method [28]. In this study, we use the Adams-type predictor-
corrector method [29] for the numerical solution of system (3). This method is a very
effective tool to give numerical solutions of fractional-order differential equations.

Without loss of generality, we fix γ = 2, which gives α0 = 1, α1 = 0.17157 and
α2 = 5.8284, we choose α = 1.2 (in the interval (α1, α2)) and we vary the order q, the
step size is considered as 0.01 and the initial point x(0) = 1.5, y(0) = 1.3. Note that
for α = 1.2, there exists a critical value q = q∗ = 0.9418 below which the equilibrium
point E is asymptotically stable and above which unstable. The stable behavior of the
system is presented in Fig.5(a)-(b) for q = 0.92 (< 0.9418) and the unstable behavior
of the system for q = 0.98 (> 0.9418) is presented in Fig.5(c)-(d). A Hopf bifurcation
occurs at q = q∗.

To illustrate the corresponding discrete system (12) of the fractional-order Selkov
system (3), we consider q = 0.85. Stability of the fixed point depends on the step size
s. First, we take α = 0.1 (in the interval (0, α1)), then the step size s should be less
than s1 = 2.8775 for E to be stable and otherwise unstable. The fixed point undergoes
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(a) (b)

(c) (d)

Figure 3: Phase portraits and the time series fractional-order Selkov model for (a),(b) q = 0.92,
(c), (d) q = 0.98.

a flip bifurcation (Fig.4(a)) at the critical step size s = s1. Now, we take α = 0.9 (in the
interval (α1, α0)), the Jacobian matrix J∗ has a pair of complex conjugate eigenvalues
λ1,2 = 0.99409+0.11203i, where |λ1,2| = 1, for the value of step size s = s0 = 0.07597 this
implies that the system (12) undergoes a Neimark-Saker bifurcation at the fixed point
E. The bifurcation diagram (Fig.4(b)) represents it succinctly. The maximal Lyapunov
exponents corresponding to Fig.4(b) are computed and plotted in Fig.4(c), from which
we deduce that chaotic behaviors may arise when the step size s is increasing. Some
phase portraits are displayed in Fig.5. It clearly depicts the process of how a smooth
invariant closed curve (Fig.5(b)) bifurcates from the stable fixed point E (Fig.5(a)).
When s exceeds s0 = 0.07597 (for example, s = 0.08), a simple closed curve enclosing
the fixed point E appears. When s increases, the simple closed curve disappears. The
strange attractor of system (12) for s = 0.305 is shown in Fig.5(f).

7 Conclusion

In this work, we have introduced a fractional-order Selkov model and its discretized
counterpart. For the fractional-order system we have proved some mathematical results
such as non-negativity, existence and uniqueness of the solution. We have also studied
the local stability of the equilibrium point and proved the existence of a Hopf bifurcation
with respect to the fractional order. Discretization of the fractional-order system was
done with piecewise constant arguments and the corresponding dynamics was explored.
It is observed that the dynamics of the discrete system depends on both the step size and
the fractional order. Existence of the Neimark-Saker and flip bifurcations has been shown
both analytically and numerically. It is also observed that the discrete fractional-order
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(a)

(b)

(c)

Figure 4: (a) Bifurcation diagram of the discrete fractional-order Selkov system (12) for q =
0.85 and α = 0.1, a flip bifurcation occurs at s = s1 = 2.8775; (b),(c) Bifurcation diagram
and the corresponding maximal Lyapunov exponent of system (12) for q = 0.85 and α = 0.9, a
Neimark-Saker bifurcation occurs at s = s0 = 0.070591.
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(a) s = 0.06 (b) s = 0.08

(c) s = 0.2 (d) s = 0.25

(e) s = 0.29 (f) s = 0.305

Figure 5: Phase portraits of the discretized fractional-order Selkov model for some values of
the step size s.
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system shows more complex dynamics as the step size becomes larger. Our simulation
results revealed that the discrete system exhibits chaotic dynamics for a larger step size.
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