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3 Laboratoire de Mathématiques et Informatique, UFR, Sciences et Techniques, Université Nazi
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Abstract: Using a minimization method we study the existence of weak solutions for
a family of nonlinear discrete Dirichlet boundary value problems where the solution
lies in a discrete (T1 × T2)-Hilbert space. The originality of this work is the study
done on a two-dimensional Hilbert space.
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1 Introduction

In the last few years, great attention has been paid to the study of fourth-order nonlinear
difference equations. These equations have been widely used to study discrete models in
many fields such as computer science, economics, neural network, ecology, cybernetics,
etc. For background and recent results, we refer the reader to [3]– [12], [13] and the
references therein.

∗ Corresponding author: mailto:ibrango2006@yahoo.fr

c© 2021 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 90

mailto:ibrango2006@yahoo.fr
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (1) (2021) 90–99 91

The main purpose of the present paper is to extend the study of difference equations
in two dimensions. These models are of independent interest since their mathematical
structure has a different nature. In the literature, to our knowledge, no scientific study
has concerned these types of problems which are nevertheless discrete variants of the
anisotropic or isotropic partial differential equations and are usually studied in connection
with numerical analysis.

We study a p-Laplacian difference equation on the subset of integers. So, for i, j ∈ N
with i ≤ j, we define N[i, j] as the discrete interval {i, i + 1, . . . , j} and we investigate
the existence of solutions for the following nonlinear discrete Dirichlet boundary value
problem: −∆

(
a(k − 1, h− 1,∆u(k − 1, h− 1))

)
= f(k, h), (k, h) ∈ N[1, T1]× N[1, T2],

u(k, h) = 0, ∀(h, k) ∈ Γ,
(1)

where
Γ = ({0, T1 + 1} × N[0, T2 + 1]) ∪ (N[0, T1 + 1]× {0, T2 + 1})

is the boundary of the domain N[0, T1+1]×N[0, T2+1]; ∆u(k, h) = u(k+1, h+1)−u(k, h)
is the forward difference operator and

a : N[1, T1]× N[1, T2]× R −→ R, f : N[1, T1]× N[1, T2] −→ R

are functions to be defined later.
Our goal is to use a minimization method in order to establish some existence results

of solutions of (1). The idea of the proof is to transfer the problem of the existence of
solutions for (1) into the problem of existence of a minimizer for some associated energy
functional. This method was successfully used by Bonanno et al. [2] for the study of an
eigenvalue nonhomogeneous Neumann problem, where, under an appropriate oscillating
behavior of the nonlinear term, they proved the existence of a determined open interval
of positive parameters for which the problem under consideration admits infinitely many
weak solutions that strongly converge to zero, in an appropriate Orlicz-Sobolev space.

The remaining part of this paper is organized as follows. Section 2 is devoted to
mathematical preliminaries. The main existence result is stated and proved in Section
3. In the last section of this paper we study an extension of the problem (1).

2 Mathematical Preliminaries

We define the (T1 × T2)-dimensional Hilbert space

H = {u : N[0, T1 + 1]× N[0, T2 + 1] −→ R such that u(k, h) = 0, ∀ (h, k) ∈ Γ}

with the inner product

〈u, v〉 =

T1∑
k=1

T2∑
h=1

u(k, h)v(k, h)

and the associated norm defined by

‖u‖ =

(
T1∑
k=1

T2∑
h=1

|u(k, h)|2
)1/2

.
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However, we introduced another norm on the space H, namely

|u|m =

(
T1∑
k=1

T2∑
h=1

|u(k, h)|m
)1/m

, ∀ m ≥ 2.

Due to equivalence of ‖.‖ and |.|m there exist constants C2 ≥ C1 > 0 such that

C1‖u‖ ≤ |u|m ≤ C2‖u‖, ∀u ∈ H. (2)

For the data f and a we impose the following conditions:

f ∈ H, a(k, h, .) : R −→ R is continuous ∀(k, h) ∈ N[1, T1]× N[1, T2] (3)

and there exists a mapping A : N[1, T1]× N[1, T2]× R −→ R which satisfies

a(k, h, ξ) =
∂

∂ξ
A(k, h, ξ) and A(k, h, 0) = 0 ∀(k, h) ∈ N[1, T1]× N[1, T2]. (4)

We also assume that there exists a positive constant C3 such that

|a(k, h, ξ)| ≤ C3

(
1 + |ξ|p(k,h)−1

)
. (5)

The following relations hold true for all (k, h) ∈ N[1, T1]× N[1, T2]:

(a(k, h, ξ)− a(k, h, η)) (ξ − η) > 0, ∀ ξ, η ∈ R with ξ 6= η (6)

and
|ξ|p(k,h) ≤ a(k, h, ξ)ξ ≤ p(k, h)A(k, h, ξ), ∀ ξ ∈ R. (7)

Example 2.1 We can give the following function:

A(k, h, ξ) =
1

p(k, h)

((
1 + |ξ|2

)p(k,h)/2 − 1
)
,

where

a(k, h, ξ) =
(
1 + |ξ|2

)(p(k,h)−2)/2
ξ, ∀ (k, h) ∈ N[1, T1]× N[1, T2], ξ ∈ R

and conditions on the function a are checked.

In this paper, we assume that the function

p : N[1, T1]× N[1, T2] −→ (1,+∞). (8)

We will use the following notations:

p− = min
k∈N[1,T1]

(
min

h∈N[1,T2]
p(k, h)

)
and p+ = max

k∈N[1,T1]

(
max

h∈N[1,T2]
p(k, h)

)
. (9)

The discrete Wirtinger type inequalities can be generalized in two dimensions as follows.
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Lemma 2.1 For any function u ∈ H, the following inequality holds:

4 sin2

(
π

2(T1 + 1)

) T2∑
h=1

T1∑
k=1

|u(k, h)|2 ≤
T2∑
h=1

T1∑
k=1

|∆u(k − 1, h− 1)|2

≤ 4 cos2
(

π

2(T1 + 1)

) T2∑
h=1

T1∑
k=1

|u(k, h)|2.

Proof. Let u ∈ H. For h fixed in N[0, T2 + 1], since u(0, h) = 0 = u(T1 + 1, h), the
discrete Wirtinger type inequalities hold (see Theorem 12.6.1, page 860 in [1]). So, just
apply the sum for h = 0, . . . , T1 + 1 and make a variable change. 2

We need the following auxiliary result throughout our paper.

Lemma 2.2 For any function u ∈ H with ‖u‖ > 1, there exist constants C4, C5 > 0
such that

T1+1∑
k=1

T2+1∑
h=1

|∆u(k − 1, h− 1)|p(k−1,h−1) ≥ C4‖u‖p
−
− C5. (10)

Proof. Fix u ∈ H with ‖u‖ > 1.
Let

v : N[0, T1 + 1] −→ R, k 7→ v(k) = u(k, h)

and

q : N[0, T1] −→ (1,+∞), k 7→ q(k) = p(k, h) with h fixed in N[0, T2 + 1].

According to Lemma 1 in [9] we have

T1+1∑
k=1

|∆v(k − 1)|q(k−1) ≥ T (2−q−)/2
1 ‖v‖q

−
− T1.

Then, there exist two constants C4, C5 > 0 such that

T1+1∑
k=1

T2+1∑
h=1

|∆u(k − 1, h− 1)|p(k−1,h−1) ≥ C4‖u‖p
−
− C5. 2

3 Main Results

In this section we study the existence of weak solution that we state in the following
theorem.

Theorem 3.1 Assume that (3)-(8) are satisfied. Then there is at least one weak
solution for problem (1).

By a weak solution for problem (1) we understand a function u ∈ H such that

T1+1∑
k=1

T2+1∑
h=1

a(k− 1, h− 1,∆u(k− 1, h− 1))∆v(k− 1, h− 1) =

T1∑
k=1

T2∑
h=1

f
(
k, h
)
v(k, h) (11)
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for any v ∈ H. The energy functional J : H −→ R corresponding to problem (1) is
defined by the formula

J(u) =

T1+1∑
k=1

T2+1∑
h=1

A(k − 1, h− 1,∆u(k − 1, h− 1))−
T1∑
k=1

T2∑
h=1

f
(
k, h
)
u(k, h). (12)

This energy functional is vastly different from the energy functions defined before this
work. Thus we indicate its properties. It is easy to see that the functional J is continuous,
Gateaux differentiable and its Gateaux derivative J ′ at u reads

〈J ′(u), v〉 =

T1+1∑
k=1

T2+1∑
h=1

a(k−1, h−1,∆u(k−1, h−1))∆v(k−1, h−1)−
T1∑
k=1

T2∑
h=1

f
(
k, h
)
v(k, h)

(13)
for all v ∈ H. If u ∈ H is a critical point to J , namely 〈J ′(u), v〉 = 0 for all v ∈ H, we
observe that

T1+1∑
k=1

T2+1∑
h=1

a(k − 1, h− 1,∆u(k − 1, h− 1))∆v(k − 1, h− 1)−
T1∑
k=1

T2∑
h=1

f
(
k, h
)
v(k, h) = 0.

Since v is any in H, we see that the critical point u to J satisfies the problem (1).

The following results prove Theorem 3.1.

Lemma 3.1 The functional J is coercive and bounded from below.

Proof. We will only prove that the energy functional is coercive since the bounded-
ness from below of J is a consequence of coerciveness.

J(u) =

T1+1∑
k=1

T2+1∑
h=1

A(k − 1, h− 1,∆u(k − 1, h− 1))−
T1∑
k=1

T2∑
h=1

f
(
k, h
)
u(k, h)

≥
T1+1∑
k=1

T2+1∑
h=1

1

p(k − 1, h− 1)
|∆u(k − 1, h− 1)|p(k−1,h−1) −

T1∑
k=1

T2∑
h=1

|f(k, h)||u(k, h)|

≥ 1

p+

T1+1∑
k=1

T2+1∑
h=1

|∆u(k − 1, h− 1)|p(k−1,h−1)

−

[
T1∑
k=1

T2∑
h=1

|f(k, h)|2
] 1

2
[
T1∑
k=1

T2∑
h=1

|u(k, h)|2
] 1

2

≥ C4

p+
‖u‖p

−
− C5 − C6‖u‖. (14)

Hence, since p− > 1, the functional J is coercive. 2

Lemma 3.2 The functional J is weakly lower semi-continuous.

Proof. For any u ∈ H, let

I(u) =

T1+1∑
k=1

T2+1∑
h=1

A(k − 1, h− 1,∆u(k − 1, h− 1)).
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According to the convexity of A, the function I is convex. Thus it is enough to show
that I is lower semi-continuous.

Let us fix u ∈ H and ε > 0. Since I is convex, we have I(v) − I(u) ≥ 〈I ′(u), v − u〉
for any v ∈ H. Therefore

I(v) ≥ I(u) +

T1+1∑
k=1

T2+1∑
h=1

a

(
k − 1, h− 1,∆u(k − 1, h− 1)

)
×(

∆v(k − 1, h− 1)−∆u(k − 1, h− 1)

)

≥ I(u)−
T1+1∑
k=1

T2+1∑
h=1

∣∣∣∣a(k − 1, h− 1,∆u(k − 1, h− 1))

∣∣∣∣×∣∣∣∣∆v(k − 1, h− 1)−∆u(k − 1, h− 1)

∣∣∣∣
≥ I(u)−

T1+1∑
k=1

T2+1∑
h=1

∣∣∣∣a(k − 1, h− 1,∆u(k − 1, h− 1))

∣∣∣∣×∣∣∣∣(v(k, h)− v(k − 1, h− 1))− (u(k, h)− u(k − 1, h− 1))

∣∣∣∣
≥ I(u)− (Λ(u) + (Φ(u)),

where

Λ(u) =

T1+1∑
k=1

T2+1∑
h=1

|a(k − 1, h− 1,∆u(k − 1, h− 1))||v(k, h)− u(k, h)|

and

Φ(u) =

T1+1∑
k=1

T2+1∑
h=1

|a(k − 1, h− 1,∆u(k − 1, h− 1))||v(k − 1, h− 1)− u(k − 1, h− 1)|.

We use the Schwartz inequality to get

Λ(u) ≤

[
T1+1∑
k=1

T2+1∑
h=1

|a(k − 1, h− 1,∆u(k − 1, h− 1))|2
] 1

2

×

[
T1+1∑
k=1

T2+1∑
h=1

|v(k, h)− u(k, h)|2
] 1

2

≤

[
T1+1∑
k=1

T2+1∑
h=1

|a(k − 1, h− 1,∆u(k − 1, h− 1))|2
] 1

2

‖v − u‖

and

Φ(u) ≤

[
T1+1∑
k=1

T2+1∑
h=1

|a(k − 1, h− 1,∆u(k − 1, h− 1))|2
] 1

2

‖v − u‖.
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Consequently, we have

I(v) ≥ I(u)−

[
1 + 2

T1+1∑
k=1

T2+1∑
h=1

|a(k − 1, h− 1,∆u(k − 1, h− 1))|2
] 1

2

‖v − u‖

≥ I(u)− ε

for all v ∈ H with ‖v − u‖ < σ =
ε

K(T1, T2, u)
, where

K(T1, T2, u) =

[
1 + 2

T1+1∑
k=1

T2+1∑
h=1

|a(k − 1, h− 1,∆u(k − 1, h− 1))|2
] 1

2

.

We conclude that the functional I is lower semi-continuous. This implies that the
functional J is also semi-continuous. 2

Proof of Theorem 3.1. Since J is proper, weakly lower semi-continuous and coercive
on H, using the relation between critical points of J and problem (1), we deduce that J
has a minimizer which is a weak solution of (1). 2

4 Uniqueness of Solution

In this section we examine the uniqueness of the weak solution for the problem (1). To do
this, let us consider u, v ∈ H being two solutions to the problem. By choosing u−v ∈ H
as a test function, according to the notion of weak solution, we obtain

T1+1∑
k=1

T2+1∑
h=1

a(k−1, h−1,∆u(k−1, h−1))∆ (u− v) (k−1, h−1) =

T1∑
k=1

T2∑
h=1

f
(
k, h
)

(u− v) (k, h)

and

T1+1∑
k=1

T2+1∑
h=1

a(k−1, h−1,∆v(k−1, h−1))∆ (u− v) (k−1, h−1) =

T1∑
k=1

T2∑
h=1

f
(
k, h
)

(u−v) (k, h).

By subtracting the two equalities above, we have

T1+1∑
k=1

T2+1∑
h=1

(a(k − 1, h− 1,∆u(k − 1, h− 1))− a(k − 1, h− 1,∆v(k − 1, h− 1)))×

∆ (u− v) (k − 1, h− 1) = 0.

Therefore, according to the assumption (6), necessarily

∆u(k − 1, h− 1) = ∆v(k − 1, h− 1), for all (k, h) ∈ N[1, T1 + 1]× N[1, T2 + 1],

so, using Lemma 2.1

‖u− v‖2 =

T1∑
k=1

T2∑
h=1

|u(k, h)− v(k, h)|2

≤
(

4 sin2

(
π

2(T1 + 1)

))−1 T2∑
h=1

T1∑
k=1

|∆u(k − 1, h− 1)−∆v(k − 1, h− 1)|2

≤ 0,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (1) (2021) 90–99 97

which means that

u = v.

5 An Extension

In this section we are going to show that the existence result obtained for problem (1)
can be extended to the problem
−∆

(
a(k − 1, h− 1,∆u(k − 1, h− 1))

)
= f(k, h, u(k, h)), (k, h) ∈ N[1, T1]× N[1, T2],

u(k, h) = 0, (h, k) ∈ Γ.

(15)
We shall replace the hypothesis on the source term f by the following. For each couple
(k, h) ∈ N[0, T1]×N[0, T2], the function f(k, h, .) : R −→ R is continuous and there exists
a constant C7 > 0 and r : N[0, T1]× N[0, T2] −→ [2,+∞) such that

|f (k, h, u(k, h)) | ≤ C7

(
1 + |u(k, h)|r(k,h)−1

)
, (16)

where 2 ≤ r(k, h) < p− for all (k, h) ∈ N[0, T1]× N[0, T2].

In what follows, we denote by

r− = min
{(k,h)∈N[0,T1]×N[0,T2]}

r(k, h) and r+ = max
{(k,h)∈N[0,T1]×N[0,T2]}

r(k, h).

We denote

F (k, h, ξ) =

∫ ξ

0

f(k, h, s)ds for (k, h, ξ) ∈ N[0, T1]× N[0, T2]× R

and we deduce that there exists a constant C8 > 0 such that

|F (k, h, u)| ≤ C8

(
1 + |u(k, h)|r(k,h)

)
. (17)

By a weak solution, we mean a function u ∈ H such that

T1+1∑
k=1

T2+1∑
h=1

a(k−1, h−1,∆u(k−1, h−1))∆v(k−1, h−1) =

T1∑
k=1

T2∑
h=1

f
(
k, h, u(k, h)

)
v(k, h)

(18)
for any v ∈ H.

Let

L(u) =

T1∑
k=1

T2∑
h=1

F
(
k, h, u(k, h)

)
.

Then, for any u, v ∈ H,

〈L′(u), v〉 =

T1∑
k=1

T2∑
h=1

f
(
k, h, u(k, h)

)
v(k, h).
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It is easy to see that L′ is completely continuous and thus, the functional L is weakly
lower semi-continuous. Therefore, the energy functional J associated with problem (15),
defined by

J(u) =

T1+1∑
k=1

T2+1∑
h=1

A(k − 1, h− 1,∆u(k − 1, h− 1))−
T1∑
k=1

T2∑
h=1

F
(
k, h, u(k, h)

)
(19)

is such that J ∈ C1(H,R) and is weakly lower semi-continuous with

〈J ′(u), v〉 =

T1+1∑
k=1

T2+1∑
h=1

a(k − 1, h− 1,∆u(k − 1, h− 1))∆v(k − 1, h− 1)

−
T1∑
k=1

T2∑
h=1

f
(
k, h, u(k, h)

)
v(k, h)

for all v ∈ H. This implies that the weak solution of problem (15) coincides with the
critical points of the functional J . It suffices now to show that the energy functional J
is coercive to conclude that the problem (15) admits at least one weak solution.
According to hypothesis (17) and using the relation (2), we have

L(u) =

T1∑
k=1

T2∑
h=1

F
(
k, h, u(k, h)

)

≤
T1∑
k=1

T2∑
h=1

C8

(
1 + |u(k, h)|r(k,h)

)
≤ C8T1T2 + C8

T1∑
k=1

T2∑
h=1

|u(k, h)|r(k,h)

≤ C9 + C8

T1∑
k=1

T2∑
h=1

|u(k, h)|r
−

+ C8

T1∑
k=1

T2∑
h=1

|u(k, h)|r
+

≤ C9 + C10

(
‖u‖r

−
+ ‖u‖r

+
)
.

Therefore the inequality (14) becomes

J(u) ≥ C4

p+
‖u‖p

−
− C5 −

(
C9 + C10

(
‖u‖r

−
+ ‖u‖r

+
))

, (20)

namely

J(u) ≥ C4

p+
‖u‖p

−
− C10

(
‖u‖r

+

+ ‖u‖r
−
)
− C11, (21)

where C10 and C11 are positive constants. Hence, since p− > r+ ≥ r− ≥ 2, the functional
J is coercive.
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