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1 Introduction

An effective strategy for the practical implementation of the robust MPC is the tube-
based MPC. The design of a robust control law guarantees the satisfaction of hard con-
straints and is addressed by means of calculating a sequence of state space regions, called
an accessibility tube. The term tube is based on control techniques whose purpose is to
maintain all the possible trajectories of an uncertain system inside a sequence of admis-
sible regions using set-theory related tools. Such approach has been widely employed to
robustify MPC [1–5].

The tube-based robust model predictive control (TMPC) is an advanced control algo-
rithm that can deal with model uncertainty. The basic idea of the tube-based robust MPC
is to maintain a state trajectory of an uncertain system inside a sequence of tubes [6].
The TMPC is motivated by the fact that a real state trajectory differs from a state
trajectory of a nominal system due to uncertainty [17]. In 2001, [8] developed a tube-
based robust model predictive controller for a linear time-invariant (LTI) system subject
to bounded disturbance. The control law is obtained by solving an unconstrained LQR
problem. The objective is to drive the state of an uncertain system to a terminal set while
using the input as little as possible. Constraint fulfillment is guaranteed by replacing
the original constraints with more stringent ones. A larger control horizon implies better
control performance at the price of a higher computational load, so a suitable trade off
is required. In 2004, [11] proposed a tube-based robust MPC using the time-varying
control inputs instead of the LTI control law. A sequence of time-varying control inputs
is obtained by solving an optimal control problem subject to additional constraints sets
in order to guarantee robust stability. Since the control inputs are time-varying, the
proposed MPC algorithm can achieve better control performances than the conventional
tube-based MPC algorithm using the LTI control law.

Tube-based MPC approaches are motivated by the fact that the predicted evolution
of a system obtained using a nominal model differs from the real evolution due to un-
certainty. An MPC formulation that permits to consider this mismatch in the controller
synthesis is the tube-based one, whose basis consists in computing the region around the
nominal prediction that contains the state of the system under any possible uncertain-
ties [8–10].

Gonzalez et al. [12] proposed a tube-based robust MPC for tracking of a linear time-
varying (LTV) system subject to bounded disturbance. The proposed MPC algorithm
requires an additional assumption that the time-varying parameter at each step within
the prediction horizon is known a priori. Then a reachable set at each time step is
calculated instead of a disturbance invariant set in order to reduce the conservativeness.
Although the conservativeness is reduced, the computational problem is more severe
because both the optimal control problem and the reachable set are computed on-line.

Bumroongsri and Kheawhom [13] proposed a strategy for the design of a tube-based
output feedback MPC which is independent of the estimation method employed. They
formulate a control policy by choosing a candidate estimate that is consistent with the
reachable sets of the system under control. The proposed method can be combined
with any estimation scheme as long as the assumed error bounds are satisfied. They
show that the proposed method is recursively feasible, robustly exponentially stable, and
performs better than other available strategies. The idea of the Tube MPC is motivated
by robustness considerations for system dynamics affected by bounded disturbances.

In this work, a new strategy for formulation of an optimal problem of the robust
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tube MPC based on zonotopic invariant sets was established. This method contains two
steps. The first one, off-line, calculates a sequence of state feedback control laws for
global systems corresponding to a sequence of zonotopic invariant sets using the LMI
technique proposed by [14]. For the nominal system, a feedback control law using the
LQR problem is computed. The second step, on-line, at each sampling time, determines
the smallest invariant tube containing the measured state and implements the computed
state feedback control. Such a control is obtained from the last two control laws. Finally,
the global control law is applied to the original process allowing to improve system control
performances.

The paper is organized as follows. General problem setup is presented in Section 2.
Then, in Section 3, the robust model predictive control is described. Polyhedral and
zonotopic sets are introduced in Section 4. Main result is presented in Section 5. The
implementation of the proposed algorithm is illustrated in two numerical examples in
Section 6. Finally, the paper is concluded.

2 General Problem Setup

Consider the following discrete-time LTV system with disturbance:

xk+1 = A(k)xk +B(k)uk + w, (1)

where x(k) ∈ Rn is the state, u(k) ∈ Rn is the control input, w ∈ Rn is the bounded
disturbance. The system is subject to the state constraint x ∈ X, the control constraint
u ∈ U , and the disturbance constraint w ∈ W , where X ⊂ Rn, U ⊂ Rm and W ⊂ Rn

are convex polytopes and each set contains the origin as an interior point.

Remark 2.1 [A(k), B(k)] ∈ conv {[Aj , Bj ],∀j ∈ 1, 2, ..., L}, where [Aj , Bj ] are ver-
tices of the convex hull and L is the number of vertices of the convex hull. The pair
[Aj , Bj ] is controllable.

Let the nominal system be defined by

x
′

k+1 = Ax
′

k +Bu
′

k, (2)

where x
′ ∈ Rn and u

′ ∈ Rm are the state and control input of the nominal system,
respectively. Now, we calculate the difference between the global and the nominal system:

xk+1 − x
′

k+1 = Axk +Buk + w − (Ax
′

k +Bu
′

k)

= A(xk − x
′

k) +B(uk − u
′

k) + w.
(3)

The objective is to robustly stabilize the system (1). The presence of a persistent dis-
turbance w means that it is not possible to regulate the state x to the origin. The best
that can be hoped for, is to regulate the state to a neighborhood of the origin. Then the
proposed idea is to compensate the mismatch between the real and the nominal state,
and to steer the nominal system as close as possible to the reference without constraints
violation. For that purpose, we consider the following control law:

uk = K(xk − x
′

k) + u
′

k, (4)

where K is the disturbance rejection gain whose goal is to compensate the system
realisation at each sampling instant.
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The system (3) is rewritten as

xk+1 − x
′

k+1 = (A+BK)(xk − x
′

k) + w. (5)

Then, using the nominal dynamics, an effective invariant tube is defined in the state
space of the nominal system and a deterministic finite horizon optimization problem
is formulated and solved on-line resulting in an optimal sequence of nominal controls

u
′

k =
{
u
′

k/k, u
′

k+1/k, ...
}

. Finally, the control law (4) is implemented to the process (1).

3 Robust Model Predictive Control

In this section, we present an off-line step for the MPC problem developed by [15], which
consists in determining a sequence of feedback control law. In order to build an invariant
tubes based on zonotopes, from the gains Ki to be found by this algorithm we establish
the zonotopic invariant sets.

By solving the optimization problem presented in (6)-(10), we obtain a state feedback
control law uk = Kixk with a state feedback gain Ki = YiQ

−1
i that can stabilize the

system while satisfying the input and output constraints.
The optimization problem is shown in the following LMI:

min
γi,Yi,Qi

γi (6)

subject to [
1 xTi

xi Qi

]
> 0, (7)


Qi QATj + Yi

TBTj QiΘ
1/2 Yi

TR1/2

AjQi +BjYi Qi 0 0

Θ1/2Qi 0 γiI 0

R1/2Yi 0 0 γiI

 > 0 ∀j = 1, 2, . . . , L, (8)

[
X Yi

Yi
T Qi

]
> 0, Xhh 6 u2h,max, h = 1, 2, . . . , nu, (9)

[
S C((AjQi +BjYi)

(AjQi +BjYi)
TCT Qi

]
> 0, Srr 6 y2r,max,

r = 1, 2, . . . , ny, ∀j = 1, 2, . . . , L,

(10)

whereQ is a symmetric matrix. For each Ki, calculate the sequence of zonotopic invariant
sets as shown in [14].

4 Polyhedral and Zonotopic Sets

Definition 4.1 (G-representation of a zonotope) Given a vector c ∈ Rn and a set
G = {g1, ... , gm} of vectors of Rn, m > n, a zonotope Z of order m is defined as follows:

Z =

{
x ∈ Rn, x = c+

p∑
i=1

γigi; −1 6 γi 6 1

}
. (11)
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The vector c is called the center of the zonotope Z. The vectors g1, ..., gm are called
generators of Z.

Definition 4.2 (V-representation of a polytope). Given r vertices vi ∈ Rn, P =
conv {v1, ..., vr} is a convex polytope, where conv is the convex hull operator. To obtain
zonotopic sets from polyhedral ones, we have to perform the following three steps:
Step 1: Compute the vertices vi ∈ Rn (V-representation) of all N polytopes Si, i =
1, ..., N .
Step 2: Obtain the minimum and maximum values of each polytope i:

mmin = min(V 1
i , ..., V

r
i ) ,

mmax = max(V 1
i , ..., V

r
i ),

(12)

where V ri is the i-th component of the vector V j and r is the number of the vertices of
each polytope.
Step 3: Compute a G-representation of the n-dimensional interval [mmin,mmax]:

[mmin,mmax] =

{
x = c+

P∑
i=1

γi.gi ,−1 6 γi 6 1

}
, (13)

where

c = 0.5(mmin +mmax), (14)

g
(i)
i =

{
0.5(mmax −mmin), if i = j,

0, otherwise.
(15)

5 Main Result

In this part, we propose a robust tube-based MPC controller via invariant zonotopic
sets. The idea of the Tube MPC is motivated by robustness considerations for system
dynamics affected by bounded disturbances instead of considering each possible distur-
bance sequence separately in the prediction. The effect of the bounded disturbances is
over-approximated by a sequence of sets which contains all possible state trajectories. In
order to prevent these sets from growing too quickly within the prediction horizon, feed-
back is assumed in the predictions. Here we do not consider system dynamics affected
by disturbances at each time instance, but instead consider (uncertain) initial offsets,
which lead to a similar uncertainty in the predictions. In this way, we use robust MPC
methods in order to approximate the input generated by a (nominal) MPC controller for
an infinite number of initial conditions by a single robust MPC controller.

Determination of the invariant tube: Consider the zonotopic sets

Z =

{
x ∈ Rn, x = c+

p∑
i=1

γigi; −1 6 γi 6 1

}
. (16)

The predicted state trajectory when the initial state x
′

=
(
x
′

0/k
, x
′

1/k
, . . . , x

′

N−1/k

)
, where

x
′

k/k ⊆ Rn is the k steps ahead prediction calculated from the set of initial conditions
xk.
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An invariant tube is written in the form

T =
({
x
′

0/k

}
⊕ Z,

{
x
′

1/k

}
⊕ Z, . . . ,

{
x
′

N−1/k

}
⊕ Z

)
, (17)

where ⊕ is the Minkowski sum. Since xk+1 − x
′

k+1 is bounded by T , we can control the

nominal system x
′

k+1 = Ax
′

k +Bu
′

k in such a way that the LTI system with disturbance
xk+1 = A(k)xk + B(k)uk + w satisfies the original state and control constraints x ∈ X
and u ∈ U , respectively. To achieve this, the tighter constraint sets for the nominal
system are employed, x

′

i ∈ X ⊕ T , u
′

i ∈ U ⊕KT for i ∈ {0, ... , N − 1}.
It has been demonstrated, that the control law uk = K(xk − x

′

k) +Klqrx
′

k keeps the

states x of the original system xk+1 = A(k)xk +B(k)uk + w close to the state x
′

of the
nominal system x

′

k+1 = Ax
′

k + Bu
′

k. It is clear that if we can regulate x
′

to the origin,
then x must be regulated to a robust positively invariant set T whose center is at the
origin.

Terminal cost and terminal invariant set: A common technique to ensure the asymp-
totic stability of MPC is to incorporate both a terminal cost and a set of terminal
constraints [16, 17]. In this part, we are interested in the two problems related to the
nominal system (2). Note that the stability properties for analogous control approaches
have been analyzed in the literature. The goal of the final cost is to provide closed-loop
stability. For this reason, it requires the use of a Lyapunov function with a stabilization
control law. In our case, a procedure similar to [1] was followed for the nominal system
(2).

In order to ensure stability, an additional terminal constraint is implemented,
x
′

N ∈ X
′

f ⊂ X ⊕ T , where X
′

f is the terminal constraint set.

Hence, (A+BK)X
′

f ⊂ X
′

f , X
′

f ⊂ X⊕T, KX
′

f ⊂ U⊕KT , and Vf (A+BK)x
′
+l(x

′
, u
′
) 6

Vf (x
′
), ∀x′ ∈ X ′f ,

where uk = K(xk − x
′

k) + Klqrx
′

k is the stage cost, and Vf (x
′
) = 1

2 (x
′
)TPx

′
is

the terminal cost, Θ, R and P are the positive definite weighting matrices.

Proposition 5.1 If xk ∈ x
′

k⊕T , x
′

k ∈ X⊕T and Klqrx
′

k ∈ U⊕T , with Klqr provided
by solving an LQR problem optimisation for the nominal system (2). Then the control law
uk = K(xk−x

′

k)+Klqrx
′

k of the global system (1) ensures satisfaction of the original con-
straints x ∈ X,u ∈ U for ∀w ∈W and [A(k), B(k)] ∈ conv {[Aj , Bj ],∀j ∈ 1, 2, ..., L}.

Proposition 5.1 states that the control law uk = K(xk−x
′

k)+u
′

k, where u
′

k = Klqrx
′

k,
ensures satisfaction of the original state and control constraints.

Theorem 5.1 For the LTV system as shown in (1), given the control law uk =
K(xk − x

′

k) + Klqrx
′

k with a state feedback gain K = Y Q−1 provided by solving the
optimization problem presented in (6)-(10) and a state feedback gain Klqr provided by
solving an LQR optimisation problem for the nominal system (2), the invariant tubes as
shown in (17) provide a set of states whereby the system will evolve to the origin without
input and output constraints violation.

Proof. The feedback gain Ki = YiQ
−1
i used in the construction of the zonotopic

invariant set Z, Z =

{
x ∈ Rn, x = c+

p∑
i=1

γigi; −1 6 γi 6 1

}
, is obtained by solving
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convex optimization problem with LMI constraints as shown in (6)-(10). The satisfaction

of (8) for a state feedback gain K ensures that ([Aj +BK]xk)
T
γQ−1 ([Aj +BK]xk)−

xTk γQ
−1xk ≤

[
xTk Θxk + uTkRuk

]
, j = 1, ..., l. Also, Vk = xTk γQ

−1xk is a strictly de-
creasing Lyapunov function (negative derivative) and the closed-loop system is robustly
stabilized by the state feedback gain K.

Hence, a set of initial states T =
({
x
′

0/k

}
⊕ Z,

{
x
′

1/k

}
⊕ Z, . . . ,

{
x
′

N−1/k

}
⊕ Z

)
is

constructed such that all predicted states remain inside T (xk ⊂ T ), and approach to the
origin without constraint violation. Moreover, the invariant tube T constructed is never
an empty set (T /∈ {}) because the given feedback gain Klqr is a stabilizable gain.

Corollary 5.1 The state of the LTV system with disturbance xk+1 = Axk+Buk+w
at each time step is restricted to lie within a tube whose center is the state of the nominal
LTV system x

′

k+1 = Ax
′

k +Bu
′

k.

So, in summary, with Theorem 1 and Proposition 1, the off-line tube robust MPC
algorithm based on zonotopes for the LTV system with disturbance xk+1 = Axk+Buk+w
can be formulated as follows.

Off-line:
– Solve (6)-(10) using Yalmip toolbox MATLAB.
– Calculate the feedback gain K = Y Q−1.
– Construction of the corresponding zonotopic invariant sets:

Z =

{
x ∈ Rn, x = c+

p∑
i=1

γigi; −1 6 γi 6 1

}
.

– Calculate the feedback gain Klqr, for the nominal system (2) using the LQR problem.

On-line: At each sampling time, calculate x
′

k+1 from x
′

k+1 =

(Aj +BKlqr)x
′

k, j = 1, 2, ..., L. Then obtain the invariant tubes T =({
x
′

0/k

}
⊕ Z,

{
x
′

1/k

}
⊕ Z, . . . ,

{
x
′

N−1/k

}
⊕ Z

)
, and we determine the smallest tube

invariant set containing the measured state and implement the corresponding state
feedback control law uk = Ki(xk − x

′

k) +Klqrx
′

k, i = 1, 2, ..., N , to the process.

6 Numerical Examples

6.1 Example 1

Let us consider an uncertain non-isothermal CSTR [12], where the exothermic reaction
A → B takes place. The reaction is irreversible and the rate of reaction is first order
with respect to component A. A cooling coil is used to remove heat that is released in
the exothermic reaction. The uncertain parameters are: the reaction rate constant k0
and the heat of reaction δHrxn. The linearized model based on the component balance
and the energy balance is given by the following state equations:{

ẋ (t) = Ax (t) +Bu (t) + w,
y (t) = Cx (t),

(18)

where

[
CA
T

]
is the state vector x(t) and

(
CA,F
FC

)
is the input control vector u(t).

Matrices are defined by
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A =

[
0.85− 0.0986α(k) − 0.0014α(k)
0.9864α(k)β(k) 0.0487 + 0.01403α(k)β(k)

]
B =

[
0.15 0
0 − 0.912

]
, C =

[
1 0
0 1

]
,

, w = [0 0]
T
, (19)

where CA is the concentration of A in the reactor, CA,F is the feed concentration of A,
T is the reactor temperature, and FC is the coolant flow. The operating parameters
are: F = 1m3/min, V = 1m3, k0 = 109 − 1010min−1, E/R = 8330.1K, −?Hrxn =
107 − 108cal/kmol, ρ = 106g/m3, UA = 5.34106cal/(Kmin?) and Cp = 1cal/(gK).

Let CA = CA − CA,eq, CA,F = CA,F − CA,F,eq and FC = FC − FC,eq, where the
subscript eq is used to denote the corresponding variable at the equilibrium condition.
By discretization, using a sampling time of 15min, and the discrete-time model with[
CA(k)
T (k)

]
as a state vector

[
CA,F
FC(k)

]
as a control vector, is given as follows:{

x(k + 1) = Ax(k) +Bu(k) + w,
y(k) = Cx(k)

(20)



x(k + 1) =

[
CA(k + 1)
T (k + 1)

]
=

[
0.85− 0.0986α(k) − 0.0014α(k)
0.9864α(k)β(k) 0.0487 + 0.01403α(k)β(k)

] [
CA(k)
T (k)

]
+

[
0.15 0
0 − 0.912

] [
CA,F
FC(k)

]
,

y(k) =

[
1 0
0 1

] [
CA(k)
T (k)

]
,

(21)

where 1 ≤ α(k) = k0/109 ≤ 10 and 1 ≤ β(k) = −∆Hrxn/107 ≤ 10.
The two parameters α(k) and β(k) are independent of each other. Then we consider

the following polytopic uncertain model with four vertices:

Ω = conv



[
0.751 − 0.0014
0.986 0.063

]
,

[
0.751 − 0.0014
9.864 0.189

]
[

0.751 − 0.0014
0.986 0.063

]
,

[
0.751 − 0.0014
9.864 0.189

]
 . (22)

These matrices are used to calculate four off-line feedback gains Klqr for the nominal

system x
′

k+1 = Ax
′

k +Bu
′

k.

The objective is to regulate the concentration CA and the reactor temperature T to
the origin by manipulating CA,F and FC , respectively. These variables are constrained
by
∣∣CA,F ∣∣ ≤ 0.5 kmol/m3 and

∣∣FC∣∣ ≤ 1.5m3/min.
The weighting matrices in the cost function are given as Θ = I and R = 0.1I.
Let us choose a sequence of states

xi =

 (0.0525, 0.0525), (0.0475, 0.0475),
(0.0425, 0.0425), (0.0375, 0.0375),
(0.0325, 0.0325), (0.0275, 0.0275).

 . (23)

The nominal feedback control laws u
′

= Klqrx
′

calculated with the LQR problem, are
given by
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K1 =

[
−0.34 0
0.50 0.03

]
, K2 =

[
−3.41 0
5.08 0.09

]
, K3 =

[
0.12 0.04
4.91 0.09

]
,

K4 =

[
−4.28 0.01
49.49 0.72

]
.

Six feedback gains calculated off-line using the LMI methods, are given by

K1 =

[
−1.51 −0.01
24.66 0.13

]
, K2 =

[
−1.54 −0.01
27.39 0.15

]
, K3 =

[
−1.56 −0.01
30.64 0.18

]
,

K4 =

[
−1.60 −0.01
38.83 0.21

]
, K5 =

[
−1.66 −0.01
38.83 0.22

]
, K6 =

[
−0.93 −0.00
47.32 0.34

]
.

Figure 1 shows six invariant polytopes computed off-line corresponding to six feedback
gains previously defined.

Figure 1: Polyhedral invariant sets constructed off-line.

Six zonotopes Z are defined by their centers:

c = {2.9842, 3.1745, −1.3132, 1.3132, −3.1745, −2.9842} . (24)

The generators matrices are defined by

G1 =


3.1047

0
0
0
0
0

, G2 =


0

3.2739
0
0
0
0

, G3 =


0
0

1.2955
0
0
0

, G4 =


0
0
0

1.2955
0
0

,

G5 =


0
0
0
0

3.2739
0

, G6 =


0
0
0
0
0

3.1047

.

In Figure 2, the terminal cost Vf (x) and the invariant tubes are obtained with the
optimal finite horizon value N = 10 function for the unconstrained problem and Xf
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Figure 2: The terminal cost Vf (x), 10 invariant tubes with N = 10, and the maximal set Xf .

is the associated maximal output admissible set. The regulated outputs are shown,
respectively, in Figure 3 and Figure 4, it is seen that the proposed algorithm is able to
steer faster the state of the uncertain CSTR to the neighborhood of the origin, and we
have concluded that the use of invariant tubes based on zonotopes gives less conservative
results as compared with invariant tubes based on polytope.

1 2 3 4 5 6 7 8 9 10

Time(min)

-0.2

0

0.2

0.4

0.6

0.8

1

C
A

(K
m

ol
.m

- 1)

Proposed approach

Bumroongsri et al., 2016

Figure 3: The concentration of A in the reactor of the regulated output.
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1 2 3 4 5 6 7 8 9 10

Time(min)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

T
(k

)

10-3

Proposed approach

Bumroongsri et al., 2016

Figure 4: The reactor temperature of the regulated output.

6.2 Example 2

Consider the following LTV system with bounded disturbance:

x(k + 1) =

(
1 1
0 alpha

)
+

(
0.5
1

)
u+ w, (25)

where 0.9 ≤ α ≤ 1.1. The state x ∈ X, where X =
{
x ∈ R2| [0 1]x ≤ 2

}
, the

control u ∈ U , where U = {u ∈ R| |u| ≤ 1}, and the disturbance w ∈ W , where

W =
{
w ∈ R2|[−0.1 0.1]

T ≤ w
}

.

The weighting matrices in the cost function are given as Θ = I and R = 0.01. The
following nominal LTV system:

x
′
(k + 1) =

[
1 1
0 α

]
x
′
+

[
0.5
1

]
u
′

(26)

is subject to a tighter state and control constraints, x
′ ∈ X ⊕ T and u

′ ∈ U ⊕ KlqrT .
By solving the LMIs problem (6)-(10) we obtain seven feedback gains corresponding to
seven invariant polytopic sets shown in Figure 5.

K1 =
[
−0.45 −1.02

]
, K2 =

[
−0.47 −1.11

]
, K3 =

[
−0.51 −1.24

]
,

K4 =
[
−0.47 −1.14

]
, K5 =

[
−0.53 −1.26

]
,K6 =

[
−0.53 −1.26

]
, K7 =[

−0.53 −1.26
]
.

Using these feedback gains we obtained seven zonotopes Z defined by their centers
c = {−1.93, −0.49, 0.69, 1.93, 0, 0, 0}. The generators matrices are defined by

G1 =



3.38
0
0
0
0
0
0


, G2 =



0
2.79

0
0
0
0
0


, G3 =



0
0

3.04
0
0
0
0


, G4 =



0
0
0

3.28
0
0
0


, G5 =



0
0
0
0

−4.63
0
0


,
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Figure 5: Polyhedral invariant sets.

Figure 6: The terminal cost Vf (x), ten invariant tubes with N = 10, and the maximal set Xf .
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Figure 7: The regulated output using invariant tubes.
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Figure 8: The control input.

G6 =



0
0
0
0
0

−2.34
0


, G7 =



0
0
0
0
0
0

−4.63


.

By solving an LQR problem to the nominal system (30) we obtain two feedback gains:
K1 = [−0.65−1.25] and K2 = [−0.67−1.39]. And using an optimal finite horizon N = 10
we obtain ten invariant tubes (Figure 6). Figure 7 and Figure 8 represent the closed-loop
response of the system and the control input, respectively. The chosen horizon is N = 10
and the initial state [0.10.2]T . It is seen that the proposed Tube MPC algorithm achieves
better control performances.

7 Conclusion

In this paper, we have presented a new approach of uncertain discrete time system
stabilization based on the robust tube MPC algorithm using zonotopic invariant sets. The
proposed algorithm used an off-line solution of an optimal control optimization problem
to determine a sequence of feedback gains for the global system. Then a sequence of
feedback gains for the nominal system is computed using an LQR problem. Finally, a
sequence of nested invariant tubes is constructed. At each sampling time, we determine
the smallest zonotopic invariant set containing the measured state and implement the
obtained global state feedback control law.

The proposed approach applied on two examples, provides better control perfor-
mances and less computational cost.
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