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Abstract: In the paper the steady flow of viscous incompressible fluid around a
body of revolution is considered. The mathematical model of the process under
consideration is the external boundary value problem for the stream function. For
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joint use of the R-functions by V.L. Rvachev and the nonlinear Galerkin method.
With the help of the R-functions, the problem solution structure is constructed. The
structure exactly satisfies all the boundary conditions of the problem and has the
necessary behavior at infinity. To approximate the uncertain components of the
structure, the nonlinear Galerkin method is used. A computational experiment was
carried out for the problem of the flow around a sphere, two touching, and two jointed
spheres at different Reynolds numbers.
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1 Introduction

Let us consider the nonlinear steady-state problem of the viscous incompressible fluid
flow past a body of revolution in a spherical coordinate system [11,16]:
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where ν = Re−1 is the coefficient of viscosity, Re is the Reynolds number, ψ = ψ(r, θ) is

the stream function, Eψ =
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, E2ψ = E (Eψ) , n is the outer

normal to ∂Ω, U∞ is the unperturbed fluid velocity at infinity.
The methods of solving problem (1) – (3) have not been sufficiently developed. This

is due to the fourth order and nonlinearity of equation (1), as well as the unboundedness
of the region in which equation (1) is considered.

Mathematical modeling is becoming an increasingly effective tool for researchers in
the study of viscous fluid dynamics. The need to model such flows arises, for example,
in hydrodynamics, thermal energy, chemical kinetics, biomedicine, radio electronics, etc.
[2,11,14–16]. Due to using a computer, one can obtain an overall picture of the entire fluid
flow and graphically visualize the velocity, pressure, or temperature fields throughout the
flow region.

The purpose of the paper is to develop a new method of mathematical modeling for
the nonlinear stationary problem of the flow of viscous incompressible fluid around a body
of revolution on the basis of the R-functions method and nonlinear Galerkin method.

The use of the R-functions method [17,18] to construct the boundary value problem
solution structure will allow us to accurately take into account the geometric and analyt-
ical information included into the statement of the problem. Using further the nonlinear
Galerkin method [6, 13] to approximate the uncertain components of the structure will
allow us to obtain an approximate solution in an analytical form.

2 R-Functions Method

The R-functions method applied to hydrodynamics problems of viscous fluid (steady
and unsteady flows) in bounded domains or in the presence of helical symmetry was used
in [1, 3, 12]. The problems of the steady flow of viscous fluid past bodies of revolution
were solved using the R-functions method in [4,5,7–10], but there the authors considered
the slow flow of viscous incompressible fluid past bodies (the Stokes linearization) or the
application of the R-functions method, successive approximations and Galerkin-Petrov
method for calculating the axisymmetric steady flows of viscous incompressible fluid.

To apply the R-functions method to the problems of hydrodynamics it is necessary:

1) To construct such a function that is equal to zero at the boundary points, positive
inside the region and whose normal derivative (in the direction of the outer normal)
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on the boundary is equal to −1. It will allow to accurately describe analytically the
geometry of the computational domain and to continue the functions and operators,
defined on the boundary, at the interior points of the area.

2) To construct the general structure of the solution, i.e., such a formula that depends
on some indeterminate functions and exactly satisfies all the boundary conditions
of the problem for any choice of these functions.

3) To construct an approximate solution by approximating the undefined functions
included in the structure by the chosen numerical method.

Let us consider the general principles of the R-functions method theory [9, 17,18].

Definition 2.1 A function whose sign is completely determined by the signs of
its arguments is called an R-function (V.L. Rvachev’s function) corresponding to the
partition of the numerical axis into intervals (−∞, 0) and [0, + ∞), i.e., a function
z = f(x, y) is called the R-function if there exists a Boolean function F such that

S[z(x, y)] = F [S(x), S(y)], where S(x) =

{
0, x < 0,
1, x ≥ 0

is a two-valued predicate. In

this case, the Boolean function F is called a companion function.

Each R-function is associated with a Boolean function. It allows us to use logic
algebra methods to describe complex geometric objects.

The following system <α is the most commonly used system of the R-functions:

x̄ ≡ −x,

x ∧α y ≡
1

1 + α

(
x+ y −

√
x2 + y2 − 2αxy

)
,

x ∨α y ≡
1

1 + α

(
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√
x2 + y2 − 2αxy

)
,

where −1 < α(x, y) ≤ 1, α(x, y) ≡ α(y, x) ≡ α(−x, y) ≡ α(x,−y). Their companion
Boolean functions are, respectively, negation, conjunction and disjunction.

Suppose that a geometric object Ω with a piecewise-smooth boundary ∂Ω is given
in R2. Let us assume that Ω can be constructed from auxiliary (supporting) loci
Σ1 = {ω1(x, y) ≥ 0} , ...,Σm = {ωm(x, y) ≥ 0} according to the logical rules defined by
the Boolean function F , by means of the operations of union, intersection, and comple-
ment:

Ω = F (Σ1,Σ2, . . . ,Σm),

and all functions ωi(x, y) (i = 1, 2, ...,m) are elementary. Replacing Ω by ω(x, y), Σi
by ωi(x, y) (i = 1, 2, ...,m), and the symbols {∩,∪,¬} by the R-operations symbols
{∧α,∨α,− }, we obtain an analytic expression that defines in the elementary functions
the equation of the boundary ω(x, y) = 0. In this case, ω(x, y) > 0 for the interior points
of the region, and ω(x, y) < 0 for the external points.

Thus, the equation ω(x, y) = 0 in an implicit form determines the locus of points
representing the boundary ∂Ω of the domain Ω, and the function ω(x, y) = 0 has the
form of a single analytic expression.
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Definition 2.2 The equation ω(x, y) = 0 is called normalized to the n-th order if

ω|∂Ω = 0,
∂ω
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= −1,
∂lω

∂nl

∣∣∣∣
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= 0 (l = 2, 3, ..., n),

where n is a vector of the outer normal to ∂Ω.

The equation ω(x, y) = 0, normalized to the first order, can be obtained from the
equation ω1(x, y) = 0 as follows.

Theorem 2.1 If ω1(x, y) ∈ Cm(R2) satisfies the conditions ω1|∂Ω = 0 and
∂ω1

∂n

∣∣∣∣
∂Ω

> 0, then the function ω ≡ ω1√
ω2

1 + |∇ω1|2
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= −1 at all regular points of the boundary ∂Ω.

To construct the equation normalized to the first order, one can also use the formula

ω ≡ ω1

|∇ω1|

if |∇ω1| 6= 0 in Ω = Ω ∪ ∂Ω.

Let us construct the normalized equation ω(x, y) = 0 of the boundary of the closed

area Ω̄ =
{

0 ≤ x ≤ 3, 3−
√

9− x2 ≤ y ≤ 3
}

with the help of the system <0 (Figure 1).

Figure 1: The area Ω̄.

The area Ω̄ can be constructed from the following primitive regions:

− the interior of a circle of radius 3 centered at the point (0, 3):

Σ1 =

(
1

6

(
9− x2 − (y − 3)

2
)
≥ 0

)
,

− the half-plane below the line y = 3: Σ2 = (3− y ≥ 0),

− the half-plane to the right of the line x = 0: Σ3 = (x ≥ 0).
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Then Ω̄ = Σ1∧Σ2∧Σ3 and the equation of the boundary of the area Ω is determined
by the equation ω(x, y) = 0, where
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[
1

6

(
9− x2 − (y − 3)

2
)]
∧0 [3− y] ∧0 x =

=

[
1

6

(
9− x2 − (y − 3)

2
)]
∧0

[
3− y + x−

√
(3− y)

2
+ x2

]
=

=
1

6

(
9− x2 − (y − 3)

2
)

+ 3− y + x−
√

(3− y)
2

+ x2−

−

√[
1

6

(
9− x2 − (y − 3)

2
)]2

+

[
3− y + x−

√
(3− y)

2
+ x2

]2

.

(4)

The contour lines of the obtained normalized boundary equation (4) are shown in
Figure 2.

Figure 2: The area Ω̄.

The constructed function (4) is positive inside the area Ω and negative outside Ω. If
it is necessary to obtain a function that is positive in the exterior of the finite area Ω,
then it is required to use the function −ω(x, y).

Let us consider the problem

Au = f, (5)

Liu|∂Ωi
= ϕi, i = 1,m, (6)

where A and Li are some differential operators; f and ϕi are functions defined inside the
region Ω and on its boundary regions ∂Ωi.

Definition 2.3 The expression u = B(Φ, ω, {ωi}mi=1, {ϕj}mj=1) is called the general
structure of the solution of the boundary value problem (5) – (6) if it exactly satisfies
the boundary conditions (6) for any choice of the indeterminate component Φ. Here, B
is an operator that depends on the geometry of the area Ω and parts ∂Ωi of its border,
as well as the operators of the boundary conditions, but does not depend on the type of
the operator A and the function f .

The solution structure extends the boundary conditions inside the region.
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The undefined component Φ of the solution structure in the R-functions method is
represented as a sum

Φ(x, y) ≈ Φn(x, y) =

n∑
k=1

ckϕk(x, y),

where ϕk(x, y) are known elements of the complete functional sequence, and ck (k =
1, 2, ..., n) are unknown coefficients of the expansion. To determine unknown coefficients
one can use, for example, variational methods (Ritz, least squares, etc.), projection
methods (Galerkin, collocations, etc.), grid methods and others.

3 The Method for Solving Problem (1) – (3)

For an exact analytical description of the geometry of computational domain, let us
introduce a function ω(r, θ) satisfying the conditions:

a) ω(r, θ) > 0 in Ω, b) ω(r, θ)|∂Ω = 0, c)
∂ω

∂n

∣∣∣∣
∂Ω

= −1,

where n is the outer normal to ∂Ω.
Let us introduce the function [3]

ωM = fM (ω) =

{
1− exp

Mω

ω −M
, 0 ≤ ω < M ;

1, ω ≥M (M = const > 0),
(7)

that satisfies the conditions:

1) ωM > 0 in Ω, 2) ωM |∂Ω = 0, 3)
∂ωM
∂n

∣∣∣∣
∂Ω

= −1, 4) ωM ≡ 1 if ωM ≥M.

The introduction of the function (7) allows us to carry out calculations in the fi-
nite region since function (7) differs from unity only in some finite ring-shaped region
{0 ≤ ω(r, θ) < M} adjacent to the contour ∂Ω.

Let us construct the general structure of the solution. In [7, 9, 10] it was proved that
for any choice of sufficiently smooth functions Φ1 and Φ2 (Φ1 · r−2 → 0 as r → +∞)
the boundary conditions (2) and the condition at infinity (3) are exactly satisfied by a
function of the form

ψ = ω2
M (ψ0 + Φ1) + ω2

M (1− ωM )Φ2, (8)

where ψ0 =
1

4
U∞(r − R)2

(
2 +

R

r

)
sin2 θ is the Stokes solution for the problem of the

flow past a sphere of radius R ( the sphere of radius R lies entirely inside the streamlined
body). Thus, the function (8) is the structure of the solution of the boundary value
problem (1) – (3).

Let us construct an approximate solution by approximating the undefined components
Φ1 and Φ2 of structure (8) by the nonlinear Galerkin method [6, 13]. The functions Φ1

and Φ2 will be presented in the form

Φ1 ≈ Φm 1
1 =

m 1∑
k=1

αk · ϕk, Φ2 ≈ Φm 2
2 =

m 2∑
j=1

βj · τj ,
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where

{ϕk(r, θ)} =
{
r1−k Jk(cos θ), k = 2, 3, ...; r3−k Jk(cos θ), k = 4, 5, ...

}
is a complete system of particular solutions of the equation E2ψ = 0 with respect to the
exterior of a sphere of finite radius;

{τj(r, θ)} =
{
rJ2(cos θ), J3(cos θ), rj Jj(cos θ, rj+2 Jj(cos θ), j = 2, 3, ...

}
is a complete system of particular solutions of the equation E2ψ = 0 relative to the
domain {ω(r, θ) < M}, Jk(cos θ) are the Gegenbauer functions of the first kind.

Thus, the approximate solution of the problem (1) – (3) is sought in the form

ψN = ω2
M

(
1

4
U∞(r −R)2

(
2 +

R

r

)
sin2 θ +
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)
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The complete with respect to the whole plane sequence of functions has the form

{φi(r, θ)} =
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ω2
M (r, θ)ϕk(r, θ), ω2

M (r, θ)(1− ωM (r, θ))τj(r, θ)
}
. (9)

The values of the coefficients αk (k = 1, 2, ...,m1) and βj (j = 1, 2, ...,m2) in accor-
dance with the nonlinear Galerkin method [6,13] will be found from the condition of the
residual orthogonality to the first N (N = m1 +m2) elements of the sequence (9):(
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)
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As a result, a system of nonlinear equations is obtained, where each equation is a
quadratic function with respect to αk and βj . This system can be solved by the Newton
method. As an initial approximation, a set of αk and βj is chosen corresponding to the
solution of the Stokes problem, or, for large Reynolds numbers, to the solution obtained
for smaller Reynolds numbers.

4 Computational Experiment

A computational experiment was carried out for the problems of the flow around a
sphere, two touching, and two jointed spheres. The double integrals in the systems for
determining αk and βj were taken approximately by the Gauss formula with 50 nodes
for each variable.

4.1 First problem

The problem of the flow past a sphere x2 + y2 + z2 = 1 at U∞ = 1, M = 10, m1 = 10,
m2 = 14, Re = 10; 20; 25, is solved.

The normalized equation of the boundary (in the plane ϕ = 0) has the form

ω(x, z) =
1

2
(1− x2 − z2) = 0.
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The streamlined contours of the obtained approximate solution are shown in Figure
3. Figure 4 shows detailed pictures of the streamlined contours and vector fields of
velocities behind the sphere. For small Reynolds numbers, the flow around a sphere
is symmetrical, without the formation of a detachment zone in the aft region of the
body. With an increase in the Reynolds number to approximately 20−25, the secondary
vortices appear behind the body and then their size and intensity increase.

Figure 3: The streamlined contours for the problem of the flow past a sphere: (a) Re = 10,
(b) Re = 20, (c) Re = 25.

Figure 4: Detailed pictures of streamlined contours and vector fields of velocities behind the
sphere: (a) Re = 10, (b) Re = 20, (c) Re = 25.

The results obtained are in good agreement with the results obtained by the method of
successive approximations [8] (for Re ≤ 10), known results of physical experiments [20]
and results obtained by other authors [2, 19], which indicates the effectiveness of the
developed numerical method.
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4.2 Second problem

The problem of the flow past two touching spheres, bounded by surfaces
(x− 1)2 + y2 + z2 = 1, (x+ 1)2 + y2 + z2 = 1, at U∞ = 1, M = 10, m1 = 10, m2 = 14,
Re = 30; 60; 70, is solved.

The normalized equation of the boundary (in the plane ϕ = 0) has the form

ω (x, z) =

[
1

2

(
1− (x− 1)

2 − z2
)]
∧0

[
1

2

(
1− (x+ 1)

2 − z2
)]

= 0.

The streamlined contours of the obtained approximate solution are shown in Figure 5.
Figure 6 shows detailed pictures of the streamlined contours and vector fields of velocities
behind the spheres and in the hollow between them. The computational experiment
showed that as the Reynolds number increases to approximately 60, vortices appear
behind the body.

Figure 5: The streamlined contours for the problem of the flow past two touching spheres: (a)
Re = 30, (b) Re = 60, (c) Re = 70.

4.3 Third problem

The problem of the flow past two jointed spheres, bounded by surfaces(
x− 1

2

)2

+ y2 + z2 = 1,

(
x+

1

2

)2

+ y2 + z2 = 1, at U∞ = 1, M = 10, m1 = 10,

m2 = 14, Re = 5; 10; 30, is solved.
The normalized equation of the boundary (in the plane ϕ = 0) has the form
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Figure 6: Detailed pictures of streamlined contours and vector fields of velocities behind the
spheres in the hollow between them: (a) Re = 30, (b) Re = 60, (c) Re = 70.

The streamlined contours of the obtained approximate solution are shown in Figure 7.
Figure 8 shows detailed pictures of the streamlined contours and vector fields of velocities
behind the spheres. The computational experiment showed that as the Reynolds number
increases to approximately 10, vortices appear behind the body.

Figure 7: The streamlined contours for the problem of the flow past two jointed sphere: (a)
Re = 5, (b) Re = 10, (c) Re = 30.
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Figure 8: Detailed pictures of streamlined contours and vector fields of velocities behind the
spheres: (a) Re = 5, (b) Re = 10, (c) Re = 30.

5 Conclusions

A new numerical method for solving the problem of the flow of viscous incompressible
fluid past a body of revolution is proposed based on the joint application of the R-
function method and the nonlinear Galerkin method. The advantage of the proposed
method is that the method algorithm does not change when the domain geometry is
changed, and the solution structure accurately takes into account both the boundary
conditions on the boundary of the streamlined body and the condition at infinity. For
various Reynolds numbers, the stationary problem of the flow past a body of revolution
in a spherical coordinate system for a sphere, two touching, and two jointed spheres is
solved numerically. The Reynolds numbers, at which secondary vortices appear behind
the body, are experimentally determined for each body.
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