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Abstract: The problem of asymptotic stability for some class of nonlinear control
systems, where the relative degree of the system is well defined, with relative degree
being 1 and n − 1, n is the dimension of the system, is addressed in this paper. To
solve the problem, we will design an input control. For the design of input controls,
the system will be transformed through partial feedback linearization such that the
zero dynamic of the system with respect to a new state is asymptotically stable and
the new state is a linear combination of state variables.
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1 Introduction

In the analysis for nonlinear control systems, there is no general method which can be
applied to any nonlinear control system in designing the control input for solving the
stability problems. Therefore, in general, the researchers describe some particular non-
linear classes only. Recently, stability problems for nonlinear control systems have been
intensively investigated. J. Naiborhu and K. Shimizu [1] proposed a dynamic feedback
control for the asymptotic stability of a nonlinear class, where its unforced dynamic is
asymptotically stable. In 2004, P. Chen et al. [2] and L. Diao et al. [3] introduced the
problem of stability through system transformation, where the transformation of the
system is made through dynamic feedback. One of popular methods for solving stability
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problems is the input-output linearization method. Some researchers studied the stabil-
ity problems of a nonlinear control system using the input-output linearization method,
for example, Ricardo Marino and Patrizio Tomei [4] discussed the stability of a lower
triangular nonlinear control system. Its stability control was the dynamic feedback of
order n+ 2(r − 1) (n is the system order, r is the relative degree). Results on stabiliza-
tion of nonlinear lower triangular systems with uncertainties in the output feedback form
have been presented in [5] and [6]. In [7], J. Naiborhu et al. discussed the asymptotic
stability problem for a nonlinear class, where its control’s design used exact lineariza-
tion. Furthermore, in [8], the authors have addressed the problem of stabilization for a
class of nonlinear control systems with the relative degree of the system being not well
defined. Then, in [9], the authors have introduced the problem of stabilization for a class
of nonlinear systems with uncertainty.

In this paper, we will investigate asymptotic stability of some class of affine nonlinear
control systems, with the relative degrees of the system being 1 and n−1. For the design
of input controls, the system will be transformed through partial feedback linearization.

2 Problem Formulation

Consider the affine nonlinear control system

ẋ(t) = f1(x(t)) + f2(x(t))u, (1)

where x(t) ∈ Rn, u(t) ∈ R. f1 : D → Rn, f(~0) = ~0 and f2 : D → Rn are sufficiently
smooth in a domain D ⊂ Rn.

Let a state y(t) = f3(x(t)), f3 : D → R be sufficiently smooth in a domain D ⊂ Rn ,
f3(~0) = 0.

According to [10], if we have

y(ρ)(t) = Lρf1f3(x) + Lf2L
ρ−1
f1

f3(x)u, (2)

with Lf2L
k
f1
f3(x) = 0, k = 0, 1, 2, · · · , ρ− 2, Lf2L

ρ−1
f1

f3(x) 6= 0, for all x ∈ D0, then the
relative degree of the system with respect to the state y is ρ, 1 < ρ < n, in a region D0 ⊂

D, where Lf2L
k
f1
f3(x) =

∂(Lk
f1
f3)

∂x f2(x), Lkf1f3(x) = Lf1L
k−1
f1

f3(x) =
∂
(
Lk−1

f1
f3(x)

)
∂x f1(x),

· · · , L2
f1
f3(x) =

∂(Lf1
f3(x))
∂x f1(x), Lf1f3(x) = ∂f3(x)

∂x f1(x), L0
f1
f3(x) = f3(x).

Let the relative degree of the system (1) with respect to the state y be ρ. By partial
feedback linearization, the system (1) with respect to the state y can be transformed to

żk = zk+1, k = 1, 2, · · · , ρ− 1, (3)

żρ = f(z) + g(z)u, (4)

żρ+1 = qρ+1(z), (5)

...

żn = qn(z) (6)

with the Jacobian matrix of z(x) being nonsingular at a point x0, z = (z1, z2, · · · , zn),
y = z1.

Consider the system (5)-(6). If z1 = 0 for all t, then the system (5)–(6) is said to be
zero dynamic with respect to the state y = z1.
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The following theorem describes the asymptotic stability of the nonlinear system
(see [11]).

Theorem 2.1 Consider a system

χ̇ = f(χ, ν), (7)

ν̇ = g(ν) (8)

and suppose that ν̇ = g(ν) has an asymptotically stable equilibrium at ν = 0. If χ̇ =
f(χ, 0) has an asymptotically stable equilibrium at χ = 0, then the system (7)-(8) has an
asymptotically stable equilibrium at (χ, ν) = (0, 0).

In order to use Theorem 1, we need to choose the state variable such that the zero
dynamic of the system (1) is asymptotically stable. In this paper, we present asymptotic
stability of some class of affine nonlinear control systems, where the relative degree of the
system (1) is well defined, with the relative degree being 1 and n− 1, n is the dimension
of the system. For a class of affine nonlinear control systems with the relative degree of
the system being 1, the input control design is needed so that the zero dynamic of the
system is asymptotically stable. Next, for a class of affine nonlinear control systems with
the relative degree of the system being n− 1, to achieve the stability, we will design an
input control when the zero dynamic of the system is asymptotically stable.

3 Main Results

First, we will investigate the asymptotic stability for an affine nonlinear control sytem
in the following form:

ẋ = Ax+ τu, x(t) ∈ Rn, τ ∈ Rn, u(t) ∈ R, (9)

with

A =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
1 0 . . . 0


and τ1 = τ2 = · · · = 0, τn−1 = −α1, α1 > 0, τn = α2 + φ(x1), α2 > 0, φ(0) = 0.

The following theorem states that the new state variable of the system (9) can be
chosen such that the zero dynamic of the system (9) is asymptotically stable.

Theorem 3.1 Suppose the nonlinear system as in equation (9). Then there exists a
state variable y = a0x1 + a1x2 + · · · + an−2xn−1 + an−1xn such that the relative degree
of the system (9) with respect to the state y is 1. Furthermore, the zero dynamic for the
system (9) with respect to the state y is asymptotically stable.

Proof. Let y = a0x1 + a1x2 + a2x3 + . . .+ an−2xn−1 + an−1xn. We have

ẏ = a0x2 + a1x3 + a2x4 + . . .+ an−2xn + an−1x1 + (an−1(α2 + φ(x1))− an−2α1)u.

Thus, the relative degree of the system (9) with respect to the state y is 1, with
an−1 (α2 + φ(x1))− an−2α1 6= 0.
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Furthermore, the partial feedback linearization is

ẏ = v, (10)

η̇1 = η2, (11)

η̇2 = η3, (12)

... (13)

η̇n−2 = ηn−1, (14)

η̇n−1 = xn − α1u, (15)

where η1 = x1, η2 = x2, . . ., ηn−1 = xn−1.
We will choose the input control u such that the zero dynamic is asymptotically stable.

Next, we choose v = −k1a0x1 − k2a1x2 − k3a2x3 − . . .− knan−1xn, with an−1 = 1. We
have

u =
a0x1

(
−k1 − −1a0

)
+ a1x2

(
−k2 − −a0a1

)
+ · · ·+ an−1xn (−kn − an−2)

α2 + φ(x1)− α1

=
−β(a0x1 + a1x2 + a2x3 + · · ·+ xn)

α2 + φ(x1)− an−2α1
, (16)

where β = k1 + 1
a0

= k2 + a0
a1

= k3 + a1
a2

= . . . = kn + an−2.

Next, if y(t) = 0, ∀t, then the zero dynamic of the system (9) with respect to the
state y is

η̇1 = η2, (17)

η̇2 = η3, (18)

... (19)

η̇n−2 = ηn−1, (20)

η̇n−1 = −a0η1 − a1η2 − a2η3 − · · · − an−2ηn−1. (21)

From Eqs. (17)–(21), it can be written

η̇ = A1η,

where η = (η1, η2, . . . , ηn−1)T and

A1 =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−a0 −a1 . . . −an−2

 .

If we choose a0, a1, . . . , an−2 such that all the root of the characteristic polynomial of the
matrix A1 p(λ) = a0 + a1λ + · · · + an−2λ

n−2 + λn−1 have negative real part, then the
zero dynamic of system (9) with respect to the state y is asymptotically stable. Hence,
there exits the state variable y = a0x1 + a1x2 + · · ·+ an−1xn such that the zero dynamic
of the system (9) with respect to the state y is asymptotically stable.



242 FIRMAN, SYAMSUDDIN TOAHA AND MUH NUR

Proposition 3.1 Consider system (9) with the state y = a0x1 +a1x2 + · · ·+an−1xn.
Chose an−1 = 1 and a0, a1, . . . , an−2 such that the polynomial

p(λ) = a0 + a1λ+ . . .+ an−2λ
n−2 + λn−1 (22)

is Hurwitz. If we choose the new input v as in Eq. (10) such that ẏ = v has an asymptot-
ically stable equilibrium at y = 0, then at using the input control in Eq.(16), the system
(10)-(15) has an asymptotically stable equilibrium at (y, η) = (0, 0)). Furthermore, the
system (9) has an asymptotically stable equilibrium at x = 0.

Next, the affine nonlinear control system is considered in the following form:

ẋ = Mx+ τu+ θ(x1), x(t) ∈ Rn, u(t) ∈ R, (23)

with θ(x1) ∈ C∞(Rn), θ(0) = 0, τ = (0, 0, . . . , 0, τn−1, τn)T , τn−1 6= 0,

τn−1 = −τn, M =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

, θ1(x1) + θ2(x1) + · · ·+ θn(x1) = 0.

Theorem 3.2 Suppose the nonlinear system as in equation (23). Let the state vari-
ables y = αx1 + x2 + · · · + xn, α 6= 1. Then the relative degree of the system (23) with
respect to the state y is n − 1. Furthermore, the zero dynamic for the system (23) with
respect to the state y is asymptotically stable.

Proof. Let y = ax, a = (α, 1, . . . , 1), x = (x1, x2, . . . , xn)T , α 6= 1. We have

ẏ = aẋ = aMx+ aθ(x1), (24)

ÿ = aM2x+ aMθ(x1) + a
dθ

dt
, (25)

... (26)

y(n−2) = aM (n−2)x+ aM (n−3)θ(x1) + · · ·+ aM(θ(x1))(n−4) + a(θ(x1)(n−3), (27)

y(n−1) = aM (n−1)x+ aM (n−2)θ(x1) + · · ·
+ aM(θ(x1))(n−3) + a(θ(x1)(n−2) + bn(1− α)u. (28)

Thus, the relative degree of the system (23) with respect to the state y is n − 1.
Furthermore, the linearized input state for system (23) with respect to the state y = z1
is

żk = zk+1, k = 1, 2, . . . , n− 2, (29)

żn−1 = f(z, η) + g(z, η)u, (30)

η̇ = ẋ1 + ẋ2 + · · ·+ ẋn = η − x1 (31)

with f(z, η) = aM (n−1)x+ aM (n−2)θ(x1) + · · ·+ aM(θ(x1))(n−3) + a(θ(x1))(n−2),
g(z, η) = bn(1− α), α 6= 1, z = (z1, z2, . . . , zn−1).
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Furthermore, we will investigate the stability of the zero dynamic of the system (23)
with respect to the state y = z1. Consider

ηη̇ = η(η − x1) = η2 − η(
z1 − η
α− 1

). (32)

If z1 = 0 and 0 < α < 1, then

ηη̇ =
αη2

α− 1
< 0. (33)

Therefore, the zero dynamic of the system (23) with respect to the state y = z1 is
asymptotically stable.

Consider the system (29)-(31). If we choose the input control

u =
1

g(z, η)
(−f(z, η)− c0z1 − c1z2 − . . .− cn−2zn−1) , (34)

then we have the normal form of the system (23) with respect to the state y = z1

ż = Bz, (35)

η̇ = q(z, η), (36)

with

B =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−c0 −c1 . . . −cn−2

 ,

η̇ = q(z, η) in Eq.(31). In particulir, the matrix B has a characteristic polynomial

p(λ) = c0 + c1λ+ · · ·+ cn−2λ
n−2 + λn−1. (37)

Because the zero dynamic of the system (23) with respect to the state y = z1 has an
asymptotically stable equilibrium at ω = 0 and if we choose c0, c1, · · · , cn−2 such that all
the roots of the polynomial p(λ) have negative real part, then the system (29)-(31) has
an asymptotically stable equilibrium at (z, η) = (0, 0).

Proposition 3.2 Consider the zero dynamic of the system (23) with respect to the
state y = z1. Let all the roots of the polynomial in Eq.(37) have negative real part. Then,
at using the input control in Eq.(34), the system (29)-(31) has an asymptotically stable
equilibrium at (z, η) = (0, 0).

Example 3.1 Suppose the nonlinear control system is

ẋ1 = x2, (38)

ẋ2 = x3 − α1u, (39)

ẋ3 = x1 +
(
α2 + x21

)
u. (40)

Let y = c0x1 + c1x2 + x3. Then ẏ = c0x2 + c1x3 + x1 + (α2 + x21 − c1α1)u.
Thus, if α2 > c1α1, the relative degree is one for all x. Then, according to (16), the

input control is

u(t) =
−β (c0x1 + c1x2 + c2x3 + x4)

α2 + x21 − c1α1
(41)
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with β = k1 + 1
c0

= k2 + c0
c1

= k3 + c1. If we choose k1, k2, k3 > 0 and c0, c1 such that all

roots of the polynomial p(λ) = c0 + c1λ+ λ2 are Hurwitz, then the system (38)-(40) has
an asymptotically stable equilibrium at (x1, x2, x3) = (0, 0, 0).

Simulation result is shown in Fig.1a for constants k1 = 59
6 , k2 = 44

5 ,k3 = 5, c0 =
6, c1 = 5. The initial value x1(0) = −1, 5, x2(0) = 2, 5, x3(0) = −3.

Example 3.2 Suppose the nonlinear control system is

ẋ1 = x2 + x21, (42)

ẋ2 = x3 − u+ x21, (43)

ẋ3 = u− 2x21. (44)

The relative degree of the system (42)-(44) with respect to the state y = αx1 + x2 + x3
is 2, 0 < α < 1. The system (42)-(44) can be transformed to

ż1 = z2,

ż2 = f(z, η) + g(z, η)u, (45)

η̇ = η −
(
z1 − η
α− 1

)
,

with y = z1, f(z, η) = αx3 + (α− 2)x21 + 2(α− 1)x1x2 + 2(α− 1)x31,
g(z, η) = 1− α.

Thus, the zero dynamic of the system (42)-(44) with respect to the state y = z1 is
asymptotically stable. Then, according to (34), the input control is

u =
1

1− α
(−a(z, η)− c0z1 − c1z2) . (46)

If we choose c0, c1 such that all roots of the polynomial p(λ) = c0 + c1λ + λ2 have
negative real part, then the system (42)-(44) has an asymptotically stable equilibrium at
(x1, x2, x3) = (0, 0, 0).

a b
Figure 1: a) simulation result for Example 3.1, b) simulation result for Example 3.2.

Simulation result is shown in Fig.1b for constants α = 0, 5, c0 = 6, c1 = 5. The initial
value x1(0) = −3, x2(0) = 5, x3(0) = −6.
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4 Conclusion

In this paper, we have investigated asymptotic stability of some class of affine nonlinear
control systems through partial feedback liearization. For a class of affine nonlinear
control systems with the relative degree of the system (9) with respect to the state y
being 1, the input control is designed so that the zero dynamic of the system (9) is
asymptotically stable. Next, for a class of affine nonlinear control systems with the
relative degree of the system (23) with respect to the state y being n − 1, the input
control is designed when the zero dynamic of the system (9) is asymptotically stable,
where the state y is the linear combination of the state variables.
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