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Abstract: Dynamic and non-dynamic reliability systems play an important role in
industry, manufacturing, safety engineering and quality. The most commonly used
models in the parametric statistical reliability analysis are the exponential, Weibull,
inverted Weibull, lognormal, Lindley and Raleigh ones as well as their generalizations.
In certain engineering applications such as the distribution of repair time and the dis-
tribution of delay time, it is found that the Ailamujia model is a suitable alternative
compared to other models. This work considers system reliability analysis of the
Ailamujia model, in which different reliability measures were computed. The combi-
nations of additive failure rate models associated with the Ailamujia distribution were
derived, they include the exponential, Weibull, Frechet and Raleigh distributions.

Keywords: Ailamujia distribution; stress strength model; reliability; additive rate
model.
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1 Introduction

The lifetime of equipment or apparatus is a random time from the beginning of the
operation until the appearance of a complete failure. Reliability is the ability of a system
to perform its stated purpose adequately for a specified period of time under specified
operational conditions. The system defined here could be an electronic or mechanical
hardware product, a software product, a manufacturing process or even a service. For
example, in case of a mechanical system, a failure is a breakdown of some of its parts or
an increase in vibration above the permitted level. One of the most dangerous failures
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of a nuclear reactor is a leak of radioactive material. The reliability characteristics are
usually expressed in terms of the lifetime.

Modeling and analyzing lifetime data are important issues in many disciplines includ-
ing medicine, engineering, industry, quality control and finance, etc. Different lifetime
data can be represented by several well-known continuous probability distributions such
as exponential, Lindley, Weibull, lognormal, and Frechet as well as their generalizations.
The Ailamujia distribution is a newly proposed lifetime model that has many engineering
applications [1]. In some practical applications such as the distribution of repair time
and the distribution of delay time, it is found that the Ailamujia model is a convenient
one compared to other models. Lv et. al. [2] studied the different properties including
mean, variance, and median and maximum likelihood estimators. This distribution has
also been investigated for the interval estimation and the hypothesis [3]. The minimax
estimation of the Ailamujia model parameter has been discussed under a non-informative
prior using three loss functions [4].

The probability density function of the Ailamujia distribution is given by

f(x, θ) = 4θ2xe−2θx; x ≥ 0, θ > 0, (1)

while the corresponding cumulative distribution function is given as

F (x, θ) = 1 − (1 + 2θx)e−2θx; x ≥ 0, θ > 0, (2)

where θ is the unknown parameter. It can be easily concluded that

E(X) =
1

θ
and σ2 =

1

2θ
.

The maximum likelihood estimator for θ is given by

θ̂ =
n∑n
i=1 xi

. (3)

The survival function and failure rate are, respectively, given by

r(x) = (1 + 2θx)e−2θx, (4)

h(x) =
4θ2x

1 + 2θx
. (5)

The reliability of the system is given by

R(t) = exp
{
−
∫ t

0

h(x)dx
}
. (6)

Having in mind that∫ t

0

h(x)dx =

∫ t

0

4θ2x

1 + 2θx
dx = 2θt− ln (2θt+ 1), (7)

the reliability can be expressed as

R(t) = e−
∫ t
0

4θ2x
1+2θxdx = (2θt+ 1)e−2θt. (8)

The time to failure can be expressed as
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F (t) = 1 − (1 + 2θx)e2θx. (9)

There is a wide application of the mean residual life function in reliability and survival
analysis (see [5–8] ). The mean residual life function for the Aijamujia distribution is
given by

e(t) =

∫∞
t
R(x)dx

R(t)
(10)

=

∫∞
t

(1 + 2θx)e−2θxdx

R(t)
(11)

=
te−2θt + (1+θt)

θ e−2θt

(1 + 2θt)e−2θt
=

1 + θt

θ(1 + 2θt)
. (12)

The following section explains the stress-strength model using the Ailamujia model,
while the derivation of additive failure rate models is followed, where the Ailamujia failure
rate model is combined with every one of the Ailamujia, exponential, Weibull, Frechet,
and Raleigh distributions.

2 Stress-Strength Reliability

The stress-strength reliability describes the life of a component which has a random
strength subjected to a random stress. When the stress applied to the component ex-
ceeds the strength, the component fails instantly and the component will not function
satisfactorily. Therefore, there is a measure of component reliability known as a stress-
strength parameter. The stress-strength reliability has wide applications in almost all
areas, especially in engineering including structures, deterioration of rocket motors, static
fatigue of ceramic components, aging of concrete pressure vessels etc. Beg and Singh [9]
gave estimation of P (X > Y ) for the Pareto distribution. Maroof and Islam [10] studied
the Bayesian estimation of a system reliability when the stress and strength follow the Lo-
max distribution. Nandi and Aich [11] have shown that Reliability (R) can be obtained as
the Laplace transform of the stress. Also, Kotz et. al. [1] investigated the generalization
of the stress-strength model. Their main findings are summarized as follows.

Let X and Y be two non-negative and continuous random variables having densities
f(x) and g(y), respectively. If X and Y are independent, then the probability that Y
exceeds X is given as [1]

R = P (Y > X) =

∫ ∞
0

xf(x)
[ ∫ ∞

1

g(vx)dv
]
dx. (13)

Theorem 2.1 Let the random stress X and the random strength Y be two indepen-
dent Ailamujia distributions with probability density functions given by

f(x, θ) = 4θ21xe
−2θ1x;x ≥ 0, θ1 > 0,

f(y, θ) = 4θ22ye
−2θ2x; y ≥ 0, θ2 > 0,

then the system reliability, R = P (Y > X), is

R = P (Y > X) =
θ21(θ1 + 3θ2)

(θ1 + θ2)
.



196 M.M. SMADI AND A.A. JARADAT

Proof : It is given that

R = P (Y > X) =

∫ ∞
0

xf(x)
[ ∫ ∞

1

4xθ22ve
−2θ2xvdv

]
dx (14)

= P (Y > X) =

∫ ∞
0

xf(x)[I]dx, (15)

where

I =

∫ ∞
1

4xθ22ve
−2θ2xvdv.

Then we evaluate the integral I:

I = 2θ2

∫ ∞
1

2θ2xve
−2θ2xvdv.

Integration by parts can be used which gives

I = 2θ2

∫ ∞
0

2θ2xve
−2θ2xvdx (16)

= 2θ2

{[
− ve−2θ2xv

]∞
1

−
∫ ∞
1

e−2θ2xvdv
}

(17)

= 2θ2

{[
− ve−2θ2xv

]∞
1

−
[ 1

−2θ2x
e−2θ2xv

]∞
1

}
(18)

= 2θ2

{
e−2θ2x +

1

2θ2x
e−2θ2x

}
(19)

=
1 + 2θ2x

x
e−2θ2x. (20)

Substitute (20) into (15):

R = P (Y > X) =

∫ ∞
0

xf(x)
[ (1 + 2θ2x)e−2θ2x

x

]
dx

=

∫ ∞
0

x(4θ21xe
−2θ1x)

[ (1 + 2θ2x)e−2θ2x

x

]
dx

= 4θ21

∫ ∞
0

xe−2θ1x
(

(1 + 2θ2x)e−2θ2x
)
dx

= 4θ21

[∫ ∞
0

xe−2(θ1+θ2)xdx+ 2θ2

∫ ∞
0

x2e−2(θ1+θ2)xdx

]

= 4θ21

[
1

2(θ1 + θ2)

∫ ∞
0

2(θ1 + θ2)xe−2(θ1+θ2)xdx

+
2θ2

2(θ1 + θ2)

∫ ∞
0

2(θ1 + θ2)x2e−2(θ1+θ2)xdx

]

= 4θ21

[
1

2(θ1 + θ2)

1

2(θ1 + θ2)
+

2θ2
(θ1 + θ2)

2

4(θ1 + θ2)2

]

= θ21

[ 1

(θ1 + θ2)2
+

2θ2
(θ1 + θ2)3

]
=
θ21(θ1 + θ3)

(θ1 + θ2)3
.
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3 Additive Failure Rate Models

More attention is given to the reliability of a combination of two failure rate mod-
els for a system with two components that function independently. Assume X1

and X2 with respective failure densities, failure probabilities and failure rates being
f1(x), f2(x);F1(x), F2(x);h1(x), h2(x), then the system reliability is given by

R(t) = Exp

{
−
∫ t

0

[h1(x) + h2(x]dx

}
.

It is then possible to obtain the failure density and the failure rate of the series system
whose reliability is given by (1). Different options have been considered in the literature
regarding h1(x) and h2(x) [12–15].

The following subsections describe derivation of the additive failure rate models as
related to the Ailamujia distribution.

3.1 Ailamujia-Ailamujia failure rate model

The Ailamujia distribution with parameter θ1 for h1(x) and the Ailamujia distribution
with parameter θ2 for h2(x) are selected.∫ t

0

h(x)dx =

∫ t

0

[h1(x) + h2(x)]dx

=

∫ t

0

4θ21x

1 + 2θ1x
dx+

∫ t

0

4θ22x

1 + 2θ2x
dx

= 2θ1t− ln (2θ1t+ 1) + 2θ2t− ln (2θ2t+ 1)

= 2(θ1 + θ2)t− ln
2θ1t+ 1

2θ2t+ 1
.

Then the reliability function of the system can be written as

R(t) = e
−
(
(2(θ1+θ2)t−ln 2θ1t+1

2θ2t+1

)
=

2θ1t+ 1

2θ2t+ 1
e−2(θ1+θ2)t

and the probability density of the Ailamujia-Ailamujia failure rate model (AAFRM) is
given by

f(t) = − d

dt
R(t) = 2(θ1 + θ2)

2θ1t+ 1

2θ2t+ 1
e−2(θ1+θ2)t − 2θ1 + θ2

(2θ2t+ 1)2
e−2(θ1+θ2)t.

3.2 Ailamujia-exponential failure rate model

The probability density, cumulative distribution, and hazard functions of the exponential
distribution are respectively given by

f(x) = λe−λx ; x > 0, λ > 0,

F (x) = 1 − e−λx ; x > 0, λ > 0,

R(x) = e−λx and h(x) = λ.
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The Ailamujia distribution is selected with parameter θ for h1(x) and the exponential
distribution for h2(x). ∫ t

0

h(x)dx =

∫ t

0

[h1(x) + h2(x)]dx

=

∫ 1

0

4θ2x

1 + 2θx
dx+

∫ t

0

λdx

= (2θ + λ)t+ ln (2θt+ 1)

and the reliability function of the system can be written as

R(t) = e−[(2θ+λ)t+ln 2θt+1] = (2θt+ 1)e−(2θt+λ)t

and the probability density of the Ailamujia-Ailamujia failure rate model (AAFRM) is
given by

f(t) = − d

dt
R(t) = (4θ2t+ 2θλt+ λ)e−(2θt+λ)t.

3.3 Ailamujia-Weibull failure rate model

The probability density, cumulative distribution, and hazard functions of the Weibull
distribution are respectively given by

f(x) = λαxα−1 ; x > 0, λ > 0, α > 0,

F (x) = 1 − e−λx
α

; x > 0, λ > 0, α > 0,

R(x) = e−λx
α

and h(x) = λαxα−1.

The Ailamujia distribution was selected for h1(x) and the Weibull distribution for
h2(x). ∫ t

0

h(x)dx =

∫ t

0

[h1(x) + h2(x)]dx

=

∫ 1

0

4θ2x

1 + 2θx
dx+

∫ t

0

λαxα−1dx

= 2θt− ln (2θt+ 1) + λtα.

Then the reliability function of the system can be written as

R(t) = e−(2θt−ln 2θt+1+λtα) = (2θt+ 1)e−(2θt+λt
α)

and the probability density of the Ailamujia-Weibull failure rate model (AWFRM)
is given by

f(t) = − d

dt
R(t) = (4θ2t+ 2θλαtα + λαtα−1)e−(2θt+λt

α).
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3.4 Ailamujia-Frechet failure rate model

The probability density, cumulative distribution, and hazard functions of the Frechet
distribution are respectively given by

f(x) = λαx−(α+1) ; x > 0, λ > 0, α > 0,

F (x) = 1 − e−λx
−α

; x > 0, λ > 0, α > 0,

R(x) = e−λx
−α

and h(x) = λαx−(α+1).

The Ailamujia distribution was selected for h1(x) and the inverted Weibull distribu-
tion for h2(x). ∫ t

0

h(x)dx =

∫ t

0

[h1(x) + h2(x)]dx

=

∫ 1

0

4θ2x

1 + 2θx
dx+

∫ t

0

λαx−(α+1)dx

= 2θt− ln (2θt+ 1) − λt−α

= (2θt− λt−α) − ln (2θt+ 1).

Then the reliability function of the system can be written as

R(t) = e−((2θt−λt
−α)−ln (2θt+1) = (2θt+ 1)e−(2θt+λt

−α)

and the probability density of the Ailamujia-Frechet failure rate model (AFFRM) is
given by

f(t) = − d

dt
R(t) = (4θ2t+ 2θλαtα−1 + λαtα−1)e−(2θt+λt

α).

3.5 Ailamujia-Raleigh failure rate model

The probability density, cumulative distribution, and hazard functions of the Raleigh
distribution are respectively given by

f(x) = 2β2xe−(βx)
2

; x > 0, β > 0,

F (x) = 1 − e−(βx)
2

; x > 0, β > 0,

R(x) = e−(βx)
2

and h(x) = β2x.

The Ailamujia distribution was selected for h1(x) and the Raleigh distribution for
h2(x). ∫ t

0

h(x)dx =

∫ t

0

[h1(x) + h2(x)]dx

=

∫ 1

0

4θ2x

1 + 2θx
dx+

∫ t

0

2β2xdx

= 2θt− ln (2θt+ 1) + βt2.

Then the reliability function of the system can be written as
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R(t) = e−(2θt−ln (2θt+1)+β2t2) = (2θt+ 1)e−(2θt+β
2t2)

and the probability density of the Ailamujia-Raleigh failure rate model (ARFRM) is
given by

f(t) = − d

dt
R(t) = 2(2θβ2t2 + 2θ2t2 + β2t)e−(2θt+β

2t2).

These findings suggest further research involving estimation of parameters of the
failure rate distributions, testing of hypothesis and the power likelihood ratio criterion
for the proposed models and apply the proposed failure rate models to certain real lifetime
data sets.

4 Conclusion

System reliability measures were derived where the failure data follow the Ailamujia
distribution. The system reliability is estimated at the conditions where the applied
stress and strength follow the Ailamujia distribution. The combinations of the Ailamujia
distribution and every one of well-known reliability distributions are developed. The
additive failure rate model of the Ailamujia distribution and every one of the Ailamujia,
exponential, Weibull, Frechet, and Raleigh distributions were derived.

References

[1] S. Kotz and M. Pensky. The Stress-strength Model and its Generalizations. Theory and
Applications. World Scientific, Singapore, 2003.

[2] L. Huiqiang, G. Lianhua and C. Chunliang. Ailamujia distribution and its application in
supportability data analysis. Journal of Academy of Armored Force Engineering 16 (3)
(2002) 48–52.

[3] U. T. Pan, C. Wang, Y. B. H. Gano and M. T. Dang. The research of interval estimation
and hypothetical test of small sample of Ailamujia distribution. Application of Statistics
and Management 28 (3) (2009) 468–472.

[4] L. P. Li. Minimax estimation of the parameter of Ailamujia distribution under different loss
functions. Science Journal of Applied Mathematics and Statistics 4 (5) (2016) 229–235.

[5] M. C. Bhattacharjee. The class of residual lives and some consequences. Journal of Discrete
Algebra 3 (1) (1982) 56–65.

[6] C. L. Chiang. Introduction to Stochastic Processes in Biostatistics. Wiley, New York, 1968.

[7] E. S. Deevey. Life tables for natural populations of animals. Quarterly Review of Biology
22 (1947) 283–314.

[8] F. M. Guess, J. C. Steele, T. M. Young and R. V. Leon. Applying novel mean residual life
confidence intervals. International Journal of Reliability Applications 7 (2) (2006) 177–186.

[9] M. A. Beg and N. Singh. Estimation of P (X > Y ) for the Pareto distribution. IEEE Trans.
Reliability 28 (1979) 411–414.

[10] A. K. Maroof and H. M. Islam. Reliability computation and Bayesian analysis of system
reliability with Lomax Model. Safety and Reliability 29 (1) (2009) 5–14.

[11] S. B. Nandi and A. B. Aich. A Note on estimation of some distributions useful in life testing.
IAPQR Trans. 19 (1) (1994) 35–44.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (2) (2021) 193–201 201

[12] K. Vtsaijh, K. Marnthi Nagarauna, D. Siva Kumar and B. Srinivasa Rao. Exponential
log logistic additive failure rate model. International Journal of Scientific and Research
Publications 4 (3) (2014) 1–5.

[13] H. Salih and H. A. Hassan. Some additive failure rate models related with MOEU distri-
bution. American Journal of System Science 4 (1) (2015) 1–10.

[14] B. Sirinvasa Rao, S. Nagendrat and K. Rosaiah. Exponential–Half logismic additive failure
rate model. International eourndl of Scientific and Research 3 (5) (2013) 1–10.

[15] B. Srininasa Rao, R. R. L. Kantam, K. Rosaiah and B. M. Sridhar. Exponential–gamma
additive failure rate model. Journal of Safety Engineering 2 (2A) (2013) 1–16.


	Introduction
	Stress-Strength Reliability
	Additive Failure Rate Models
	Ailamujia-Ailamujia failure rate model
	Ailamujia-exponential failure rate model
	Ailamujia-Weibull failure rate model
	 Ailamujia-Frechet failure rate model
	Ailamujia-Raleigh failure rate model

	Conclusion

