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Abstract: This paper is concerned with the topic of chaos control in fractional maps.
It presents two linear control laws to stabilize the dynamics of a new three-dimensional
fractional Hénon map. The chaos control has been achieved by proving a new theorem,
based on a suitable Lyapunov function and a linear method. Finally, numerical
simulations have been carried out to highlight the effectiveness of the proposed control
method.
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1 Introduction

Recently, researchers have diverted their attention to the discrete-time case of fractional
calculus and attempted to put together a complete theoretical framework for the sub-
ject [1]. Perhaps one of the earliest works is that of Diaz and Olser [2]. Successively,
several types of discrete operators have been proposed, including some fractional h-
difference operators, which represent further generalizations of the fractional difference
operators [3–5]. Furthermore, numerical formulas and stability conditions corresponding
to fractional difference systems can be found in [6,7]. Most recently, some advances have
been made in the applications of discrete fractional calculus [8]. The introduction of dif-
ferent discrete fractional operators has led to the publication of several papers regarding
the chaotic behaviors of fractional nonlinear maps [9–17].
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Dynamics and control of fractional-order chaotic systems have received considerable
attention over the last few years [18,19]. So far, nonlinear control laws have been mainly
used for controlling at zero the chaotic dynamics of new three-dimensional fractional
maps. Some interesting results have been recently published regarding this challenging
topic [20–24]. For example, in [20], nonlinear control methods for some three-dimensional
fractional chaotic maps (i.e., the Stefanski map, the Rössler map and the Wang map)
have been studied. In [21], a novel control law for stabilizing a new three-dimensional
fractional Hénon map has been proposed. In [22], the fractional-order Grassi–Miller
chaotic map has been stabilized via nonlinear controllers. In [23], a control scheme to
control hidden chaotic attractors in a new fractional map has been illustrated. In [24],
the chaotic behavior of a new three-dimensional fractional map with no equilibrium has
been studied along with a control method that exploits the stability properties of linear
fractional discrete systems.

It is worth noting that all the control methods developed so far for fractional chaotic
maps have exploited nonlinear control laws. This work aims to provide a contribution
to the topic by presenting a very simple linear control law to control chaotic dynamics of
the well-known fractional generalized Hénon map. This map is defined via the Caputo
h-difference operator. The asymptotic convergence of the states is established using the
Lyapunov method. The paper is organized as follows. In Section 2, some basic notions
of the Caputo h-difference operator and discrete fractional calculus are introduced. In
Section 3, a novel control result is proved which enables the dynamics of the three
dimensional fractional Hénon map to be controlled by a two-dimensional linear control.
Finally, simulation results are reported through the paper, with the aim to show the
effectiveness of the proposed approach.

2 Basic Tools

In this section, some basic concepts related to the Caputo h-difference operator are briefly
summarized.

Definition 2.1 [4] Let X : (hN)a → R and 0 < ν be given. a is a starting point.
The ν–th order h–sum is given by

h∆−ν
a X (t) =

h

Γ (ν)

t
h−ν∑
s= a

h

(t− σ (sh))
(ν−1)
h X (sh) , σ (sh) = (s+ 1)h, a ∈ R, t ∈ (hN)a+νh ,

(1)
where the h–falling factorial function is defined as

t
(ν)
h = hν

Γ
(
t
h + 1

)
Γ
(
t
h + 1− ν

) , t, ν ∈ R,

where (hN)a+(1−ν)h = {a+ (1− ν)h, a+ (2− ν)h, ...} .

Definition 2.2 [5] For X (t) defined on (hN)a a and 0 < ν, ν /∈ N , the Caputo–like
difference is defined by

C
h ∆ν

aX (t) = ∆−(n−ν)
a ∆nX (t) , t ∈ (hN)a+(n−ν)h , (2)

where ∆X (t) = X(t+h)−X(t)
h and n = dνe+ 1.
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Now a theorem reported in [25] is briefly illustrated, with the aim to identify the
stability conditions of the zero equilibrium point for the fractional nonlinear difference
system written in the form

C
h ∆ν

aX (t) = f (t+ νh,X (t+ νh)) , (3)

where X (t) = (x1 (t) , x2 (t) , ..., xn (t))
T
, t ∈ (hN)a+(1−ν)h and f is a nonlinear function.

Theorem 2.1 Let x = 0 be an equilibrium point of the nonlinear discrete fractional
system (3). If there exists a positive definite and decrescent scalar function V (t,X (t))
such that Ch ∆ν

aV (t,X (t)) ≤ 0, t ∈ (hN)a+(1−ν)h , then the equilibrium point is asymp-
totically stable.

In the following, a useful inequality for Lyapunov functions is introduced.

Lemma 2.1 [25] For any discrete time t ∈ (hN)a+(1−ν)h , 0 < ν ≤ 1, the following
inequality holds

C
h ∆ν

a

(
XT (t)X (t)

)
≤ 2XT (t+ νh)

C
h ∆ν

aX (t) . (4)

3 The Three-Dimensional Fractional Generalized Hénon Map

Recently, a new three-dimensional fractional Hénon map with Lorenz-like attractors has
been proposed in [26]. This map is an example of a fractional discrete–time system
with the ν Caputo–like operator that can display chaotic behavior. In the following, by
adopting the Caputo h-difference operator we described the fractional generalized Hénon
map as

C
h ∆ν

ax (t) = M1 +Bz (t+ νh) +M2y (t+ νh)− x2 (t+ νh)− x (t+ νh) ,
C
h ∆ν

ay (t) = x (t+ νh)− y (t+ νh) ,
C
h ∆ν

az (t) = y (t+ νh)− z (t+ νh) ,
(5)

where x, y, z are the states of the fractional map (5) and M1,M2 and B are parameter
values, with t ∈ (hN)a+(1−ν)h.

To study the properties of the fractional generalized Hénon map (5), the following
discrete numerical solution is defined based on the h-fractional sum (1) as

x (n+ 1) = x0 + hν

Γ(ν)

∑n
j=0

Γ(n−j+ν)
Γ(n−j+1)

(
M1 +Bz (j + 1) +M2y (j + 1)− x2 (j + 1)

−x (j + 1)) ,

y (n+ 1) = y0 + hν

Γ(ν)

∑n
j=0

Γ(n−j+ν)
Γ(n−j+1) (x (j + 1)− y (j + 1)),

z (n+ 1) = z0 + hν

Γ(ν)

∑n
j=0

Γ(n−j+ν)
Γ(n−j+1) (y (j + 1)− z (j + 1)),

(6)
where x0, y0 and z0 are initial states. According to the discrete equation (6), the fractional
generalized Hénon map (5) has memory effects, which means that the implicit solution
is determined by all the previous states with the state x(n+ 1), y (n+ 1) and z (n+ 1).
Considering parameter values M1 = 1.4, M2 = 0.2 and varying B from 0 to 0.3, the
resulting bifurcation diagram and the largest Lyapunov exponents are depicted in Figure
1 with fractional order ν = 0.98. Different dynamic behaviors including chaos periodic
windows are observed in the fractional generalized Hénon map (5). From this, it can
be seen that the system has the positive largest Lyapunov exponent when B takes the
smallest values, indicating that the system has indeed a chaotic attractor, as shown in
Figure 1(a) for B = 0.1.
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Figure 1: Numerical simulation of the fractional generalized Hénon map for the fractional order
value ν = 0.98. (a) The chaotic attractor for M1 = 1.4, B = 0.1. (b) The bifurcation diagram
versus B. (c) The corresponding largest Lyapunov exponents diagram.
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4 Two-Dimensional Chaos Control Law

In this section, by exploiting a novel theorem based on a suitable Lyapunov function,
a two-dimensional linear control law is illustrated, with the aim to control the chaotic
dynamics of the three-dimensional fractional Hénon map. To obtain our results, the
following theorem is presented.

Theorem 4.1 The three-dimensional fractional Hénon chaotic map is controlled un-
der the following linear two-dimensional control law:{

C1 = −lx (t)− (M2 + 1) y (t)−Bz (t)−M1,
C2 = −z (t) ,

(7)

where |x (t)| ≤ l, for t ∈ (hN)a+(1−ν)h .

Proof. The controlled fractional Hénon chaotic map involves the time–varying con-
trol law (C1,C2)

T
and is given by

C
h ∆ν

ax (t) = M1 +Bz (t+ νh) +M2y (t+ νh)− x2 (t+νh)− x (t+νh) + C1 (t+νh) ,
C
h ∆ν

ay (t) = x (t+ νh)− y (t+ νh) + C2 (t+ νh) ,
C
h ∆ν

az (t) = y (t+ νh)− z (t+ νh) .
(8)

Substituting the proposed control law (7) into (8) yields the simplified dynamics
C
h ∆ν

ax (t) = −y (t+ νh)− x2 (t+ νh)− (l + 1)x (t+ νh) ,
C
h ∆ν

ay (t) = x (t+ νh)− y (t+ νh)− z (t+ νh) ,
C
h ∆ν

az (t) = y (t+ νh)− z (t+ νh) .
(9)

Now, by taking a Lyapunov function in the form

V =
1

2

(
x2(t) + y2(t) + z2 (t)

)
, (10)

it follows that

C
h ∆ν

aV =
1

2

C

h
∆ν
ax

2(t) +
1

2

C

h
∆ν
ay

2(t) +
1

2

C

h
∆ν
az

2(t), (11)

and by exploiting Lemma 1, we get

C
h ∆ν

aV ≤ x(t+ νh)Ch ∆ν
ax(t) + y(t+ νh)Ch ∆ν

ay(t) + z(t+ νh)Ch ∆ν
az(t)

= −x (t+ νh) y (t+ νh)− x3 (t+ νh)− (l + 1)x2 (t+ νh)

+y (t+ νh)x (t+ νh)− y2 (t+ νh)− y (t+ νh) z (t+ νh)

+z (t+ νh) y (t+ νh)− z2 (t+ νh)

= − (l + 1)x2(t+ νh)− y2(t+ νh)− z2(t+ νh)− x3 (t+ νh)

≤ − (l + 1)x2(t+ νh)− y2(t+ νh)− z2(t+ νh) + |x|x2 (t+ νh)

≤ − (l + 1)x2(t+ νh)− y2(t+ νh)− z2(t+ νh) + lx2 (t+ νh)

= −x2(t+ νh)− y2(t+ νh)− z2(t+ νh) < 0.

It can be concluded that the controlled states of the fractional Hénon chaotic map (5)
are stabilized at the origin by the two-dimensional linear control law (7).
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To verify the theoretical results obtained above, numerical simulations are preformed
using Matlab. We start by employing h-fractional sum (1) to obtain the numerical
formula of the controlled dynamical system (5). The parameter values are taken as
M1 = 1.4 and M2 = 0.2, B = 0.1 to ensure the existence of chaos. Figures 2 and 3 show
the states trajectories and the phase portrait, respectively, of the controlled fractional
map (5) when the fractional order value is taken as ν = 0.98. These plots clearly show
that the chaotic dynamics of the fractional map (5) are controlled to equilibrium point
(0, 0, 0) by control law (7).
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Figure 2: Phase portrait of the controlled fractional generalized Hénon map with ν = 0.98.
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Figure 3: Evolution of the controlled fractional generalized Hénon map with ν = 0.98.

5 Conclusion

Using linear control laws, this paper has studied the control of a new fractional chaotic
map. Specifically, the three-dimensional fractional Hénon map has been controlled by
a two-dimensional control law. All the results have been achieved by exploiting a new
linear control law based on the Lyapunov method as well as on the properties of the
Caputo h-difference operator. Note that, by virtue of the linearity of the control law
proposed herein, the conceived method for controlling the chaotic dynamics requires
less control effort with respect to the nonlinear techniques developed in literature to
date. Finally, simulation results have been presented to highlight the effectiveness of the
proposed approach.
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