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is driven using Lyapunov theory. It is shown that the tracking error converges to
zero when the iteration number increases to infinity. Simulations are performed on
the parallel Delta robot to demonstrate the feasibility of the proposed approach and
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conducted to point out the effectiveness of the model-based ILC.
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1 Introduction

Over the years, many robot manipulators have been invented to satisfy industrial needs,
for example, the Stewart platform [1] and the Delta robot [2]. The conventional con-
trol methods like PD/PID are often used to achieve the required tasks of these robots.
However, robot manipulators are subject to external disturbances and their dynamics
are characterised by strong coupling between the joints, which has an important effect at
high dynamic movements. Therefore, PD/PID controllers are not satisfactory for appli-
cations that require high tracking accuracy at high cadence. This is due to the fact that
the controller gains are selected without considering the coupling effects and external
disturbances. To overcome these problems, many advanced controllers have been suc-
cessfully implemented. One of the interesting techniques is the model-based controller [3].
This centralized strategy integrates the nonlinear robot dynamics in the control design
to stabilise and to compensate a large part of the coupled dynamics. However, the lack of
very accurate knowledge of the system may decrease the tracking performance, especially
for robot manipulators that move at high speed. Other advanced controllers have been
developed by considering in their objective the disturbances and coupling effects, for
instance, the nonlinear PD plus sliding mode control [4], robust H-infinity control [5, 6],
and neural network controllers [7, 8].

Robot manipulators are usually used for repetitive tasks such as laser cutting [9] and
pick and place operations [10], where the desired trajectory is repeated over a finite time
interval. Unfortunately, the most well-known controllers are not able to benefit from the
task repeatability which yields the same performance without improvement. In order
to exploit these repetitions, the idea of iterative learning control approach has emerged.
The ILC controller takes into account the information of the previous cycles in order to
improve the tracking performances of the current cycle.

In the early 1990s, Arimoto proposed a series of learning laws such as the PD-type
and PID-type ILC [11]. After that, the ILC has been extensively studied, where several
ILC schemes for robot manipulators have been proposed [12,13]. Others strategies, based
on adaptive and robust learning have been developed to overcome parametric and non-
parametric uncertainties effects, they are: the adaptive ILC [14], adaptive switching PD
control strategy [15], and robust ILC [16]. For a comprehensive review on the ILC, the
readers may refer to the survey given in [17] and [18]. It is noted that the ILC has been
successfully applied in many areas such as robotics [19,20] and biological systems [21].

The main contribution of this work is to develop a model-based ILC for the tra-
jectory tracking problem of perturbed robot manipulators performing repetitive tasks.
In contrary to the traditional ILC [11], the proposed controller allows to compensate
the unknown uncertainties of robot manipulators as well as the external disturbances.
Moreover, the model-based ILC is more practical than the adaptive ILC [22], [15] that
assumes the dynamic model can be expressed by a pre-multiplication of two separate
knowing matrices and unknowing vector, which can not be the case for a complex robot
like our application of the "Delta robot". Thus, the proposed control law consists of two
terms. The first item is a model-based controller represented by the pre-multiplication
between the PD controller and the inertia matrix. The second item is a learning control
scheme that consists of a PD-type ILC with an additional robust term. Compared to the
existing works related to the application of ILC, the proposed controller can be applied
to uncertain nonlinear dynamic, unlike [16, 23, 24], where the controller is designed to
discrete-time linear systems. Unlike [13, 15, 25], where the ILC schemes are specifically
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developed for repetitive disturbances, the controller in this work can deal with nonrepet-
itive disturbances. The stability of the proposed control is proved using the Lyapunov
method. It is shown that the tracking error converges to zero in a finite time interval
when the number of iterations approaches infinity. To demonstrate the feasibility and the
performances of the proposed controller, simulations have been performed on a parallel
Delta robot and followed by a comparative study between the proposed controller, the
conventional PID controller and the traditional PD plus PD-type ILC controller.

Throughout this paper, we use the notation λmin(A) and λmax(A) to indicate the
minimum and the maximum eigenvalue of matrix A, and for any x ∈ Rn, the norm
of vector x is defined as ‖x‖=

√
xTx, while the norm of matrix A is defined as follows:

‖A‖=
√
λmax(ATA).

2 Problem Formulation

Consider the actual dynamic model for a rigid robot with n-degrees of freedom described
by

M(qk)q̈k + C(qk, q̇k)q̇k +G(qk) + wk(t) = τk, (1)

where qk ∈ Rn is the generalized joint vector, M(qk) is the inertia matrix, C(qk, q̇k)q̇k is
a vector resulting from Coriolis and centrifugal forces, G(qk) is the gravity torque vector,
τk is the control input vector containing the torques to be applied at each joint and wk(t)
is the vector containing external disturbances. The index k denotes the iteration number.

The actual robot dynamics (1) can be written using the nominal model as follows:

Mn(qk)q̈k + Cn(qk, q̇k)q̇k +Gn(qk) + dk(t) = τk, (2)

where
dk(t) = ∆M(qk)q̈k + ∆C(qk, q̇k)q̇k + ∆G(qk) + wk(t). (3)

Our objective is to design an iterative control law τk, which allows the robot to track
any given trajectory qd as k tends to infinity, i.e., limk→∞ q̃k(t) = qd(t) − qk(t) = 0,
limk→∞ ˙̃qk(t) = q̇d(t)− q̇k(t) = 0, ∀t ∈ [0, T ].

The dynamic motion equation (2) has the following fundamental properties, which
facilitate the convergence analysis of the proposed control law [22]:

(P1) The inertia matrix Mn(qk) is symmetric, positive and satisfies

0 < α ≤ ‖Mn(qk)‖ ≤ β,

where α, and β are known positive constants.
(P2) There exists a positive constant KM such that the inertia matrix Mn(qk) is

globally Lipschitz continuous in its arguments

‖Mn(qk+1)−Mn(qk)‖ < KMn‖qk+1 − qk‖.

(P3) Gn(qk) is globally Lipschitz continuous in its arguments

‖Gn(qk+1)−Gn(qk)‖ ≤ Kg‖qk+1 − qk‖,

where Kg is a known positive constant.
(P4) The following upper bounds are valid:

‖Cn(qk, q̇k)‖ ≤ Kc1‖q̇k‖, ‖Gn(qk)‖ ≤ KG, ∀qk, q̇k ∈ Rn,
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where Kc1 and KG are known positive constants.
(P5) For robots having exclusively revolute joints, there exist constants Kc1 >

0 and Kc2 > 0 such that
‖Cn(qk+1, q̇k+1)q̇k+1 − Cn(qk, q̇k)q̇k+1‖ ≤Kc1‖q̇k+1 − q̇k‖‖q̇k+1‖+Kc2‖qk+1 − qk‖‖q̇k+1‖2.

The following assumptions are made:
(A1) The reference trajectory and its first and second time-derivatives, namely, qd,

q̇d, and q̈d are bounded ∀t ∈ [0, T ] and ∀k ∈ Z+.
(A2) The resetting condition is satisfied:

qk(0) = qd(0), q̇k(0) = q̇d(0), ∀k ∈ Z+.

(A3) The robot velocity is bounded by a known constant Vm such that

‖q̇k‖ ≤ Vm.

(A4) The external disturbances and the model uncertainty are bounded by a known
constant ld such that

‖dk(t)‖ ≤ ld.
In this paper, the following lemma is used.

Lemma [26]: The inertia matrix Mn(qk) has the following property:

‖Mn(qk+1)−1 −Mn(qk)−1‖ ≤ KMn
α−2‖qk+1 − qk‖.

Proof.

Mn(qk+1)
−1 −Mn(qk)

−1 = −Mn(qk+1)
−1(Mn(qk+1)−Mn(qk))M(qk)

−1.

From (P1) and (P2) we can obtain

‖Mn(qk+1)−1 −Mn(qk)−1‖ ≤ KMn
α−2‖qk+1 − qk‖.

3 Iterative Learning Control

3.1 Controller design

The model-based ILC is given below

τk = Mn(qk)[Kpq̃k +Kd
˙̃qk + uk], (4)

and the ILC expression is given by

uk+1 = uk + Λq̃k + Γ ˙̃qk + µsgn(z̃k), (5)

where the variables z̃k and zk are defined as

z̃k = zk+1 − zk, (6)

zk(t) = ˙̃qk(t) + ζq̃k(t). (7)

Kp,Kd,Γ, and Λ are diagonal matrices, and µ, ζ are positive constants.
The scheme of the proposed controller is illustrated in Fig. 1, where xd represents

the desired trajectory in the task space and the IGM indicates the inverse geometric
model.
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Figure 1: The proposed control scheme.

3.2 Convergence analysis

To simplify the notation, let

Mn(qk) = Mn,k, Cn(qk, q̇k) = Cn,k, Gn(qk) = Gn,k, dk(t) = dk.

In the k-th iteration, equation (2) can be rewritten as

q̈k = kpq̃k + kd ˙̃qk + uk −M−1n,kCn,kq̇k −M−1n,kGn,k −M−1n,kdk. (8)

Similarly, in the (k+1)-th iteration, we have

q̈k+1 = kpq̃k+1 + kd ˙̃qk+1 + uk+1 −M−1n,k+1Cn,k+1q̇k+1

−M−1n,k+1Gn,k+1 −M−1n,k+1dk+1.
(9)

For the purpose of convergence proof, we assume that

Kp = ζKd and Λ = ζΓ. (10)

We also define the variable δqk as

δqk = q̃k+1 − q̃k. (11)

Theorem. Consider the system (2) under assumptions (A1-A4), properties (P1-P5),
and control law (4). Then the position and velocity tracking errors converge to zero as
k approaches infinity over a finite-time interval [0, T ], i.e., limk→∞ qk(t) = qd(t) and
limk→∞ q̇k(t) = q̇d(t), ∀t ∈ [0, T ], if the gains of the controller are selected as:

2λmin(Kd − ζI) ≥ λmax(Γ)− 2ζ +
a1 + a2

ζ
≥ 0, (12)

2λmin(Kd − ζI) ≥ λmax(Γ) + a3 ≥ 0, (13)

4AB ≥ C2, (14)

µ− 2ldα
−1 > γ, (15)

where
A = ζ2λmax(Γ)− 2ζ2λmin(Kd − ζI)− 2ζ3 + ζ(a1 + a2), (16)

B = λmax(Γ)− 2λmin(Kd − ζI) + a3, (17)

C = a1 + a2 + ζa3, (18)
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and
a1 = 2(α−1Kg +KMα

−2KG), (19)

a2 = 2(α−1Kc2V
2
m + α−2KMKc1V

2
m), (20)

a3 = 4α−1Kc1Vm, (21)

γ is a positive constant.
Proof : Consider the following Lyapunov function:

Vk(t) =

∫ t

0

zTk Γzkdσ. (22)

Hence

∆Vk = Vk+1 − Vk =
∫ t

0
zTk+1Γzk+1dσ −

∫ t

0
zTk Γzkdσ =

∫ t

0
z̃Tk Γz̃k + 2z̃Tk Γzkdσ. (23)

We have ¨̃qk+1 − ¨̃qk = q̈d − q̈k+1 − q̈d + q̈k. By subtracting (9) from (8), we obtain

¨̃qk+1 − ¨̃qk = −Kp(q̃k+1 − q̃k)−Kd( ˙̃qk+1 − ˙̃qk)− uk+1 + uk

+M−1n,k+1Gn,k+1 −M−1n,kGk +M−1n,k+1Cn,k+1q̇k+1

−M−1n,kCn,kq̇k +M−1n,k+1dk+1 −M−1n,kdk.

(24)

By combining the equations (5), (6), (7), (10) and (11) we get

˙̃zk + (Kd − ζI)z̃k + ζ2δqk − (M−1n,k+1Gn,k+1 −M−1n,kGn,k)−
(M−1n,k+1Cn,k+1q̇k+1 −M−1n,kCn,kq̇k)− (M−1n,k+1dk+1 −M−1n,kdk) + µsgn(z̃k) = −Γzk.

(25)
Replacing (25) in (23) gives us

∆Vk =
∫ t

0
z̃Tk Γz̃k − 2z̃Tk

˙̃zk − 2z̃Tk (Kd − ζI)z̃k−
2ζ2z̃Tk δqk + 2z̃Tk (M−1n,k+1Gn,k+1 −M−1n,kGn,k)+

2z̃Tk (M−1n,k+1Cn,k+1q̇k+1 −M−1n,kCn,kq̇k)+

2z̃Tk (M−1n,k+1dk+1 −M−1n,kdk − µsgn(z̃k))dσ.

(26)

Therefore

∆Vk =
∫ t

0
z̃Tk Γz̃k − 2z̃Tk

˙̃zk − 2z̃Tk (Kd − ζI)z̃k−
2ζ2z̃Tk δqk + 2z̃Tk [M−1n,k+1(Gn,k+1 −Gn,k)+

(M−1n,k+1−M
−1
n,k)Gn,k]+2z̃Tk [M−1n,k+1((Cn,k+1−Cn,k)q̇k+1

+Cn,k(q̇k+1 − q̇k)) + (M−1n,k+1 −M
−1
n,k)Cn,kq̇k]+

2z̃Tk (M−1n,k+1dk+1 −M−1n,kdk − µsgn(z̃k))dσ.

(27)

With assumption (A4) and property (P1) we can obtain z̃Tk (M−1n,k+1dk+1 −M−1n,kdk) ≤
‖z̃Tk ‖(2ldα−1), thus∫ t

0
z̃Tk (M−1n,k+1dk+1 −M−1n,kdk − µsgn(z̃k))dσ ≤

∫ t

0
‖z̃Tk ‖(2ldα−1 − µ)dσ. (28)
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Properties (P1-P5), (28) and assumption (A3) lead to

∆Vk ≤
∫ t

0
z̃Tk Γz̃k − 2z̃Tk

˙̃zk − 2z̃Tk (Kd − ζI)z̃k−
2ζ2z̃Tk δqk + 2‖z̃Tk ‖(α−1Kg +KMα

−2KG)‖δqk‖+
2‖z̃Tk ‖(α−1Kc2V

2
m + α−2KMKc1V

2
m)‖δqk‖+

2‖z̃Tk ‖(2α−1Kc1Vm)‖δq̇k‖+ 2‖z̃Tk ‖(2ldα−1 − µ)dσ.

(29)

By replacing (7), (19), (20) and (21) in (29) we obtain

∆Vk ≤
∫ t

0
δq̇Tk Γδq̇k + ζ2δqTk Γδqk + 2ζδq̇Tk Γδqk − 2z̃T ˙̃zk−

2ζ2δqTk (Kd − ζI)δqk − 2δq̇Tk (Kd − ζI)δq̇k−
4ζδq̇Tk (Kd − ζI)δqk − 2ζ2δq̇Tk δqk − 2ζ3‖δqk‖2+

ζa1‖δqk‖2 + a1‖δqk‖‖δq̇k‖+ ζa2‖δqk‖2+

a2‖δqk‖‖δq̇k‖+ a3‖δq̇k‖2 + ζa3‖δqk‖‖δq̇k‖+
2‖z̃Tk ‖(2ldα−1 − µ)dσ.

(30)

Using assumption (A2) one can get

∆Vk ≤ −‖z̃k‖2 − ζ2‖δqk‖2 − ζδqTk (2Kd − 2ζI − Γ)δqk+∫ t

0
δq̇Tk Γδq̇k + ζ2δqTk Γδqk − 2ζ3‖δqk‖2−

2ζ2δqTk (Kd − ζI)δqk − 2δq̇k(Kd − ζI)δq̇k+

ζa1‖δqk‖2 + a1‖δqk‖‖δq̇k‖+ ζa2‖δqk‖2+

a2‖δqk‖‖δq̇k‖+ a3‖δq̇k‖2 + ζa3‖δqk‖‖δq̇k‖+
2‖z̃Tk ‖(2ldα−1 − µ)dσ.

(31)

Hence
∆Vk ≤ −‖z̃k‖2 − ζ2‖δqk‖2 − ζλmin(2Kd − 2ζI − Γ)‖δqk‖2

+
∫ t

0
[λmax(Γ)− 2λmin(Kd − ζI) + a3]‖δq̇k‖2+

[ζ2λmax(Γ)− 2ζ3 − 2ζ2λmin(Kd − ζI)

+ζ(a1 + a2)]‖δqk‖2 + [a1 + a2 + ζa3]‖δqk‖‖δq̇k‖+
2‖z̃Tk ‖(2ldα−1 − µ)dσ.

(32)

Using (16), (17), and (18) we obtain

∆Vk ≤ −‖z̃k‖2 − ζ2‖δqk‖2 − ζλmin(2Kd − 2ζI − Γ)‖δqk‖2

+
∫ t

0
A‖δqk‖2 +B‖δq̇k‖2 + C‖δqk‖‖δq̇k‖+ 2‖z̃Tk ‖(2ldα−1 − µ)dσ.

(33)

Hence, from (15) we can get

∆Vk < −‖z̃k‖2 − ζ2‖δqk‖2 − ζλmin(2Kd − 2ζI − Γ)‖δqk‖2

+
∫ t

0
A(‖δqk‖+

C

2A
‖δq̇k‖)2 + (B − C2

4A
)‖δq̇k‖2 − 2γ‖z̃Tk ‖dσ.

(34)

From (12), (13), (14) and (15) we can get

∆Vk < 0, i.e., Vk+1 < Vk. (35)
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From (35) we conclude that when k tends to infinity, Vk tends to zero, which implies
that zk → 0, and from the definition of zk (7), we can obtain

lim
k→∞

q̃k(t) = lim
k→∞

˙̃qk = 0, ∀t ∈ [0, T ]. (36)

Remark: It is worth noting that the sign function used in the proposed control (5)
might lead to the chattering phenomenon in the control input. In order to reduce the ef-
fects of this phenomenon in practical applications, saturation function can be introduced
instead of the sign function. As a consequence, the tracking error converges to a domain
around zero with a smooth control signal.

4 Simulation

In this section, we present the simulation results obtained by applying the model-based
ILC on the parallel Delta robot described by Fig. 2. Delta robot is a very fast robot
designed to achieve high precision for high dynamic pick and place operations, where
the traditional controllers can fail to deal with this dynamic and to reject the external
disturbances.

Figure 2: The Delta robot.
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Figure 3: The trajectory tracking in the task
space.

The matrices of the robot are given as follows:

M(q) = Ib +mntJ
TJ, C(q, q̇) = JTmntJ̇ , G(q) = −τGn − τGb,

where τGn is the torque produced by the inertial force, τGb is the torque produced by
the gravitational force of the arms, J represents the Jacobian matrix and J̇ is its time
derivative, mnt represents the total mass which is the sum of the travelling plate mass,
the mass of the payload and the 3 reported masses contributed each of the 3 forearms.
For the detailed expressions of the Jacobian, τGn, τGb and mnt, please, refer to [27].
The geometrical and dynamic parameters of the Delta robot are described in Table 1.
The constants are given as follows: Kc1 = 0.44 kgm2, Kc2 = 2.675 kgm2, Kg = 0.354
kg.m2/s2, KG = 0.442 kg.m2/s2, Vm = 5 rad/s, α = 0.3 kgm2, KM = 0.09 kgm2.
The modelling errors are set as follows: ∆M(qk) = 0.1 ∗ M(qk), ∆C(qk, q̇k) =
0.1 ∗ C(qk, q̇k), ∆G(qk) = 0.1 ∗ G(qk). Whereas, the disturbances are as-
sumed to be time-varying and also varying from iteration to iteration as follows:
d1(t)=d2(t)=d3(t)=0.2.rand(k)sin(2πt) (in Newton meters), where rand(k) is a random
function taking its values between 0 and 1.
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Table 1: Geometric and dynamic parameters.

Parameter Value
Length of the upper arm 0.380 m
Length of the forearm 0.205 m
Mass of the travelling plate 0.042 kg
Mass of the upper arm 0.098 kg
Masses of the forearms 0.028 kg
Mass of the elbow 0.015 kg

The desired trajectory used along the x-axis and the z-axis is a polynomial of degree
five with an initial and final velocity and acceleration equal to zero. Its expression is
given by

x(t) = xi + (xf − xi)
(

6
t

tf

5

− 15
t

tf

4

+ 10
t

tf

3)
, (37)

where xi and xf are the initial and final positions, and tf is the duration of the movement.
To evaluate the performance of the controllers, the Root Mean Square Error (RMSE)

criteria and the Maximum Absolute Error (MaxAE) criteria are used. Their expressions
are given as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ydi
)2, (38)

MaxAE = Max(|yi − ydi
|), (39)

where yd is the desired trajectory, yi is the actual response, and n is the total number
of samples in one iteration. The controller gains matrices were selected so that the
minimum performance criteria specified by the RMSE and the MaxAE are obtained
after 90 iterations. The proposed controller gains were set to: Kp = diag{600}, Kd =
diag{40}, Λ = diag{18.3}, Γ = diag{1.22}, and ζ = 15, while the PID controller gains
were selected as: Kp(PID) = diag{12}, Kd(PID) = diag{0.18}, KI(PID) = diag{2}, and
the PD plus ILC controller gains were chosen as: Kp(PD−ILC) = diag{8}, Kd(PD−ILC) =
diag{0.08}, ΛPD−ILC = diag{0.5}, ΓPD−ILC = diag{0.02}. We give the simulation
study in two cases.

Case 1: The desired trajectory starts from the initial position (−0.15, 0,−0.37)m to
the final position (0.15, 0,−0.37)m with a height of transit equal to 0.04 m, then returns
to the initial position during 0.4 second.
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Figure 4: The RMSE along the iteration axis.
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Figure 6: Tracking error for iteration k=1,10,30,50,90. (a) joint 1, (b) joint 2.
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Figure 7: Control torque for iteration k=1,10,30,50,90. (a) joint 1, (b) joint 2.

Figure 3 presents the trajectory tracking in the operational space after 90 iterations
under the proposed controller, the PID controller and the PD plus PD-type ILC. Fig. 4
and Fig. 5 indicate the progress of the RMSE and the MaxAE, respectively, through the
iterations. It can be observed that the tracking performance improves from iteration to
iteration, where, for instance, the RMSE decreased from 2.17 mm at the first iteration
along the x-axis to 0.06 mm at the 90th iteration, while the PID and the PD plus PD-
type ILC controller lead to an RMSE along the x-axis equal to 1.48 mm and 0.12 mm,
respectively. Fig. 6 shows the tracking error of joint 1 and joint 2, respectively, (the
tracking error of joint 3 is similar to that of joint 2 due to the nature of the trajectory),
for the 1st, 10th, 30th, 50th and the 90th iteration. It is observed that the desired
trajectory has been obtained successfully with the increase of the iteration number despite
the existence of the model uncertainty and the external disturbances. Fig. 7 represents
the torque control of joint 1 and joint 2, respectively. It is shown that the torque profile
remains nearly the same from the first iteration to the 90th iteration, which provides
an advantage of the proposed controller where the tracking performances are enhanced
through the iteration without requiring more control energy.

Case 2: In order to evaluate the ability to track the desired trajectory in the
presence of payloads, an additional load of 200 g is introduced on the travelling plate of
the Delta robot, from 30 iterations to 90 iterations.
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Table 2: Tracking performance through iterations under additional load of 200 g.

Iteration 1 10 30 50 90
RMSE x-axis (mm) 2.17 1.60 2.76 1.22 0.20
MaxAE x-axis (mm) 3.43 2.21 4.02 1.85 0.33
RMSE z-axis (mm) 1.10 0.85 1.30 0.58 0.16
MaxAE z-axis (mm) 2.40 1.73 2.73 1.16 0.33

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

Iteration number

R
M

SE
(m

m
)

 

 

x axis/PID
x axis/PD+PD−ILC
x axis/Proposed ILC
z axis/PID
z axis/PD+PD−ILC
z axis/Proposed ILC

Figure 8: The RMSE along the iteration axis-
Case 2.
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Figure 9: The RMSE along the iteration axis-
Case 2.
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Figure 10: The control torque-Case 2. (a) joint 1, (b) joint 2.

The simulation results are presented in Fig. 8 to Fig. 10. It is observed that the PID
controller lost its performances after the introduction of the additional load, while the
performances of the PD plus PD-type became constant between the 60th and the 70th
iterations, then start diverging after that. Meanwhile, the proposed ILC is still the one
giving us better performances, where, on one hand, the RMSE and the MaxAE decrease
with a rate faster than the traditional ILC and continue to decrease even at the 90th
iteration. On the other hand, the control torque of the proposed controller is smaller
than the PID and the PD plus PD-type ILC, which provides a significant importance to
the proposed approach. Table 2 summarises the tracking performance obtained under
an additional load of 200 g.
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5 Conclusion

In this work, a model-based iterative learning scheme has been proposed for the trajec-
tory tracking of robot manipulators with model uncertainty and subjected to external
disturbances. In order to decrease the coupling effect, a model-based controller has been
introduced and combined with an ILC and a robust control term to benefit from the
repetition of the task and to reject the model uncertainty and external disturbances.
The asymptotic convergence has been demonstrated using the Lyapunov method. It has
been shown that the tracking position and velocity errors decrease through the iterations
regardless of the influence of the model uncertainty and the external disturbances. Simu-
lation results confirm the feasibility and the effectiveness of the proposed control scheme
compared to the PID and the PD plus PD-type ILC. Otherwise, the control energy is
still limited and does not increase with the number of iterations.
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