Nonlinear Dynamics and Systems Theory, 21 (2) (2021) 115-125

Capacity in Anisotropic Sobolev Spaces

Y. Akdim¹, R. Elharch^{2*}, M. C. Hassib² and S. Lalaoui Rhali²

¹ LAMA Laboratory, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas Fez, Morocco.

² Laboratory of Engineering Sciences (LSI), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, P.O. Box 1223 Taza, Morocco.

Received: November 28, 2019; Revised: March 16, 2021

Abstract: This paper is devoted to the study of the theory of capacity in an anisotropic Sobolev space $W^{1,\vec{p}}(\Omega)$, where Ω is a bounded set of $\mathbb{R}^N (N \geq 2)$, $\vec{p} = (p_0, p_1, ..., p_N)$ with $1 < p_0, p_1, ..., p_N < \infty$. We will define the $C_{k,\vec{p}}$ capacity and prove its main properties, especially, it will be shown that $C_{k,\vec{p}}$ defines a Choquet capacity. To illustrate our results, we will present an application of this capacity.

Keywords: anisotropic Sobolev spaces; capacity; potential.

Mathematics Subject Classification (2010): 31C15.

1 Introduction

The theory of capacity and non-linear potential in the classical Lebesgue space $L^p(\Omega)$ (1 was studied by Maz'ya and Khavin in [16] and Meyers in [18]. Theseauthors introduced the concept of capacity and non-linear potential in these spaces andprovided very rich applications in functional analysis, harmonic analysis, theory of partialdifferential equations and theory of probabilities.

It has been developed specially by Adams [1], by Hedberg in [13], by Hedberg and Wolff in [14] and others. The Sobolev capacity for constant exponent spaces has found a great number of applications (see [12, 15]) and, for example, Boccardo et al. [8] studied the existence and non existence of solutions of the following problem:

$$(\mathcal{P}) \left\{ \begin{array}{cc} -\triangle u + u \mid \nabla u \mid^2 = \mu & in \ \Omega, \\ u = 0 & on \ \partial\Omega, \end{array} \right.$$

^{*} Corresponding author: mailto:rachid.elharch@usmba.ac.ma

^{© 2021} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua115