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1 Introduction

In this paper, we study systems of Fredholm integro-differential equations

dx

dt
= ẋ = εX(t, x,

∫ T
ε

0

ϕ(t, s, x(s))ds) (1)

subject to the Cauchy conditions
x(0) = x0, (1′)

or to the boundary conditions
F (x(0), x(Tε )) = 0, (1′′)
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where ε > 0 is a small parameter, X and F are d-dimensional vector functions, ϕ is an
m-dimensional vector function, T > 0 is a fixed number. We define the integral average
X0(x) as

X0(x) = lim
A→∞

1

A

∫ A

0

X
(
t, x, ϕ1(t, x)

)
dt, (2)

where ϕ1(t, x) =
∫ t

0
ϕ
(
t, s, x

)
ds, and put the problems (1′) and (1′′) in correspondence

with the averaged problems

ẏ = εX0(y), (3)

y(0) = x0, (3′)

F (y(0), y(Tε )) = 0, (3′′)

or, on the slow time scale τ = εt,

dy

dt
= X0(y), F (y(0), y(T )) = 0. (4)

The main results of the present paper are the justification of the averaging method
for the Cauchy problem and the statement that if the problem (3) has a solution, then
for small values of the parameter ε the problem (2) has a solution as well, in a small
neighborhood of the solution of the boundary value problem (3). The exact statement
of the problems and the results formulation are presented in the main part of the paper.

It should be noted that the averaging method has not lost its relevance and is widely
used in the study of various problems, for example, optimal control [16,19], systems with
a multi-valued right-hand side [13], and many others.

Integro-differential equations arise as mathematical models of various processes in nat-
ural sciences; for instance, in population dynamics [1], chemical kinetics, fluid dynamics
[2, 12, 22], epidemiology [21]. Interaction of modeling objects with the environment leads
to boundary value problems for integro-differential equations. These problems have been
studied by many authors [3,4,6–8,17].

In [20], boundary value problems for systems of Volterra integro-differential equations
are investigated by using the averaging method. It is shown that, for small ε, the existence
of a solution of a boundary value problem for an averaged system (3) implies that of the
original boundary value problem (1); the proximity between corresponding solutions
is proven. The result of [20] is a generalization of the classical result [18] concerning
boundary value problems for systems of ordinary differential equations.

Note that the averaging method has already been used for solving boundary value
problems for systems of Volterra integro-differential equations (see [15] and the references
therein). However, in these works only an estimate of proximity between the solutions
of the exact and averaged problems was established. The very fact of the existence of a
solution was only postulated.

The present work is devoted to the further development of the ideas [20] as applied
to the studying boundary value problems for Fredholm equations. Analogues of the
Bogolyubov first theorem for Fredholm equations, unlike those for Volterra equations,
were obtained only in a very special case, when the right-hand part is a sum of an ordinary
term and an integral part, and the integration is carried out over a finite interval (see [9,
11]). Again, the existence of a solution is only a postulate. However, this theorem plays
an essential role in obtaining results analogous to those of [20].
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The paper is organized as follows. In Section 2, the problem statement and the
main results are formulated. Section 3 contains some auxiliary results which are also of
independent interest. For a Cauchy problem for systems of Fredholm integro-differential
equations, we prove the existence and uniqueness theorem and investigate the continuous
dependence of solutions on initial data. Section 4 is devoted to the justification of the
averaging method. In Section 5, the existence of a solution of the boundary value problem
is proved.

2 Problem Statement and Main Results

Throughout the rest of this paper, we denote by | · | the norm of a vector in Rd and by
‖ · ‖ the matrix norm consistent with a vector norm.

The following theorem justifies the averaging method.

Theorem 2.1 Let the following conditions hold:

(1.1) X(t, x, y) is defined and continuous in a domain Q = {t ≥ 0, x ∈ Rd, y ∈ Rm},
bounded by a constant M in this domain, and satisfies a Lipschitz condition with
respect to the variables x and y in the following sense: there exists a function
α(t) ≥ 0 such that

|X(t, x, y)−X(t, x1, y1)| ≤ α(t)
(
|x− x1|+ |y − y1|

)
; (5)

(1.2) ϕ(t, s, z) is defined and continuous in Q1 = {t ≥ 0, s ≥ 0, z ∈ Rd}, bounded by a
constant M > 0, and satisfies a Lipschitz condition in the following sense: there
exists a function µ(t, s) ≥ 0 such that

|ϕ(t, s, z)− φ(t, s, z1)| ≤ µ(t, s)|z − z1|. (6)

Besides, there exists a constant µ0 > 0 such that µ(t, s) ≤ µ0,
∫∞

0
µ(t, s)ds ≤ µ0,

and
1

t

∫ t

0

dτ

∫ τ

0

µ(τ, s)ds→ 0, t→∞; (7)

there also exists ε > 0 such that for ε ∈ (0, ε]

ε

(∫ T
ε

0

α(s)ds+

∫ T
ε

0

α(s)

(∫ T
ε

0

µ(τ, s)dτ

)
ds

)
< 1; (8)

(1.3) the limits (2) and

lim
t→∞

1

t

∫ t

0

(∫ ∞
τ

|ϕ(τ, s, x)|ds
)
dτ = 0 (9)

exist uniformly with respect to x ∈ D (D is a domain in Rd); and

(1.4) the averaged system (3) has a solution y(τ) = y(εt) that belongs to D together with
some ρ-neighborhood, for τ ∈ [0, T ].

Then, for every η > 0, there exists ε0 = ε0(η) ≤ ε̄ such that for ε ∈ [0, ε0] the Cauchy
problem x(0) = y(0) = x0 for (1) has a unique solution x(t, ε) defined on [0, Tε ], and the
following inequality holds:

|y(εt)− x(t, ε)| ≤ η, t ∈ [0, Tε ]. (10)
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For boundary value problem (1)− (1′′), the following statement holds true.

Theorem 2.2 Let conditions (1.1)-(1.3) hold. Suppose, in addition, that the av-
eraged boundary value problem (3)-(3′′) has a solution y = y(τ) = y(εt) belonging to
D together with some ρ-neighborhood, in which X0(x), F (x, y) have continuous partial

derivatives ∂X0(x)
∂x , ∂F

∂x , and ∂F
∂y , and

det
∂F0(x0)

∂x0
6= 0, (11)

where x0 = y(0), F0(x0) = F (x0, y(T, x0)).
Then there exists ε0 > 0 such that, for ε ∈ (0, ε0), boundary value problem (1′)− (1′′)

has a solution x(t, ε), and one can specify a function ξ = ξ(ε)→ 0, ε→ 0, such that

|x(t, ε)− y(εt)| ≤ ξ(ε), t ∈ [0, Tε ]. (12)

3 Cauchy Problem for Fredholm Integro-Differential Equations

In this section, we consider the Cauchy problem

ẋ = X(t, x,

∫ T

0

ϕ
(
t, s, x(s)

)
ds), x(0) = x0, (13)

where [0, T ] is a fixed interval.

Theorem 3.1 Let the following conditions be satisfied:

(2.1) the function X(t, x, y) is defined in a domain Q = {t ∈ [0, T ], x ∈ Rd, y ∈ D} (D
is a domain in Rm) and satisfies a Lipschitz condition

|X(t, x, y)−X(t, x1, y1)| ≤ α(t)(|x− x1|+ |y − y1|), (14)

as well as a linear growth condition with respect to x, y; that is, there exists a
constant M > 0 such that, for t ∈ [0, T ], x ∈ Rd, y ∈ D

|X(t, x, y)| ≤M(1 + |x|+ |y|); (15)

(2.2) the function ϕ(t, s, z) is defined and continuous in a domain Q1 = {t ∈ [0, T ], s ∈
[0, T ], z ∈ Rd}, bounded by a constant M1 in Q1, and, with respect to z, satisfies a
Lipschitz condition

|ϕ(t, s, z)− ϕ(t, s, z1)| ≤ µ(t, s)|z − z1|; (16)

(2.3) the inequality ∫ T

0

α(t)dt+

∫ T

0

α(t)

(∫ T

0

µ(t, s)ds

)
dt < 1 (17)

holds;

(2.4) the region D contains a closed ball B̄TM1
(0) of radius TM1, centered at the origin.

Then, for all x0 ∈ Rd, the Cauchy problem (13) has a unique solution x(t, x0) (x(0, x0) =
x0) on [0, T ], which depends continuously on the initial data x0.
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Remark 3.1 The behavior of systems of kind (13) is substantially different from
that of similar systems of Volterra type. In [5, p.71], an example is provided for the
following equation

ẋ = Ax+
1

2π

∫ 2π

0

Bx(s)ds+ f(t), x ∈ R2, t ∈ (0; 2π), (18)

with matrices A =

(
0 1
−1 0

)
, B =

(
0 0
1 0

)
, f(t) =

(
f1(t)
f2(t)

)
.

It was shown that (18) is solvable only if the following condition is met:∫ 2π

0

(
− f1(t) sin t+ (1− cos t)f2(t)

)
dt = 0.

Note that equation (18) does not satisfy conditions of Theorem 3.1.

Proof. The proof of Theorem 3.1 falls into three parts.
1. Uniqueness. Let the Cauchy problem have two solutions x(t) and y(t) on [0, T ],

such that sup
t∈[0,T ]

|x(t)− y(t)| = γ > 0. Note that x(t) and y(t) satisfy the equations

x(t) = x0 +

∫ t

0

X

(
τ, x(τ),

∫ T

0

ϕ(τ, s, x(s))ds

)
dτ (19)

and

y(t) = x0 +

∫ t

0

X

(
τ, y(τ),

∫ T

0

ϕ(τ, s, y(s))ds

)
dτ, (20)

respectively. Thus, by (15) and (16), we get the estimate

|x(t)− y(t)| ≤
∫ t

0

α(τ)
∣∣x(τ)− y(τ)

∣∣dτ +

∫ t

0

α(τ)

(∫ T

0

µ(τ, s)|x(s)− y(s)|ds
)
dτ ≤

≤
(∫ T

0

α(τ)dτ +

∫ T

0

α(τ)

(∫ T

0

µ(τ, s)ds

)
dτ

)
sup
t∈[0,T ]

|x(t)− y(t)|,

which contradicts (17).
2. Existence. We construct a system of functions {xn(t)} in the following way:

x0(t) ≡ x0 and xn(t) is a solution of the following Cauchy problem for a system of
differential equations

ẋn = X

(
t, xn,

∫ T

0

ϕ(t, s, xn−1(s))ds

)
, xn(0) = x0.

Let us show that this sequence is defined correctly. Indeed, we have

ẋ1 = X

(
t, x1,

∫ T

0

ϕ(t, s, x0)ds

)
, x1(0) = x0. (21)

Since ϕ(t, s, x0) is continuous jointly in its variables, then g(t) =
T∫
0

ϕ(t, s, x0)ds is

continuous with respect to t as well. Moreover,

∣∣∣∣∣T∫0 ϕ(t, s, x0)ds

∣∣∣∣∣ ≤ M1T ; hence,
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T∫
0

ϕ(t, s, x0)ds ∈ D. It follows that the function Y (t, x) = X(t, x, g(t)) is defined, con-

tinuous with respect to t ∈ [0, T ], x ∈ Rd, and satisfies a linear growth condition with
respect to x ∈ Rd.

So, the Cauchy problem (21) has the global solution x1(t) on [0, T ]. In the same
manner, we can see that the whole sequence {xn(t)} is defined on [0, T ] as well.

We proceed to show that xn(t) is uniformly convergent on [0, T ]. We have

xn(t) = x0 +

∫ t

0

X

(
τ, xn(τ),

∫ T

0

ϕ(τ, s, xn−1(s))ds

)
dτ, (22)

xn−1(t) = x0 +

∫ t

0

X

(
τ, xn−1(τ),

∫ T

0

ϕ(τ, s, xn−2(s))ds

)
dτ.

We thus get

∣∣xn(t)− xn−1(t)
∣∣ ≤ ∫ T

0

α(τ)dτ sup
t∈[0,T ]

|xn(t)− xn−1(t)|+

+

∫ T

0

α(τ)

(∫ T

0

µ(τ, s)ds

)
dτ sup

t∈[0,T ]

|xn−1(t)− xn−2(t)|.

Then

sup
t∈[0,T ]

|xn(t)− xn−1(t)| ≤

∫ T
0
α(τ)

(∫ T
0
µ(τ, s)ds

)
dτ

1−
∫ T

0
α(τ)dτ

sup
t∈[0,T ]

|xn−1(t)− xn−2(t)|. (23)

But it follows from (17) that∫ T
0
α(τ)

(∫ T
0
µ(τ, s)ds

)
dτ

1−
∫ T

0
α(τ)dτ

= A < 1.

Thus, in view of (22), we can conclude that the sequence xn(t) uniformly converges to a
limit function x∗(t) on [0, T ]. We can now easily obtain from (14) and (16) that∫ t

0

X

(
τ, xn(τ),

∫ T

0

ϕ(τ, s, xn−1(s))ds

)
dτ →

∫ t

0

X

(
τ, x∗(τ),

∫ T

0

ϕ(τ, s, x∗(s))ds

)
dτ

as n→∞. From this it follows that x∗(t) is a solution of the Cauchy problem (13).
3. Continuous dependence on initial data. Assume that continuous dependence does

not hold. Then there exist ε > 0, a sequence of initial data xn converging to x0 as
n→∞, and a sequence {tn}, tn ∈ (0, T ] such that

|x(tn, xn)− x(tn, x0)| = ε. (24)

Here x(t, xn) is a solution of the system (13) subject to initial data x(0, xn) = xn. Let
us show that the sequence x(t, xn) is compact in C([0, T ]). Indeed, from (15) we obtain

|x(t, xn)| ≤ |xn|+
∫ t

0

M |1 + |xn(τ)|dτ +

∫ t

0

|ϕ(τ, s, xn(s))ds|dτ ≤
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≤ |xn|+MT +M

∫ t

0

|xn(τ)|dτ + T 2MM1.

By Gronwall’s lemma, we get

|x(t, xn)| ≤
(
|xn|+MT + T 2MM1

)
eMT ≤ C (25)

due to the boundedness of the sequence {xn}.
Further, for t1 < t2, t1, t2 ∈ [0, T ],

|x(t2, xn)− x(t1, x0)| ≤
∫ t2

t1

M(1 + C + TM1), (26)

whence it follows that the sequence {x(t, xn)} is equicontinuous. Consequently, {x(t, xn)}
contains a uniformly convergent on [0, T ] subsequence {x(t, xnk)}. It is clear that this
subsequence can be chosen so that the number sequence {tnk} converges simultaneously
to some t∗ ∈ [0, T ]. Thus, x(t, nk) ⇒ x∗(t), nk →∞, and

x(t, nk) = xnk +

∫ t

0

X

(
τ, xnk(τ),

∫ T

0

ϕ(τ, s, xnk(s)ds

)
dτ. (27)

Letting nk →∞ in (27), we obtain

x∗(t) = x0 +

∫ t

0

X

(
τ, x∗(τ),

∫ T

0

ϕ(τ, s, x∗(s)ds

)
dτ.

Hence x∗(t) is a solution of the Cauchy problem (13) as well. Let us show that x∗(t)
does not coincide identically with x(t, x0). Taking into account that x(t, xnk) converges
uniformly to x∗(t), which is continuous, from the inequality

|x(tnk , xnk)− x∗(t∗)| ≤ |x(tnk , xnk)− x∗(tnk)|+ |x∗(tnk)− x∗(t∗)|

we conclude that x(tnk , xnk) → x∗(t∗), nk → ∞. Therefore, passing to the limit, as
nk →∞, in (24), we get

|x∗(t∗)− x(t∗, x0)| = ε. (28)

Note that t∗ 6= 0, since otherwise (24) would not hold for large n. Thus (28) contradicts
the uniqueness of a solution of the Cauchy problem. The proof is complete. 2

4 Averaging Method for Systems (1)

In this section, we prove Theorem 2.1 on a justification of the averaging method.

4.1 Averaging Lemma

Assume the condition (1.4) of Theorem 2.1 to be fulfilled. Fix K > 0.

Definition 4.1 We say that a function a(t, ε) belongs to a class AK if:

(i) a(t, ε) is defined for ε > 0, t ≥ 0, and takes on values in a ρ-neighborhood of y(τ),
which is a solution of the averaged Cauchy problem (3)–(3’);
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(ii) for t ≥ 0, s ≥ 0, and ε > 0, the following inequality holds:

|a(t, ε)− a(s, ε)| ≤ Kε|t− s|. (29)

Lemma 4.1 Let the conditions of Theorem 2.1, except (8), be fulfilled. Then, for
every η > 0, there exists ε0 = ε0(η,K) such that, for ε ∈ (0, ε0], the system

ẋ = εX

(
t, x,

∫ T
ε

0

ϕ
(
t, s, a(s, ε)

)
ds

)
(30)

has a solution x(t), x(0) = y(0) = x0, defined on [0, Tε ], and the inequality

|y(εt)− x(t)| ≤ η, t ∈ [0, Tε ], (31)

holds.

Remark 4.1 In the above lemma, ε0 does not depend on x0 and is uniform through-
out the class AK .

Proof. As in the proof of Theorem 3.1, we can show that, for all ε, the Cauchy
problem

ẋ = εX

(
t, x,

∫ T
ε

0

ϕ
(
t, s, a(s, ε)

)
ds

)
, x(0) = x0, (32)

has a solution x(t, ε) defined on [0, Tε ].
Fix η > 0. Let us estimate the difference between x(t) and y(t) (for the convenience

of notation, we will omit the dependence on ε). We have

∣∣x(t)−y(t)
∣∣ = ε

∫ t

0

[
X

(
τ, x(τ),

∫ T
ε

0

ϕ(τ, s, a(s))ds−X
(
ε, x(τ),

∫ τ

0

ϕ(τ, s, a(s, ε)

)
ds

]
dτ+

+ε

∫ t

0

[
X

(
τ, x(τ),

∫ τ

0

ϕ(τ, s, a(s))ds

)
−X0(y(τ))

]
dτ =

= I1(t) + ε

∫ t

0

[
X

(
τ, x(τ),

∫ τ

0

ϕ(τ, s, a(s))ds

)
−X

(
τ, y(τ),

∫ τ

0

ϕ(τ, s, y(s))ds

)]
dτ+

+ε

∫ τ

0

[
X

(
τ, y(τ),

∫ τ

0

ϕ(τ, s, y(s))ds

)
−X

(
τ, y(τ),

∫ τ

0

ϕ(τ, s, y(τ))ds

)]
dτ+

+ε

∫ τ

0

[
X(τ, y(τ),

∫ τ

0

ϕ(τ, s, y(τ))ds

)
−X0(y(τ))

]
dτ = I1 + I2 + I3 + I4. (33)

Let us now estimate each term of (33) separately. Due to the Lipschitz condition in
(1.1), we have

∣∣I1(t)
∣∣ ≤ ε∫ t

0

L

∣∣∣∣ ∫ T
ε

0

ϕ
(
τ, s, a(s)

)
ds−

∫ τ

0

ϕ(τ, s, a(s))ds

∣∣∣∣dτ ≤
≤ εL

∫ t

0

(∫ T
ε

τ

∣∣ϕ(τ, s, a(s)
)∣∣ds)dτ. (34)
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Let us divide [0, Tε ] into n subintervals of equal length by points ti, t0 = 0 < t1 <

... < tn = T
ε . Then

εL

∫ t

0

(∫ T
ε

τ

∣∣ϕ(τ, s, a(s))
∣∣ds)dτ = εL

∫ t

0

( n−1∑
i

∫ ti+1

ti

∣∣ϕ(τ, s, a(s))− ϕ(τ, s, a(ti))
∣∣ds+

+

n−1∑
i

∫ ti+1

ti

∣∣ϕ(τ, s, a(s))− ϕ(τ, s, a(ti))
∣∣ds)dτ = I11(t) + I12(t). (35)

Here, for every ε ∈ [0, t], the summation is performed over such indices i that [ti, ti+1)
cover the interval [τ, Tε ].

We now proceed to estimate each term of (35) separately. To estimate I11, note that,
by virtue of (1.2) and (29),∣∣ϕ(τ, s, a(s))− ϕ(τ, s, a(ti))

∣∣ ≤ µ0εK|s− ti| ≤ εµ0εK
T

εn
= µ0

KT

n
. (36)

Then

|I11(t)| ≤ εL
∫ t

0

( n−1∑
i=0

∫ ti+1

ti

µ0
KT

n
ds

)
dτ ≤ εLT

2

ε

µ0K

n
=
µ0KT

2L

n
. (37)

We now turn to estimation of I11(t). Observe that, by virtue of (9), there exists such
a function β(t), continuous and decreasing monotonically to zero as t→∞, that∫ t

0

(∫ τ
ε

τ

∣∣∣∣ϕ(τ, s, a(si)
)∣∣∣∣ds)dτ ≤ tβ(t). (38)

If t belongs to any subinterval [ti, ti+1] except the first one, then it follows from (38) that

|I12(t)| ≤ εLtβ(t) ≤ LTβ( Tεn ). (39)

For fixed n, the right-hand side of (39) approaches zero as ε→ 0.
If t ∈ [0, t1], we obtain by virtue of (38) and Dini’s theorem that

|I12(t)| ≤ εβ(t) ≤ sup
τ∈[0,T ]

τβ( τε )→ 0, ε→ 0. (40)

Let us estimate the term I2(t) of (33). We have

|I2(t)| ≤ εL
∫ t

0

|x(τ)− y(τ)|dτ + εL

∫ t

0

(∫ τ

0

|ϕ(τ, s, a(s))− ϕ(τ, s, y(s))|ds
)
dτ.

But, under the conditions of Lemma 4.1, a(s, ε) belongs to a ρ-neighborhood of y(τ),
which is a bounded on [0, T ] solution of the averaged problem. Therefore, for all ε > 0,
s ≥ 0, the function a(s, ε) is bounded by a constant R = R(ρ, y(τ)) independent of that
function. Consequently,

|I2(t)| ≤ εL
∫ t

0

(∫ τ

0

µ(τ, s)|a(s)− y(s)|ds
)
dτ ≤ 2Rε

∫ t

0

(∫ τ

0

µ(τ, s)ds

)
dτ.

Similarly to the previous case, it follows from (7) that there exists a function β1(t),
monotonically approaching zero as t→∞, such that

|I2(t)| ≤ 2Rεtβ1(t) ≤ 2RTβ1(t). (41)
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Hence, for chosen η > 0, there exists T0 such that

|I2(t)| ≤ η
4 (42)

for t ≥ T0.
Obviously, we can assume T0 ∈

[
0, Tε

]
. The estimate (42) for t ∈

[
0, T0

]
is obtained by

choosing a small ε0, taking into account that
∫∞

0
µ(t, s)ds ≤ µ0.

An estimate of I3(t) is obtained similarly to that of I2(t) due to the fact that the
function y(τ) is bounded on [0, T ].

The term I4(t) is estimated in the same way as in the proof of Theorem 3.3 in [10],
taking into account the first condition of (1.3). The method of estimation is similar to
that for I1(t).

For given η > 0, we choose n and T0 large enough to make the terms (39) sufficiently
small to satisfy the estimate (42). Once such n and T0 are fixed, we choose ε0 > 0 such
that, for ε ≤ ε0, the terms (39),(40) and (42) for t ∈ [0, T0] are sufficiently small. The
application of Gronwall’s inequality completes the proof. 2

4.2 Proof of Theorem 2.1

Proof. Choose η > 0 such that η < ρ
2 and keep it fixed. Let us construct a functional

sequence {xn(t, ε)} in the following way: x0(t) = x0 and xn(t, ε), for every ε > 0, are
defined recurrently as solutions of the Cauchy problems

ẋn = εX

(
t, xn,

∫ T
ε

0

ϕ(t, s, xn−1(s, ε))ds

)
. (43)

As in the proof of Theorem 3.1, by virtue of (8), we can show that, for all 0 < ε < ε̄,
the sequence {xn(t, ε)} converges uniformly with respect to t ∈ [0, Tε ] as n → ∞, and
its limit function x(t, ε) is a unique solution of the Cauchy problem for equation (1),
x(0) = x0, on [0, Tε ]. Clearly, the following estimate is valid for functions {xn(t, ε)}:

|xn(t2, ε)− xn(t1, ε)| ≤ εM |t2 − t1|. (44)

Further, the system

ẋ1(t, ε) = εX

(
t, x1(t, ε),

∫ T
ε

0

ϕ(t, s, x0)ds

)
, (45)

x1(0, ε) = x0,

is a system of kind (30) in the Averaging Lemma with the function a(t, ε) = x0, which
obviously satisfies the conditions of Lemma 4.1.

Thus, for chosen η > 0, there exists ε0 ≤ ε̄ such that, for ε < ε0, the estimate

|y(εt)− x1(t, ε)| ≤ η < ρ

2
, t ∈ [0, Tε ], (46)

holds.
By (44), the function x1(t, ε) belongs to the class AK introduced above, with K = M .

Therefore, the system of equations for determining x2(t, ε) is a system of kind (30) with
a(t, ε) = x1(t, ε). Hence, for ε ≤ ε0, the function x2(t, ε) satisfies inequality (46) as well.
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Now, setting a(t, ε) = xn−1(t, ε) for every n, we can conclude that all functions xn(t, ε)
satisfy (26) with K = M , and hence

|xn(t, ε)− y(εt)| ≤ η < ρ

2
, t ∈ [0, Tε ], (47)

for all ε ≤ ε0 = ε0(η,M). We can therefore choose one and the same ε0 for all n. In (47),
passing to the limit as n→∞ for every ε ≤ ε0 and taking into account the convergence
of xn(t, ε) to x(t, ε), we obtain the assertion of Theorem 2.1. 2

5 Proof of Theorem 2.2

Proof. Let y(τ) = y(εt) be a solution of the boundary value problem (3) − (3′′).
According to (1.4), for t ∈ [0, T ] this solution belongs to a domain D with some ρ-
neighborhood.

Let x0 = y(0) be an initial value of this solution. We now seek a solution of (1)− (1′′)
in the form

x(t, ε) = x(t, x0 + x̄, ε), (48)

where x̄ is chosen in some neighborhood of zero. We consider a solution y(τ, x0 + x̄),
y(0, x0 + x̄) = x0 + x̄ of the averaged problem. It follows from condition (8) and definition
(2) of the averaged system that the function X0(x) satisfies the Lipschitz condition with
a constant L ≤ 1

T (according to the problem statement, T is fixed).
By Gronwall’s lemma, the following estimate

|y(τ)− y(τ, x0 + x̄)| ≤ |x̄|eLT (49)

holds until y(τ, x0 + x̄) reaches the boundary of D. Therefore, if

|x̄| < ρ

2
e−LT , (50)

then a solution y(τ, x0 + x̄) exists for τ ∈ [0, T ] and belongs to a ρ
2 -neighborhood of y(τ).

Hence y(τ, x0 + x̄), together with its ρ
2 -neighborhood, belong to D.

We determine an unknown parameter x̄ in (48) from the equation

F (x0 + x̄, x(Tε , x0 + x̄, ε)) = 0. (51)

Note that Theorem 2.1 applies to the solution x(t, x0 + x̄, ε). Therefore, for ε > 0
sufficiently small, x(t, x0 + x̄, ε) exists on [0, Tε ]. Moreover, for any η > 0, there exists
ε0(η) > 0 such that, for ε ∈ (0, ε0), the following estimate is valid:

|x(t, x0 + x̄, ε)− y(εt, x0 + x̄)| ≤ η(ε)→ 0, ε→ 0. (52)

From this we see that, for ε ∈ (0, ε0), the mapping F (x0 + x̄, x(Tε , x0 + x̄, ε)), with
respect to x̄, is well-defined in a ball Br(0), where r ≤ ρ

2e
−LT .

We note also that the points x0 + x̄ and x(Tε , x0 + x̄, ε) belong to the ρ-neighborhood
of y(τ), for ε ∈ (0, ε0).

Then, by virtue of conditions (1.4) imposed upon the function F (x, y), there exists a
constant N(r) > 0 such that ‖∂F∂x ‖ ≤ N(r) and ‖∂F∂y ‖ ≤ N(r), for x̄ ∈ Br(0).

Let us represent F (x0 + x̄, x(Tε , x0 + x̄, ε)) in the following way:

F (x0 + x̄, x(Tε , x0 + x̄, ε)) = F (x0 + x̄, x(Tε , x0 + x̄, ε))−
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−F (x0 + x̄, y(T, x0 + x̄)) + F (x0 + x̄, y(T, x0 + x̄))−

−F (x0, y(T, x0)) = R1(x̄, ε) +M1(x̄, ε).

For R1(x̄, ε), the estimate

|R1(x̄, ε)| ≤ |N(r)(x(Tε , x0 + x̄, ε)− y(T, x0 + x̄))| ≤ N(r)η(ε)→ 0, ε→ 0, (53)

holds due to (52).
Under conditions of Theorem 2.2, solutions of the averaged problem depend smoothly

on initial data, hence

M1(x̄, ε) =

(
∂F (x0, y(T, x0))

∂x
+
∂F (x0, y(T, x0))

∂y
· ∂y(T, x0)

∂x0

)
x̄+

+

∫ 1

0

(
∂F (x0 + sx̄, y(T, x0 + sx̄))

∂x
− ∂F (x0, y(T, x0))

∂x

)
x̄ds+

+

∫ 1

0

(
∂F (x0 + sx̄, y(T, x0 + sx̄))

∂y
· ∂y(T, x0 + sx̄)

∂z

∣∣∣∣
z=x0+sx̄

−

−∂F (x0, y(T, x0))

∂y
· ∂y(T, x0)

∂z

∣∣∣∣
z=x0

)
x̄ds =

=

(
∂F (x0, y(T, x0))

∂x
+
∂F (x0, y(T, x0))

∂y
· ∂y(T, x0)

∂z

∣∣∣∣
z=x0

)
x̄+R2(x̄)x̄+R3(x̄)x̄. (54)

Let us consider each term of (54) separately. Using the notation of F0(x0) in (11),
the first term can be represented as(

∂F (x0, y(T, x0))

∂x
+
∂F (x0, y(T, x0))

∂y
· ∂y(T, x0)

∂z

∣∣∣∣
z=x0

)
x̄ =

∂F0

∂x0
x̄.

Regarding R2(x̄), by the uniform continuity of partial derivatives and (49), for |x̄| ≤ r,
we get the estimate

|R2(x̄)| ≤ δ(r)→ 0, r → 0, (55)

where r ≤ ρ
2e
−LT .

To estimate R3(x̄), note that the derivative ∂y(T,z)
∂z with respect to initial data satisfies

a linear variational equation and hence is a continuous function of a parameter z. So,
similarly as above, for |x̄| ≤ r, we get the estimate

|R3(x̄)| ≤ δ1(r)→ 0, r → 0. (56)

Now, equation (51) for determining x̄ can be represented in the form

|x̄| = −
(
∂F0

∂x0

)−1(
R1(x̄, ε)+

(
R2(x̄) +R3(x̄)

)
x̄
)
,

or

x̄ =

(
∂F0

∂x0

)−1

M(x̄, ε), (57)
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where M(x̄, ε) satisfies the inequality

|M(x̄, ε)| ≤ N(r)η(ε) + δ2(r)x̄, (58)

where η(ε)→ 0, ε→ 0, δ2(r), r → 0.
Let C = ‖(∂F0

∂x0
)−1‖. Choose r so that

δ2(r) ≤ 1

2
, (59)

and then choose ε1 ≤ ε0 such that

η(ε) ≤ r

2CN(r)
. (60)

Then, for |x̄| ≤ r, from (40) we obtain∥∥∥∥(∂F0

∂x0

)−1

M(x̄, ε)

∥∥∥∥ ≤ C(N(r)η(ε) + δ2(r)|x̄|) ≤ r

2
+
r

2
= r.

Thus, if (59) and (60) hold, (∂F0

∂x0
)−1M(x̄, ε) maps the ball B0(r) into itself. Note also

that, by Theorem 3.1, there exists a solution x(t, x0 + x̄, ε) that is unique on
[
0, Tε

]
and

continuously depends on x̄. Therefore the mapping (∂F0

∂x0
)−1M(x̄, ε) is well-defined and

continuous, and, by Brouwer’s theorem, it has a fixed point x̄∗ = x̄∗(ε, r), which is the
initial value of the solution of the boundary value problem (1)− (1′′).

Let us now pick r, as a function of a parameter ε, so that r(ε) → 0, ε → 0. We then
pick ε1 ≤ ε0 so that the function η(ε) in (53) satisfies the inequality

η(ε)

r(ε)
≤ 1

2CN(r(ε))
.

Note that such a choice is possible, since a function N(r(ε)), by which the partial
derivatives ∂F

∂x and ∂F
∂y are bounded in the ball B0(r), does not increase as r(ε) decreases.

The estimate (12) now follows from (49) and (52), and the proof is complete. 2
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