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Abstract: This paper is devoted to the study of the theory of capacity in an
anisotropic Sobolev space W 1,~p(Ω), where Ω is a bounded set of RN (N ≥ 2),
~p = (p0, p1, ..., pN ) with 1 < p0, p1, ..., pN < ∞. We will define the Ck,~p capacity
and prove its main properties, especially, it will be shown that Ck,~p defines a Cho-
quet capacity. To illustrate our results, we will present an application of this capacity.
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1 Introduction

The theory of capacity and non-linear potential in the classical Lebesgue space Lp(Ω)
(1 < p < ∞) was studied by Maz’ya and Khavin in [16] and Meyers in [18]. These
authors introduced the concept of capacity and non-linear potential in these spaces and
provided very rich applications in functional analysis, harmonic analysis, theory of partial
differential equations and theory of probabilities.

It has been developed specially by Adams [1], by Hedberg in [13], by Hedberg and
Wolff in [14] and others. The Sobolev capacity for constant exponent spaces has found a
great number of applications (see [12, 15]) and, for example, Boccardo et al. [8] studied
the existence and non existence of solutions of the following problem:

(P)

{
−4u+ u | ∇u |2= µ in Ω,

u = 0 on ∂Ω,
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where Ω is a bounded open set in RN , N ≥ 2 and µ is a radon measure on Ω.
More precisely, the authors proved the existence of a solution u in H1

0 (Ω) for the
problem (P) if and only if the measure µ does not charge the sets of capacity zero in Ω.
Also, Kilpeläinen [17] introduced the weighted Sobolev capacity and discussed the role
of capacity in the pointwise definition of functions in Sobolev spaces involving weights of
Muckenhoupt’s Ap-class. The previous concept was generalized by N. Aissaoui and A.
Benkirane in [2], by replacing Lp with an Orlicz space. Later, this theory was studied by
M. C Hassib, Y. Akdim, A. Benkirane and N. Aissaoui in Musielak-Orlicz spaces (see [3]
and [4]).

The notion of capacity offers a standard way to characterize exceptional sets in various
function spaces. Depending on the starting point of the study, the capacity of a set can be
defined in many appropriate ways. A common property of capacities is that they measure
small sets more precisely than the usual Lebesgue measure. The Choquet theory [10]
provides a standard approach to capacities. Capacity is a necessary tool in both classical
and non-linear potential theory.

The main purpose of this paper is to study the theory of capacity in an anisotropic
Sobolev space W 1,~p(Ω). Our results generalize those in [18] obtained in Lebesgue spaces,
in order to apply them to some problems of partial differential equations and harmonic
analysis.

The present paper is organized as follows. In Section 2, we present some necessary
preliminary knowledge on the anisotropic Sobolev space and we recall main properties of
capacities. In Section 3, we define the Ck,~p -capacity in the anisotropic Sobolev space and
we show some of its properties. As an application of our results, we consider a variational
problem, where X is a subset of RN . We give a sufficient condition on the Ck,~p capacity
of X to ensure the existence and uniqueness of a Ck,~p -capacitary distribution of X such
that the Ck,~p -capacitary potential of X is greater than or equal to one.

2 Preliminaries

2.1 Anisotropic Sobolev spaces

Let Ω be an open bounded domain in RN (N ≥ 2) with boundary ∂Ω.
Let 1 < p0, p1, ..., pN <∞, we denote

~p = (p0, p1, ..., pN ), D0u = u and Diu = ∂u
∂xi

for i = 1, ...., N.

The anisotropic Sobolev space W 1,~p(Ω) is defined as follows:

W 1,~p(Ω) = {u ∈ Lp0(Ω) and Diu ∈ Lpi(Ω), i = 1, ..., N}.

We recall that the W 1,~p(Ω) is a separable and reflexive Banach space (see [19] )with
respect to the norm

‖u‖W 1,~p(Ω)=

N∑
i=0

‖Diu‖Lpi (Ω).

We denoted
W 1,~p

+ (Ω) = {u ∈W 1,~p(Ω)\u ≥ 0}.

The space W 1,~p
0 (Ω) is the closure of C∞0 (Ω) with respect to this norm. The theory of

such anisotropic spaces was developed in [20–23]. It was proved that C∞0 (Ω) is dense in

W 1,~p
0 (Ω), and W 1,~p

0 (Ω) is a reflexive Banach space.
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For any ~p = (p0, p1, ....., pN ), with 1 < pi <∞, i = 0, 1, ......, N , the dual space of the

anisotropic Sobolev space W 1,~p
0 (Ω) is equivalent to W−1,~p′(Ω), where ~p′ = (p′0, p

′
1, ..., p

′
N )

and p′i =
pi

pi − 1
for all i = 0, 1, ..., , N .

Proposition 2.1 Let p ∈ [1,+∞[ and (fn)n be a sequence in (Lp(µ), ‖.‖p) whose
series of norms

∑
n
‖fn‖p converges. Then the series of functions

∑
n
fn converges for the

norm ‖.‖p and we have ‖
∑
n
fn‖p≤

∑
n
‖fn‖p.

Proof. For n ∈ N∗ fixed, according to the inequality of Minkowski, we have∥∥∥∥∥
n∑
k=0

|fk|

∥∥∥∥∥
p

≤
n∑
k=0

‖fk‖p≤
+∞∑
k=0

‖fk‖p.

It follows from the monotone convergence theorem that(∫
Ω

(
+∞∑
k=0

|fk|

)p
dµ

) 1
p

≤
+∞∑
k=0

‖fk‖p.

Thus, ∥∥∥∥∥
+∞∑
k=0

fk

∥∥∥∥∥
p

≤
+∞∑
k=0

‖fk‖p.

Lemma 2.1 [see [9]] Let E be a Banach space. If (fn)n converges weakly to f in E,
then the sequence ‖fn‖ is bounded and ‖f‖≤ lim inf‖fn‖.

2.2 Capacity

Definition 2.1 Let E be a topological space and T be the class of Borel sets in E,
and a function C : T → [ 0,+∞ ].
1) The function C is called a capacity if the following axioms are satisfied:
i) C(∅) = 0.
ii) X ⊂ Y ⇒ C(X) ≤ C(Y ) for all X and Y in T .
iii) For all sequences (Xn) ⊂ T,

C(
⋃
n

Xn) ≤
∑
n

C(Xn).

2) The function C is called an outer capacity if, for all X ∈ T,

C(X) = inf{C(O) : O ⊃ X,O is open }.

3) The function C is called an interior capacity if, for all X ∈ T,

C(X) = sup{C(K) : K ⊂ X,K is compact}.

4) A property, that holds true except perhaps on a set of capacity zero, is said to be true
C-quasi everywhere (abbreviated C - q.e.).
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5) Let f and (fn) be real-valued finite functions C-q.e. We say that (fn) converges to f
in C -capacity if

∀ε > 0, lim
n→+∞

C({x : |fn(x)− f(x)| > ε}) = 0.

6) Let f and (fn) be real-valued finite functions C-q.e. We say that (fn) converges to
f C -quasi-uniformly (abbreviated C -q.u) if (∀ε > 0), (∃X ∈ T ) : C(X) < ε and (fn)
converges to f uniformly on Xc.

3 Capacity in Anisotropic Sobolev Spaces

3.1 Ck,~p- capacity

Let k be a positive integrable function on RN and X ⊂ RN (N ≥ 2). We denote

S~p(X) = {f ∈W 1,~p(Ω) : k ∗ f ≥ 1 on X},

where k ∗ f is the convolution of k and f .
The anisotropic Sobolev ~p-capacity of X is defined by

Ck,~p(X) = inf
f∈S~p(X)

{‖f‖W 1,~p(Ω)}.

In the case where S~p(X) = ∅, we set Ck,~p(X) =∞.
Functions f ∈ S~p(X) are said to be ~p- admissible for the X.

The anisotropic ~p-capacity enjoys all relevant properties of general capacities, specifically,
it will be shown that Ck,~p(X) defines a Choquet capacity.

Theorem 3.1 The anisotropic Sobolev ~p-capacity Ck,~p is an outer capacity.

Remark 3.1 Let Bk,~p(X) = inf{‖f‖W 1,~p(Ω): f ∈W
1,~p
+ (Ω) and k ∗f ≥ 1 on X}, then

Ck,~p(X) = Bk,~p(X).
Indeed, it is obvious that Ck,~p(X) ≤ Bk,~p(X).

On the other hand, let f ∈W 1,~p(Ω), then |f | ∈W 1,~p
+ (Ω), and if k ∗ f ≥ 1 on X, then

k ∗ |f | ≥ 1 on X, thus
Bk,~p(X) ≤ ‖f‖W 1,~p(Ω).

Therefore,

Bk,~p(X) ≤ Ck,~p(X).

A direct application of Proposition 2.1 is the following result.

Lemma 3.1 Let (fn)n be a sequence in W 1,~p(Ω) whose series of norms∑
n
‖fn‖W 1,~p(Ω) converges. Then we have

‖
∑
n

fn‖W 1,~p(Ω)≤
∑
n

‖fn‖W 1,~p(Ω).

Proof. (Theorem 3.1) It is obvious that Ck,~p(∅) = 0 and Ck,~p(X) ≤ Ck,~p(Y ) if

X ⊂ Y . Let (Xi) be a subset of RN . If
∞∑
i=0

Ck,~p(Xi) = +∞, there is nothing to show.

We may assume that
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∞∑
i=0

Ck,~p(Xi) < +∞, then (∀i ∈ N) Ck,~p(Xi) < +∞,

thus,

(∀i ∈ N) (∀ε > 0) (∃fi ∈W 1,~p
+ (Ω)) so that k ∗ fi ≥ 1 on Xi,

and we have

‖fi‖W 1,~p(Ω)≤ Ck,~p(Xi) +
ε

2i+1
.

Let f = supfi, we show that f ∈W 1,~p
+ (Ω). For all i ≥ 0, we have by Lemma 3.1

‖sup fi‖W 1,~p(Ω)≤ ‖
∞∑
i=0

fi‖W 1,~p(Ω)≤
∞∑
i=0

‖fi‖W 1,~p(Ω).

Thus,

‖f‖W 1,~p(Ω)≤
∞∑
i=0

‖fi‖W 1,~p(Ω) ≤
∞∑
i=0

Ck,~p(Xi) + ε.

This implies that f ∈W 1,~p
+ (Ω). Since k ∗ f ≥ 1 on

⋃
i≥0

Xi, we deduce that

Ck,~p(

∞⋃
i=0

Xi) ≤ ‖f‖W 1,~p(Ω) ≤
∞∑
i=0

Ck,~p(Xi) + ε, forall ε > 0.

The claim follows by letting ε→ 0.
Now, it remains only to verify that Ck,~p(X) is an outer capacity. LetX ⊂ RN , we have

Ck,~p(X) ≤ inf{Ck,~p(O), O ⊃ X, O is open}.

For the reverse inequality, if Ck,~p(X) = +∞, there is nothing to show.

Assume that Ck,~p(X) < +∞ and 0 < ε < 1, then there exists g ∈ W 1,~p
+ (Ω) so that

k ∗ g ≥ 1 on X and
‖g‖W 1,~p(Ω)≤ Ck,~p(X) + ε.

We put gε = g
1−ε and let the set Oε = {x : (k ∗ gε)(x) > 1}.

Thus Oε is open, and

∀x ∈ X; (k ∗ gε)(x) ≥ 1

1− ε
> 1.

Hence X ⊂ Oε. On the other hand, we have Ck,~p(Oε) ≤ ‖gε‖W 1,~p(Ω), and we deduce
that

Ck,~p(Oε) ≤
1

1− ε
‖g‖W 1,~p(Ω)≤

1

1− ε
(Ck,~p(X) + ε),∀ε > 0.

Thus,
inf{Ck,~p(O), O ⊃ X,O open} ≤ Ck,~p(X).
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Proposition 3.1 The anisotropic Sobolev ~p-capacity Ck,~p verifies the following prop-
erties:
1) If there exists f ∈W 1,~p(Ω) such that |k ∗ f | = +∞ on X, then Ck,~p(X) = 0.

2) If Ck,~p(X) = 0, then there exists f ∈W 1,~p
+ (Ω) such that k ∗ f = +∞.

Proof.

1) Let f ∈ W 1,~p(Ω) be such that |k ∗ f | = +∞ on X, then for all α > 0, |k ∗ f | > α
on X, thus,

Ck,~p(X) ≤
‖f‖

W1,~p(Ω)

α , ∀α > 0.

This means that

Ck,~p(X) = 0.

2) If Ck,~p(X) = 0, then (∀i ∈ N) (∃fi ∈W 1,~p
+ (Ω)) with k ∗ fi ≥ 1 on X

and
‖fi‖W 1,~p(Ω)≤ 2−i.

Let f =
∑
i

fi. By Lemma 3.1 we have

‖f‖W 1,~p(Ω)≤
∑
i

‖fi‖W 1,~p(Ω)≤
∑
i

2−i.

Then
‖f‖W 1,~p(Ω)< +∞.

We conclude that f ∈W 1,~p
+ (Ω) such that k ∗ f = +∞ on X.

Theorem 3.2 Let f and (fn)n be in W 1,~p(Ω) and consider the following propositions:
i) fn → f strongly in W 1,~p(Ω).
ii) k ∗ fn → k ∗ f Ck,~p-capacity.
iii) There is a subsequence (fnj

) such that k ∗ fnj
→ k ∗ f Ck,~p - q.u.

iv) k ∗ (fnj )→ k ∗ f in Ck,~p.- q.e.
Then we have

i)⇒ ii)⇒ iii)⇒ iv).

Proof.

• We show i)⇒ ii).

By Proposition 3.1, we have k ∗ f and k ∗ fn are finite Ck,~p -q.e, for all n.
Let ε > 0, then

Ck,~p({x : |k ∗ fn − k ∗ f |(x) > ε}) ≤ ‖fn − f‖W 1,~p(Ω)

ε
.

• We show ii)⇒ iii).
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Let ε > 0, there exists fnj
such that

Ck,~p({x : |k ∗ fnj − k ∗ f |(x) > 2−j}) ≤ ε · 2−j .

We put

Ej = {x : |k ∗ fnj
− k ∗ f |(x)} > 2−j} and Gm =

⋃
j≥m

Ej .

Then we have
Ck,~p(Gm) ≤

∑
j≥m

ε · 2−j < ε.

On the other hand,
∀x ∈ (Gm)c,∀j ≥ m |k ∗ fnj − k ∗ f |(x) ≤ 2−j , thus k ∗ fnj → k ∗ f Ck,~p - q.u.

• We show iii)⇒ iv).

We have ∀j ∈ N,∃Xj : Ck,~p(Xj) ≤ 1
j and k ∗ fnj

→ k ∗ f converges uniformly on

(Xj)
c. We put X =

⋂
j

Xj , then Ck,~p(X) = 0 and k ∗ fnj
→ k ∗ f on XC .

Theorem 3.3 Let (Kn)n be a decreasing sequence of compacts and K =
⋂
n
Kn. Then

lim
n→+∞

Ck,~p(Kn) = Ck,~p(K).

Proof. First, we observe that Ck,~p(K) ≤ lim
n→+∞

Ck,~p(Kn).

On the other hand, let O be an open set that satisfies K ⊂ O; then

K ∩Oc = ∅.

The sequence defined, for all n, K
′

n = Kn∩Oc is a decreasing sequence of compacts and

satisfies
⋂
n

K
′

n = ∅. Then there exists n0 such that K
′

n0
= ∅.

Hence ∀n ≥ n0 , K
′

n = ∅, then ∀n ≥ n0, Kn ⊂ O. Therefore,

lim
n→+∞

Ck,~p(Kn) ≤ Ck,~p(O).

Since Ck,~p is an outer capacity, we have

lim
n→+∞

Ck,~p(Kn) ≤ Ck,~p(K).

Proposition 3.2 Let (fn)n, f ∈ W 1,~p(Ω) be such that fn → f weakly in W 1,~p(Ω),
then lim inf(k ∗ fn) ≤ k ∗ f ≤ lim sup(k ∗ fn) Ck,~p-q.e.

Proof. Since W 1,~p(Ω) is a reflexive space, fn → f weakly in W 1,~p(Ω), then by
the Banach-Saks theorem, there is a subsequence denoted again by (fn) such that the

sequence gn = 1
n

n∑
i=1

fi converges to f strongly in W 1,~p(Ω).

By Theorem 3.2, there is a subsequence of (gn), denoted again (gn), such that

lim
n→+∞

(k ∗ gn) = (k ∗ f) Ck,~p − q.e.
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On the other hand,
lim inf(k ∗ fn) ≤ lim

n→+∞
(k ∗ gn).

Therefore,

lim inf(k ∗ fn) ≤ (k ∗ f) Ck,~p − q.e.

For the second inequality, it suffices to replace fn by (−fn) in the first inequality.

Theorem 3.4 If (Xn)n is an increasing sequence of sets and X =
⋃
n
Xn, then

lim
n→+∞

Ck,~p(Xn) = Ck,~p(X).

Proof. First, we have lim
n→+∞

Ck,~p(Xn) ≤ Ck,~p(X) .

For the reverse inequality, if lim
n→+∞

Ck,~p(Xn) = +∞, there is nothing to show.

We assume that the sequence Ck,~p(Xn) converges to the finite `. Let fn be ~p- admis-
sible for (Xn) such that

‖fn‖W 1,~p(Ω)≤ Ck,~p(Xn) +
1

n
. (1)

Since (fn) forms a bounded sequence in W 1,~p
+ (Ω), there exists a subsequence denoted

again (fn) which converges weakly to a function f ∈W 1,~p
+ (Ω).

We have by Proposition 3.2

∀i ∈ N, k ∗ f ≥ 1 on Xn, Ck,~p − q.e.

Therefore,
k ∗ f ≥ 1 on X,Ck,~p − q.e. (2)

Let B be a subset of X where k ∗ f ≥ 1, then from (1) and by Lemma 2.1 we have

Ck,~p(X) = Ck,~p(B) ≤ ‖f‖1,~p ≤ `, (3)

the desired result is now a simple consequence of (3).

Corollary 3.1 Let (En)n be a sequence of subsets of RN , then

Ck,~p(lim inf En) ≤ lim inf Ck,~p(En).

Proof. Let E = lim inf En, we have E =
⋃
n

( ⋂
i≥n

Ei

)
.

We put Gn =
⋂
i≥n

Ei, thus a sequence is increasing and by Theorem 3.4, we have

Ck,~p(E) = lim
n→+∞

Ck,~p(Gn).

Hence,

Ck,~p(Gn) ≤ Ck,~p(En).

Therefore,

Ck,~p(E) ≤ lim inf Ck,~p(En).
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Definition 3.1 In the terminology of Choquet, C is called a capacity if it satisfies
the following four properties:

i) C(∅) = 0,

ii) C is increasing,

iii) If (En) is an increasing sequence of sets, then sup
n
C(Xn) = C(

⋃
n

Xn),

iv) If (Kn) is a decreasing sequence of compacts, then inf
n
C(Kn) = C(

⋂
n

Kn).

Remark 3.2 By Theorems 3.1, 3.3 and 3.4, Ck,~p is a capacity in the sense of Cho-
quet.

Definition 3.2 Let C be a capacity in the sense of Choquet. A subset X ⊂ RN is
called capacitable if

C(X) = sup{C(K) : K ⊂ X,K − compact}.

Theorem 3.5 All analytic sets are Ck,~p- capacitable.

Proof. It is an immediate consequence of the Choquet theorem in [11].

3.2 Application of a Ck,~p - capacity

In this subsection, we propose to study an application of Ck,~p capacities, more precisely,
we treat the following variational problem.

Let X be a subset of RN such that Ck,~p(X) < ∞. There exists f0 ∈ W 1,~p
+ (Ω) such

that k ∗ f0 ≥ 1 Ck,~p- q.e on X, and

‖f0‖W 1,~p(Ω)= inf{‖f‖W 1,~p(Ω): f ∈W
1,~p
+ (Ω) and k ∗ f ≥ 1 on X}. (4)

Definition 3.3 We call a solution, f0, of problem (4) a Ck,~p -capacitary distribution
of X and we call k ∗ f0 a Ck,~p -capacitary potential of X.

Theorem 3.6 Let X be a subset of RN such that Ck,~p(X) < ∞ and denote by ΩX
the set ΩX = {f ∈W 1,~p

+ (Ω) : k ∗ f ≥ 1 Ck,~p(X) − q.e on X}.
Then there exists a unique f0 ∈W 1,~p

+ (Ω) such that:

i) ‖f0‖W 1,~p(Ω)= inf{‖f‖W 1,~p(Ω): f ∈ ΩX}.

ii) k ∗ f0 ≥ 1 on X and ‖f0‖W 1,~p(Ω)= Ck,~p(X).

Proof. i) Let the function θ : W 1,~p(Ω) −→ R+ be defined by θ(f) = ‖f‖W 1,~p(Ω);

∀f ∈ W 1,~p(Ω). θ is lower semi-continuous on W 1,~p(Ω) and coercive. By Theorem 3.2,
ΩX is strongly closed in W 1,~p(Ω). On the other hand, ΩX is convex. Since W 1,~p(Ω) is

reflexive, there exists a unique f0 ∈W 1,~p
+ (Ω) such that

‖f0‖W 1,~p(Ω)= inf{‖f‖W 1,~p(Ω): f ∈ ΩX}.

ii) Let Y be a subset of X where k ∗ f0 < 1, then Ck,~p(X) = Ck,~p(X − Y ).
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Since k ∗ f0 ≥ 1 on X − Y , Ck,~p(X − Y ) ≤ ‖f0‖W 1,~p(Ω), on the other hand, we have

{f ∈W 1,~p
+ (Ω) : k ∗ f ≥ 1 on X} ⊂ ΩX .

Then

‖f0‖W 1,~p(Ω)≤ Ck,~p(X).

4 Concluding Remarks

In this paper we defined the notion of Ck,~p -capacity in the anisotropic Sobolev space
W 1,~p(Ω) for ~p = (p0, p1, ....., pN ), with 1 < p0, p1, ....., pN < ∞. We showed that this
capacity is an outer capacity and proved some convergence properties related to it. More-
over, we proved that Ck,~p is a Choquet capacity. Finally, we gave an application of this
capacity in anisotropic Sobolev spaces.

Note that the results obtained previously, especially, the properties of the
anisotropic Sobolev ~p -capacity Ck,~p will be useful in the study of some differential equa-
tions problems. Namely, for problems, studied previously in [5–7], we can treat solutions
in anisotropic Sobolev spaces and we can assume that the right hand side is a measure
data.

A perspective of this work will focus on the application of our results to a unilateral
problem that was addressed in a previous study [4] in Musielak–Orlicz–Sobolev spaces.
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