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Abstract: We considered an incompressible fluid-saturated porous layer bounded
by two infinite parallel plates. The Boussinesq approximation and Darcy’s law are
applied. The permeability is assumed to be a linear function of the depth z. The
linear stability is investigated. The long wavelength expansion method is applied to
conduct the weakly nonlinear stability analysis. The evolution equation is derived and
analyzed. A uniformly valid periodic solution of the evolution equation is obtained
by the application of the Poincaré-Lindstedt method. Some numerical simulations
are presented.
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1 Introduction

The greenhouse effect of carbon dioxide is one of the most urgent problems that face the
humanity. The greenhouse gas emissions can be reduced through the geological carbon
dioxide sequestration in deep rock formations. Geological carbon dioxide sequestration is
the process of trapping CO2 that is produced by burning fossil fuels or any other chemical
or biological processes and placing it in a deep rock formation (thousands of feet deep) for
a long-term storage so that it will not affect the atmosphere. This process is comprised
of three stages: capturing, transporting, and injecting CO2 into the geological formation
such as gas reservoirs, unmineable coal seams, and basalt formations [1–4]. The capacity
of such formations is estimated worldwide to be between 675-900 Gt of carbon in the
gas reservoirs, between 1000-10000 Gt for saline aquifers, and for unmineable coal it
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is between 3-200 Gt of carbon. Depending on the geothermal gradient and the fluid
properties, CO2 migrates and reacts with the rock formation. Hence, many trapping
mechanisms such as structure trapping, residual-phase trapping, solubility trapping, and
mineral trapping have been contributing to retention of the CO2 sequestration for a very
long period [5].

In the past few decades, the interest in the understanding of the convection in porous
media has been increased. Vast studies have been made in several branches of engineering
and science [6–23]. Natural convection in porous media has been explored in numerous
papers. Horton and Rogers in 1945 and Lapwood in 1948, carried out the stability anal-
ysis of the convection of a fluid in a porous medium for a horizontal fluid layer problem.
The critical Rayleigh number was 4π2 [6, 7]. Foster [8, 9] applied the amplification the-
ory to study time dependent coefficients of a system of partial differential equations.
They determined the onset of instability in terms of critical time. King et. al. use the
amplification method to study the carbon dioxide sequestration problem in anisotropic
porous media [10, 11]. The problem of convection of carbon dioxide storage in saline
aquifers has been investigated by Hassanzadeh et. al. [12–14] and Emami-Meybodi et.
al. [15,16]. A step-function base profile has been considered by Wanstall and Hadji [17].
They conducted the stability analysis by applying the normal modes approach. They
investigated the linear and nonlinear stability to obtain the minimum thickness of the
layer of the saturated brine that is required for the fluid motion.

Neufeld et. al. [18] performed laboratory experiments to study the convective behavior
of CO2 brine. Their numerical simulations depicted the relation between the convective
flux and the Rayleigh number. To study the dissolution of CO2 into brine, Neufeld
et. al. [19] used mixtures of methanol and ethylene-glycol solutions in water in their
laboratory experiments. Batchelor and Nitsche [20] considered the small disturbance of
a stationary stratified fluid. They showed numerically that the growth rate is a function
of the Rayleigh number, the Prandtl number, and the horizontal wavenumber of the
disturbance. A nonlinear stability analysis of a convection in porous layer with finite
conducting boundaries has been conducted by Riahi [21]. Hill and Morad [22] have
studied the convective stability in an anisotropic porous medium. They considered a
water-saturated porous layer bounded by two horizontal parallel plates. The Darcy
equation with variable permeability is used to govern the fluid motion.

Vo and Hadji [23] investigated the linear and weakly nonlinear stability of the con-
vection induced by sequestration of CO2 in a perfectly impervious geological formation.
They considered a horizontal layer of brine saturated porous medium confined between
two horizontal planes that are impermeable to mass flow. They used the classical nor-
mal modes to investigate the linear stability. The weakly nonlinear stability is studied
by applying the long wavelength asymptotic expansion method that is valid for small
Damköhler numbers. They determined that the Rayleigh number and its corresponding
wavenumber are independent of the depth of the formation.

Vo and Hadji [23] described the model that mimics the Rayleigh-Taylor instability
to study the carbon sequestration. They considered the heavy carbon-saturated layer
(Z0 1] on the top of the light free-carbon layer [0 Z0). This situation leads to a very thin
unstable stratified layer at z = Z0 across which buoyancy diffuses. The stratified basic
profile is defined as a step function and the reference carbon concentration in porous
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media is defined by

Cref (z) =

0, 0 < z < Z0,
z − Z0

1− Z0
, Z0 < z < 1.

The basic temperature profile is defined by TB = T1 + (T2−T1)H(z−Z0), where T1 and
T2 are temperature values at the lower region and the upper region, respectively, and H
is the Heaviside function.

In this paper, we considered the same model as that proposed by Hill and Morad [22],
where the instability is quantified in terms of the long time evolution with the Dirichlet
and Neumann boundary conditions at the upper and lower walls, respectively. This
paper is organized as follows: In Section 2, a full description of the problem is presented
and the problem is governed by a mathematical model. Moreover, the basic profile of
the concentration is derived. In Section 3, the steady-state linear stability is studied.
The weakly nonlinear stability is investigated by the application of the long wavelength
exapansion method in Section 4. In Section 5, the Poincaré-Lindstedt method is used
to obtain a uniformly valid periodic solution. Numerical simulations are introduced and
the results are concluded in Section 6.

2 Mathematical Formulation

In this section we considered the mathematical model that has been discussed by Hill
and Morad [22], Wanstall and Hadji [17], and Vo and Hadji [23]. That is, we considered
an incompressible fluid-saturated porous layer bounded by two infinite horizontal parallel
plates. We assumed that the Boussinesq approximation and Darcy’s law are applied and
the fluid motion is governed by the Darcy equation. Therefore, the nondimensionalized
governing system of equations comprised of the Darcy equation, the continuity equation,
the conservation of carbon dioxide equation, and the equation of solute balance is given
by

∇ · u = 0, (1a)

1

F(z)
u = ∇ p− ck, (1b)

∂ c

∂ t̂
+ u · ∇ c+

(
dM(z)

dz

)
w =

ξ

R
∇2
H c+

1

R

(
∂2c

∂z2
−Dac

)
, (1c)

ρ = ρ0 [1 + γc (c− C0)], (1d)

where M(z) is the basic profile of concentration, p is the pressure, k is the vertical

unit vector, ρ0 is the reference density, ξ =
κh
κv

is the ratio of the horizontal and verti-

cal solutal difusion, F(z) is the z-dependent dimensionless permeability, Da =
β H2

ψp κv
is

the Damökhler number, β is the reaction rate and the control parameter, namely, the

Rayleigh-Darcy number R =
γc g H K0 C0

φp ν κν
, where γc is the solutal expansion, g is the

gravitational constant, H is the distance between the two plates, K0 is the reference
permeability value, C0 is the reference concentration of CO2, φp is the porosity, ν is
the kinematic viscosity, and κν is the vertical CO2 diffusion coefficient. The system is
subject to the following boundary conditions:

u = 0, at z = 0, z = 1,
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and
∂c

∂z
= 0, at z = 0, z = 1.

For more details about this model, please, refer to [22], [17] and [23]. Figure 1 describes
the problem with its boundary conditions.
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Figure 1: An incompressible fluid-saturated porous layer bounded by two infinite horizontal
parallel plates.

The step function base state is modeled by the partial differential equation

∂CB

∂t̂
=

1

R

(
∂2CB
∂z2

−DaCB
)
, 0 ≤ z ≤ 1, t > 0, (2)

subject to the boundary conditions

∂CB
∂z

= 0 at z = 0, z = 1,

and the initial condition

CB(z, 0) =

{
0, 0 ≤ z < Z0,

1, Z0 ≤ z ≤ 1.

The solution of equation (2) is given by

CB(z, t̂) = 1− Z0 − 2

∞∑
n=1

sin(nπ Z0)

nπ
cos(nπ z) exp(−Da+ n2 π2

R
t̂). (3)

Figure 2 below shows the plot of the concentration basic profile as a function of z for
some values of t.

Following [17], the basic concentration profile consists of a light layer 0 < z < Z0

under a heavier one, Z0 < z < 1, which can be described by the Heaviside function, i.e.,
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Figure 2: The plot of the concentration profile cB(z) as a function of the depth of the fluid
layer z and t = 0.001 (dotted line), t = 0.015 (dashed line) and t = 0.025 (solid line).

M(z) = H(z − Z0). Upon subtracting the basic state profiles, introducing the poloidal
representation for the velocity field u = ∇ × (∇ × φk), and considering the vertical
component of the velocity, we removed the pressure term and the system of equations
(1a)-(1d) reduced to

F(z)∇2φ−F ′(z) dφ
d z

= −F2(z) c, (4a)

ct̂ + (∇Hφz) · (∇H c)−∇2
H φ cz = −∇2

H φ δ(z−Z0) +
ξ

R
∇2
Hc+

1

R

(
∂2c

∂z2
−Dac

)
, (4b)

where φ is the poloidal representation for the divergence velocity field, δ(z − Z0) is the
Dirac delta function, c is the deviation of the concentration in volume fraction from the
diffusive state, R is the Rayleigh-Decay number, and ∇H = (∂/∂x, ∂/∂y). It is subject
to the following boundary conditions:

φ = 0 at z = 0, 1, and
∂c

∂z
= 0 at z = 0, z = 1. (5)

Upon introducing the transformation Φ = Rφ and
∂

∂t
= R

∂

∂t̂
, the equations (4a) and

(4b) reduced to

F(z)∇2Φ−F ′(z) dΦ

d z
= −RF2(z) c, (6a)

ct + (∇HΦz) · (∇H c)−∇2
H Φ cz = −∇2

H Φ δ(z − Z0) + ξ∇2
Hc+

(
∂2c

∂z2
−Dac

)
(6b)

subject to the following boundary conditions:

Φ = 0 at z = 0, 1, and
∂c

∂z
= 0 at z = 0, z = 1. (7)

To investigate the linear and weakly nonlinear stability, we will assume ξ = 1, the
convection effect dominates over the reaction effect, i.e., Da = 0 and F(z) = 1+λz, |λ| <
1, see [22]. Hence, equations (6a) and (6b) become

(1 + λz)∇2Φ− λ dΦ

d z
= −R (1 + λz)2 c, (8a)
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ct + (∇HΦz) · (∇H c)−∇2
H Φ cz = −∇2

H Φ δ(z − Z0) +∇2
Hc+

∂2c

∂z2
(8b)

subject to the following boundary conditions:

Φ = 0 at z = 0, 1, and
∂c

∂z
= 0 at z = 0, z = 1. (9)

3 Steady-State Linear Stability Analysis

Following the standard procedure used in [24], we obtained the following linearized system
of equations governing the convective perturbations:

(1 + λz)∇2φ− λdΦ

dz
= −(1 + λz)2Rc, (10a)

∇2c = −∇2
H φ δ(z − Z0) (10b)

subject to the following boundary conditions:

Φ = 0 at z = 0, 1, and
∂c

∂z
= 0 at z = 0, z = 1. (11)

To investigate the linear stability, we will introduce the normal modes

Φ = eiα·xW (z)(z), c = eiα·xS(z), (12)

where x = (x, y) and |α| = α, we obtained

(1 + λz)(D2W (z)− α2W (z)) = −(1 + λz)2RS(z), (13a)

(D2 − α2)S(z) = α2W (z) δ(z − Z0), (13b)

where D = d
d z . The corresponding Dirichlet and Neumann boundary conditions are

W = 0 at z = 0, 1, DS = 0 at z = 0, 1.
Expand W,S and R in terms of the small wave number α and keep λ of order 1.

W = W0 + α2W2 + · · · , S = S0 + α2S2 + · · · and R = R0 + α2R2. The O(1) problem is
given by

D

[
1

1 + λz
DW0

]
= −R0 S0, (14a)

D2S0 = 0 (14b)

subject to the boundary conditions W0(0) = W0(1) = 0 and DS0(0) = DS0(1) = 0. The
solution of the equations (14a) and (14b) is given by

S0 = 1,

W0 = −R0G

6

[
(3z2 + 2λz3)− L1(2z + λz2)

]
,

where L1 = ((3/2) + λ)(1− λ/2).

When proceeding to the next order O(α2), the equation of the concentration becomes

D2S2 − S0 = W0 δ(z − Z0). (15)
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It has a unique solution if and only if the follwing condition is satisfied:∫ 1

0

S∗0 [S0 +W0 δ(z − Z0)] dz = 0,

where S∗0 is the solution of the adjoint problem of equation (14b), namely, D2S∗0 = 0
with the corresponding boundary conditions DS∗0 (0) = DS∗0 (1) = 0 to get S∗0 = 1.
Upon applying the Fredholm alternative at O(α2) we obtain the critical Rayleigh-Darcy
number

R0 =
6

L1(2Z0 + λZ2
0 )− (3Z2

0 + 2λZ3
0 ).

As λ→ 0, the critical Raleigh-Dracy number becomes R0 =
2

Z0 − Z2
0

, which is consistent

with what has been obtained in [17]. Figure 3 depicts that the plot of the critical
Rayleigh-Dracy number R0 is decreased as the values of λ have increased in the right
figure and the left figure shows that the minimum value of the critical Rayleigh-Dracy
number R0 is at Z0 = 0.5 and it goes to infinity as Z0 approaches 0 or 1.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

λ

0

20

40

60

80

100

R
0

Z
0
=0.1

Z
0
=0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z
0

0

100

200

300

400

500

600

R
0

λ=-0.5

λ=0

λ=0.5

Figure 3: (Right) Plot of the critical Rayleigh-Dracy number R0 as a function of λ for Z0 = 0.1
(solid line) and Z0 = 0.5 (dashed line). (Left) Plot of the critical Rayleigh-Dracy number R0 as
a function of Z0 for λ = 0 (solid line), λ = −0.5 (dashed line) and λ = 0.5 (dotted line).

4 Weakly Nonlinear Stability

In this section we will investigate the weakly nonlinear stability by deriving the evolution
equation. Following the long wavelength analysis procedure used in [25] and [26] we
introduce the small parameter ε� 1 and we scale X = εx, Z = z, τ = ε4t and keep λ of
O(1) quantity in equations (8a) and (8b). Moreover, we expand

Φ = Φ0 + ε2Φ2 + · · · , c = c0 + ε2c2 + ε4c4 + · · ·

and R = R0 + ε2µ̂2. The solution of the leading order proplem that is described by

(1 + λZ)D2Φ0 − λDΦ0 = −(1 + λZ)2R0 c0, (16a)

D2c0 = 0, (16b)

with boundary conditions Φ0(0) = Φ0(1) = 0 and Dc0(0) = Dc0(1) = 0 is given by

Φ0 = −R0 h

6

[
(3Z2 + 2λZ3)− L1 (2Z + λZ2)

]
,

c0 = h(X, τ),
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where L1 = (1.5 + λ)(1− λ/2).
When proceeding to the next order, the O(ε2) problem is described by

D2Φ2 − λDΦ2 + (Φ0)XX = −(1 + λZ)[R0 c2 + µ̂2 c0], (18a)

(DΦ0)X (c0)X = −(Φ0)XX δ(Z − Z0) +D2c2 + (c0)XX . (18b)

Application of the solvability condition to equation (18b) yields

R0 =
6 + 3λ

(3 + 2λ)(Z0 + (λ/2)Z2
0 )− (3Z2

0 + 2λZ3
0 )(1 + λ/2)

. (19)

As λ→ 0, the critical Raleigh-Dracy number becomes R0 =
2

Z0 − Z2
0

, which is consistent

with what has been obtained in [17]. Proceeding to solve O(ε2) problem and because
of the appearance of the δ(Z − Z0) term, we will divide the problem in two cases and
equation (18b) will be divided into two equations:

the light layer when 0 < Z < Z0:D2c−2 = −R0 (c0)2X (Z + λZ2)− (c0)XX , (20a)

the heavy layer when 0 < Z < Z0:D2c+2 = −R0 (c0)2X (Z + λZ2)− (c0)XX , (20b)

with boundary conditions Dc−2 (0) = 0 and Dc+2 (1) = 0. Thus, the solutions of equations
(20a) and (20b) are

c−2 = −R0 (hX)2

36
[6Z3 + 3λZ4 − L1(3Z2 + λZ3)]− hXX

2
Z2 +A−,

c+2 = −R0 (hX)2

36
[6Z3 + 3λZ4 − L1(3Z2 + λZ3)]− hXX

2
(Z2 − 2Z) +A+,

where A− = Z0 hXX +A+ and

A+ =
R0 (hX)2

720
[(30 + 12λ)− 5L1(4 + λ)]− hXX

6
(2 + 3Z2

0 ). Similarly, the solution

of equation (18a) is given by

Φ−2 = −R0 hXX
10080

[
92λ3 Z7 + (182− 35L1)λ2 Z6 − (588λ+ 98λ2 L1)Z5

−(840 + 140λL1)Z4 + L1 − ((1680Z2
0 − 3360Z0 + 1120)λ− 280L1)Z3

−(2520Z2
0 − 5040Z0 + 1680)Z2

]
+
R2

0 (hX)2

30240

[
72λ2 Z7 + (294λ− 35L1)Z6

+(252− 210λL1)Z5 − 210L1 Z
4 − (168λ2) + 420λ− 70L1(4λ+ λ2))Z3

−(252λ+ 630− 105L1 (4 + λ))Z2
]
− µ̂2 h

6
(2λZ3 + 3Z2) +

B−

2
(λZ2 + 2Z),

Φ+
2 = −R0 hXX

10080

[
92λ3 Z7 + (182− 35L1)λ2 Z6 − (588λ+ 98λ2 L1)Z5

+(1260λ− 3360− 70λL1)Z4 − ((1680Z2
0 + 1120)λ− 1680− 280L1)Z3

−(2520Z2
0 + 1680)Z2

]
+
R2

0 (hX)2

30240

[
72λ2 Z7 + (294λ− 35L1)Z6 + (252− 210λL1)Z5
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−210L1 Z
4 − (168λ2) + 420λ− 70L1(4λ+ λ2))Z3 − (252λ+ 630− 105L1 (4 + λ))Z2

]
− µ̂

2 h

6
(2λZ3 + 3Z2) +

B+

2
(λZ2 + 2Z) +A++,

where

B+ =
R0 hXX

15120 (2 + λ)

[
288λ3 − 546λ2 − (1260Z4

0 + 5040Z2
0 + 1344)λ+ 5040Z3

0

+7560Z2
0 + 2520− L1(105λ3 + 294λ2 − 420λ− 840)

]
+

R2
0 (hX)2

15120 (2 + λ)

[
(96λ2 + 378λ− 378− L1 (35λ2 + 175λ+ 210)

]
+
L1 µ̂2 h

3
,

B− =
Z2
0 R0 hXX

2
+B+

A++ =
R0 hXX
10080

[
96λ3 + 182λ2 − (1680Z2

0 + 448)λ+ (840− 1260λ)− 2520Z2
0 − 840

−L1(35λ3 + 98λ2 − 140λ− 280)
]

+
R2

0 (hX)2

30240

[
(96λ2 + 378λ+ 378

−L1 (35λ2 + 175λ+ 210)
]

+
µ̂2 h

6
(2λ+ 3)− B+

2
(2 + λ).

Proceeding to the next order O(ε4), we have

D2c4 = hτ + hX (DΦ2)X − (Φ0)XX Dc2 + (DΦ0)X (c2)X + (Φ2)XX δ(Z − Z0)− (c2)XX
(22)

with boundary conditions Dc4(0) = Dc4(1) = 0. Integrating equation (22) with respect
to Z from Z = 0 to Z = 1, yields the sought evolution equation

hτ = −AhXXXX − µ̂2B hXX + C (hX)2XX + E h2X hXX , (23)

where

A = −R0 (Z0 − Z2
0 )

10080 (2 + λ)

{
[35(Z4

0 + Z3
0 + Z2

0 + Z0)L1 − 96(Z5
0 + Z4

0 + Z3
0 + Z2

0 + Z0)]λ4

+[(70Z4
0 + 168Z3

0 + 168Z2
0 + 168Z0 + 70)L1 − (192Z5

0 + 374Z4
0 + 374Z3

0 + 374Z2
0

+374Z0 + 192)]λ3 + [(196Z3
0 + 56Z2

0 + 56Z0 + 196)L1 − (784Z4
0 − 1484Z2

0 − 84Z0

+364)]λ2 − [280(Z2
0 + 2Z0 + 1)L1 − 56(36Z3

0 + 21Z2
0 + Z0 + 16)]λ− 560(Z0 + 1)L1

−1680(2Z2
0 − Z0 + 1)

}
,

B =
1

3
(Z0 − Z2

0 ) (λZ0 + L1),

C =
R2

0 (Z0 − Z2
0 )

30240 (2 + λ)

{
[(72Z5

0 + 72Z4
0 + 72Z3

0 + 72Z2
0 − 96Z0)− 35(Z4

0 + Z3
0 + Z2

0

+Z0)L1]λ3[(144Z5
0 + 438Z4

0 + 438Z3
0 + 438Z2

0 − 318Z0 − 192)− (70Z4
0 + 280Z3

0

+280Z2
0 − 140Z0 − 70)L1]λ2 + [(588Z4

0 + 840Z3
0 + 840Z2

0 − 756)− (420Z3
0 + 630Z2

0

+70Z0 − 350)L1]λ+ 504Z3
0 + 504Z2

0 + 504Z0 − 756− 420(Z2
0 + Z0 − 1)L1

}
,
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E =
R2

0

30240

[
96λ2 + 504λ+ 756− (84λ2 + 476λ+ 870)L1 + (21λ2 + 140λ+ 280)L2

1

]
.

The evolution equation (23) is of parabolic type which is well-posed whenever the coef-
ficient of the fourth derivative, −A, is negative. Figure 4 shows that −A is negative for
all values of λ and Z0.

-1 -0.5 0 0.5 1

λ

-2

-1.5

-1

-0.5

0

A

Figure 4: The plot of A as a function of λ, where |λ| < 1 and 0 ≤ Z0 ≤ 1.

5 Uniformly Valid Periodic Solution

Upon using the general procedure of the Biot number [27], the term −γ̂ h will be added
to equation (23) to obtain

hτ = −AhXXXX − µ̂2B hXX − γ̂ h+ C (hX)2XX + E h2X hXX . (24)

Upon introducing the following scales and transformations: h = a f, ξ = bX, τ =
e τ̂ , γ = aγ̂ and e = 1/a, we have

fτ = −fξξξξ − 2µ2 fξξ − γ f + Γ (fξ)
2
ξξ + (fξ)

2 fξξ, (25)

where

a =

√
A
E
, b =

(
1

A

√
E
A

)1/4

, Γ =
C√
AE

and µ2 =
µ̂2 a b2

2
.

To investigate the stability of the static solution of equation (25) we consider the linear
part

fτ = −fξξξξ − 2µ2 fξξ − γ f. (26)

By introducing the normal modes f(ξ, τ) = eστ+iθ ξ, the following dispersion relation is
obtained:

σ = −(θ2 − µ2) + µ4 − γ. (27)

Therefore, the trivial static solution, f = 0, is unstable when γ < µ4. Upon introducing
the small parameter ε� 1, the weakly nonlinear stability of the evolution equation can



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (2) (2021) 179–192 189

be investigated. To conduct the perturbation analysis around the linear solution, we
expand

γ = µ4 − ε γ1 − ε2 γ2, τ = ε2 η

and
f = ε f1 + ε2 f2 + ε3 f3 + · · ·

The O(ε) problem of equation (25) is described by

(f1)ξξξξ + 2µ2 (f1)ξξ + γ f1 = 0 (28)

whose period solution on the interval

(
−π
µ
,
π

µ

)
is f1 = cos(µ ξ). Because of the sec-

ular terms that are expected due to the linear part and the nonlinear terms, we will
apply the Poincaré-Lindstedt method [28] to obtain a uniformly valid periodic solution.
Substituting ν = ω ξ and expanding ω = 1 + ε ω1 + ε2 ω2 + · · · in equation (25) we obtain

ω4 fνννν + 2µ2 ω2 fνν + γ f = ω4[Γ (fν)2νν + (fν)2 fνν ]. (29)

Define the operator L (f) = fνννν+2µ2 fνν+µ4 f . The leading order problem is described
by

L (f1) = (f1)νννν + 2µ2 (f1)νν + µ4 f1 = 0 (30)

whose solution is f1 = cos(µ ν). The O(ε2) problem is described by

L (f2) = γ1 cos(µν) + µ4 cos(2µν). (31)

To remove the mixed-secular terms, we set γ1 = 0, that is, there is no subcritical insta-
bility. Thus, the solution of L (f2) = µ4 cos(2µν) is f2 = 1

9 cos(2µν). When proceeding
to the next order, the O(ε3) problem is described by

L (f3) =

[
γ2 − 4ω2

1 µ
4 − Γµ4

4
− 5µ4

9

]
cos(µν)− 20ω1 µ

4

9
cos(2µν)

+

[
Γµ4

4
+

5µ4

9

]
cos(3µν). (32)

To remove the secular term, we set γ2 − 4ω2
1 µ

4 − Γµ4

4
− 5µ4

9
= 0 and then we solve for

ω1 to get

ω1 = ±

√
γ2

4µ4
− Γ

16
− 5

36
.

Therefore, the solution of equation (32) is given by

f3 = −5ω1

36
cos(2µν) +

9Γ + 20

2916
cos(3µν). (33)

Thus, a uniformly valid steady state of equation (25) is given by

f = ε cos((1 + εω1)ξµ) + ε2
1

9
cos(2(1 + εω1)ξµ)

+ ε3
[
−5ω1

36
cos(2(1 + εω1)ξµ) +

9Γ + 20

2916
cos(3(1 + εω1)ξµ)

]
. (34)

Figure 5 shows the plot of the uniformly valid periodic solution of equation (25) as a
function of ξ for γ2 = 10 and µ = 0.7.
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Figure 5: A plot of the periodic solution of equation (25) as a function of ξ with γ2 = 10 and
µ = 0.7.
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Figure 6: The plot of the velocity Φ0 as a function of the depth Z with λ = −0.5 (dotted line),
λ = 0 (solid line) and λ = 0.5 (dashed line).
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6 Discussion and Conclusion

In this paper, we studied the mathematical model that was proposed by Hill and Morad
[22]. That is, we considered an incompressible fluid-saturated porous layer bounded by
two infinite parallel plates. The Boussinesq approximation and Darcy’s law are applied.
The permeability is assumed to be a linear function of the depth z, namely, F(z) = 1+λ z.
The base state of the model consists of a light free-carbon layer, [0, Z0), at the bottom and
a havier carbon-saturated layer, (Z0, 1], at the top, Figures 1 and 2 illustrate the problem.
Steady-state linear stability analysis is conducted and the critical Rayleigh-Darcy number

is obtained, namely, R0 =
6

L1(2Z0 + λZ2
0 )− (3z2) + 2λZ3

0 )
. If we let λ → 0, then the

critical Rayleigh-Darcy number becomes R0 =
2

Z0 − Z2
0

, which is consistent with the

value obtained in [17]. The relation between the critical Rayleigh-Darcy number and the
permeability coefficient λ is depicted in Figure 3.

The weakly nonlinear stability analysis is conducted by the long wavelength expansion
method and the evolution equation (23) is derived and analyzed. Figure 6 shows the
velocity, Φ0, as a function of the depth Z for different values of the permeability coefficient
λ.

Moreover, the dispersion equation is obtained and the relation between the growth
rate, the Biot number and the wave number is depicted in Figure 7 and a uniformly valid
periodic solution is obtained by the application of the Poincaré-Lindstedt method. The
plot of this periodic solution is shown in Figure 5.
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