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Abstract: A modified 2-D discrete chaotic system with rational fraction is intro-
duced in this paper, it has more complicated dynamical structures than the Hénon
map and Lozi map. Some dynamical behaviors, value domain, fixed point, period-
doubling bifurcation, the route to chaos, and Lyapunov exponents spectrum are fur-
ther investigated using both theoretical analysis and numerical simulation. In partic-
ular, the map under consideration is a simple rational discrete bounded map capable
of generating multi-fold strange attractors via period-doubling bifurcation routes to
chaos. This new discrete chaotic system has extensive application in many fields such
as optimization chaos and secure communication.
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1 Introduction

A discrete-time dynamical system is given by a map T : X → X from a space X
into itself; we are interested in the asymptotic behavior of sequences (x(n)) defined by
x(n+1) = T (x(n)), depending on the initial condition x(0). Interest in dynamical systems
sprang up in the 1960s-70s when it was shown that: (a) very simple dynamical systems
can have an extremely complex ”chaotic” behavior, which appears to be ”random”;
(b) such ”chaotic” behavior can paradoxically be ”stable”; (c) the behavior of some
dynamical systems is so ”chaotic” and ”random” that it is best studied statistically. One
of these models is the Lozi map [1, 2]. Moreover, it is possible to change the form of
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the Lozi map for obtaining others chaotic attractors [1, 3–6]. In [7], a one-dimensional
discrete chaotic system with rational fraction was proposed. In [8], the authors extended
the first one-dimensional discrete chaotic system with two-dimensional and in a recent
work given in [9] the dynamics of a new simple 2-D rational discrete mapping was studied.
In particular, an example of coexistence of several chaotic attractors was presented and
discussed. In this paper, we propose the new discrete chaotic system with rational
fraction given by

f(x, y) =

(
y + 1− a.( 1

0.1+x2 )

b.x

)
. (1)

The map (1) is obtained by changing the term |x| in the nonlinear Lozi mapping by
the fraction ( 1

0.1+x2 ), the discrete iterative systems with rational fraction was discov-
ered in the study of evolutionary algorithm, this type of applications is used in secure
communications using the notions of chaos [10,11].

2 Analytical Results

The new chaotic attractors described by map (1) have several important properties such
as: (i) The map (1) is defined for all points in the plane. (ii) The associated function
f(x, y) of the map (1) is of class C∞(R2), and it has no vanishing denominator. (iii) The
system (1) and the Lozi system are not topologically equivalent, because the Lozi system
is a piecewise linear, but the model (1) is a nonlinear system.

3 Fixed Points and Their Stability

In this section, we begin by studying the existence of fixed points of the f mapping and
determine their stability type. Indeed, we have{

x = bx+ 1− a
( 1

0.1 + x2
)
,

y = bx.
(2)

Hence, x = bx+ 1− a
( 1

0.1 + x2
)
, then [(1− b)x− 1](0.1 + x2) + a = 0, so

(1− b)x3 − x2 + 0.1(1− b)x− 0.1 + a = 0. (3)

First, eliminate the term x2 by substituting x = X − (− 1
3(1−b) ) which yields the reduced

cubic equation X3 + PX + q = 0, where

P = 0.1− 1

3(1− b)2
(4)

and

q = − 2

27(1− b)
+
a− 0.1

1− b
+

0.1

3(1− b)2
. (5)

The reduced cubic equations with the negative discriminate 27q2 + 4p3 will have 3
real roots only if P < 0.

Proposition 3.1 The f mapping will have 3 fixed points only if

b ∈]1−
√

10
3 , 1[∪]1, 1 +

√
10
3 [.
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Proof. Let {
x = b.x+ 1− a.( 1

0.1+x2 ),

y = b.x.

Then we have x = b.x+ 1− a( 1
0.1+x2 ). Hence, [(1− b)x− 1](0.1 + x2) + a = 0. That is,

(1−b)x3−x2+0.1(1−b)x−0.1+a = 0. In this case, we have q2 < − 4
27p

3 ⇔ q2 < − 4
27p×p

2

only if p < 0. That is, 0.1− 1
3(1−b)2 < 0; (b− 1 6= 0). so 1

3(1−b)2 > 0.1, then (1− b)2 < 10
3 .

Thus 1−
√

10
3 < b < 1 +

√
10
3 .

The Jacobian matrix of the map (1) is

J =

( 2ax
(0.1+x2)2 1

b 0

)
.

We have |J | = −b. So, if b > −1, then the system is dissipative. J has the following
characteristic polynomial:

P (λ) = λ2 − 2ax

(0.1 + x2)2
λ− b,

so, the eigenvalues are

λ1,2 =
ax

(0.1 + x2)2
±

√
(ax)2

(0.1 + x2)4
+ b.

It is easy to check that the smallest absolute values are always less than 1. Then we
deduce that the fixed points are of saddle type.

4 Determination of Bounded and Unbounded Orbits

We remark that the variations of the right-hand side of system (1) depend mainly on the
fraction which is a smooth function. In what follows, we shall prove the boundedness of
system (1) using a comparison criterion. It is possible to rewrite system (1) in the form
(6) below:

xn+1 = 1− (
a

0.1 + x2n
) + bxn−1. (6)

Now, by successive substitution of the terms of the sequence (xn)n we can prove that
this sequence is bounded for all b < 1 as shown by the following result.

Theorem 4.1 For every n > 1, and all values of a and b, and for all values of the
initial conditions (x0, x1) ∈ R2, the sequence (xn)n satisfies the following conditions:

(a) If b 6= 1, then

xn =


b
n−1
2 −1
b−1 + b

n−1
2 x1 − a

m=n−1
2∑

m=1

bm−1

0.1+x2
n−(2m−1)

if n is odd,

b
n
2 −1
b−1 + b

n
2 x0 − a

m=n
2∑

m=1

bm−1

0.1+x2
n−(2m−1)

if n is even;

(7)
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(b) If b=1, then

xn =


n−1
2 + x1 − a

m=n−1
2∑

m=1

1
0.1+x2

n−(2m−1)

if n is odd,

n
2 + x0 − a

m=n
2∑

m=1

1
0.1+x2

n−(2m−1)

if n is even.

(8)

.

Theorem 4.2 The sequence (xn)n given in (1) satisfies the following inequality:

∀a, b ∈ R,∀n > 1, |1− xn + bxn−2| ≤ |10a|. (9)

Proof. We have for every n > 1: xn = 1− a.( 1
0.1+x2

n−1
) + b.xn−2, then one has

| − xn + 1 + bxn−2| = |
a

0.1 + x2n−1
| ≤ |10a|. (10)

Since x2n > 0, one has 0.1 + x2n > 0.1, so 1
0.1+x2

n
< 10, then we get | a

0.1+x2
n
| < |10a|.

5 Existence of Bounded and Unbounded Orbits

In the following theorem, we give sufficient conditions for bounded and unbounded orbits
of the system (1).

Theorem 5.1 For all a ∈ R and all initial conditions (x0;x1) ∈ R2:

i. The orbits of the map (1) are bounded in the following subregions of R4 :

Γ1 =
{

(a, b, x0, x1) ∈ R4/|b| < 1
}
. (11)

ii. The map (1) possesses unbounded orbits in the following subregions of R4 :

Γ2 =

{
(a, b, x0, x1) ∈ R4/|b| > 1, and both |x0|, |x1| >

|10a|+ 1

|b| − 1

}
(12)

and
Γ3 =

{
(a, b, x0, x1) ∈ R4/|b| = 1, and |10a| < 1

}
. (13)

Proof. I) From equation (1) and the fact that ( 1
0.1+x2

n
) is a bounded function for all

x ∈ R, one has the following inequalities for all n > 1:

|xn| ≤ 1 + |10a|+ |bxn−2|. (14)

If we replace the successive terms xn−2, xn−4, xn−6..., in the term xn, then the last term
is obtained:

|xn| ≤ (1 + |10a|) + |b|(1 + |10a|) + |b|2(1 + |10a|) + |b|3|xn−6|. (15)

Since |b| < 1, the use of (15) and induction about some integer k using the sum of a
geometric growth formula permits us to obtain the following inequalities for every n > 1,
k > 0 :

|xn| ≤ (1 + |10a|)(1− |b|k

1− |b|
) + |b|k|xn−2k|. (16)
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Thus, one has the following two cases:
1) if n = 2m+ 1, then (xn)n satisfies the following inequalities:

|x2m+1| ≤ (1 + |10a|)(1− |b|m

1− |b|
) + |b|m|x1| = wm; (17)

2) if n = 2m, then (xn)n satisfies the following inequalities:

|x2m| ≤ (1 + |10a|)(1− |b|m

1− |b|
) + |b|m|x0| = vm. (18)

Thus, since |b| < 1, the sequences (wm)m and (vm)m are bounded, and one has{
wn ≤ 1+|10a|

1−|b| + ||x1| − 1+|10a|
1−|b| | for all m ∈ N,

vn ≤ 1+|10a|
1−|b| + ||x0| − 1+|10a|

1−|b| | for all m ∈ N.
(19)

Thus, the previous formulas give the following bounds for the sequence (xn)n:

|xm| ≤ max(
1 + |10a|
1− |b|

+ ||x1| −
1 + |10a|
1− |b|

|, 1 + |10a|
1− |b|

+ ||x0| −
1 + |10a|
1− |b|

|). (20)

Finally, for all values of a and all values of b satisfying |b| < 1 and all initial conditions
(x0;x1) ∈ R2, one concludes that all orbits of the map (1) are bounded, i.e., in the
sub-region of R4

Γ1 =
{

(a, b, x0, x1) ∈ R4/|b| < 1
}
.

Hence the proof (i) is completed.

II) (a) For every n > 1 we have xn = 1 − a.( 1
0.1+x2

n−1
) + b.xn−2, then |b.xn−2 −

a.( 1
0.1+x2

n−1
)| = |xn − 1| and ||b.xn−2| − |a.( 1

0.1+x2
n−1

)|| ≤ |xn − 1|, (we use the triangular

inequality), this implies that

|b.xn−2| − |a.(
1

0.1 + x2n−1
)| ≤ |xn|+ 1. (21)

Since |( 1
0.1+x2

n−1
)| ≤ 10, this implies that |a( 1

0.1+x2
n−1

)| ≤ 10|a|.
|b.xn−2| − |a( 1

0.1+x2
n−1

)| ≥ |b.xn−2| − 10|a|. Finally, one has from (21) that

|b.xn−2| − (10|a|+ 1) ≤ |xn|. (22)

Then, by induction, as in the previous section, one has

|xn| ≥

{
( |10a|+1
|b|−1 + |x1|)|b|

n−1
2 + |10a|+1

|b|−1 if n is odd,

( |10a|+1
|b|−1 + |x0|)|b|

n
2 + |10a|+1

|b|−1 if n is even.
(23)

Thus, if |b| > 1 and both |x0|, |x1| > ( |10a|+1
|b|−1 ), one has limn→+∞|xn| = +∞.

(b) For b = 1, one has

|xn| ≥
{

(1− |10a|)(n−1
2 ) + |x1| if n is odd,

(1− |10a|)(n
2 ) + |x0| if n is even.

(24)
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Hence, if |10a| < 1, then one has limn→+∞|xn| = +∞.
For b = −1, one has from Theorem 1 the following inequalities:

xn ≤


−(n−1

2 ) + x1 + |a
m=n−1

2∑
m=1

(−1)m−1

0.1+x2
n−(2m−1)

| if n is odd,

−(n
2 ) + x0 + |a

m=n
2∑

m=1

(−1)m−1

0.1+x2
n−(2m−1)

| if n is even.

(25)

Because |( a(−1)m−1

0.1+x2
n−(2m−1)

)| ≤ |10a|, then one has

xn ≤
{

(|10a| − 1)(n−1
2 ) + |x1| if n is odd

(|10a| − 1)(n
2 ) + |x0| if n is even.

(26)

Thus, if |10a| < 1, then one has limn→+∞|xn| = +∞. Note that there is no similar proof
for the following subregions of R4 defined by

Γ4 =

{
(a, b, x0, x1) ∈ R4/|b| > 1, and both |x0|, |x1| ≤

|10a|+ 1

|b| − 1

}
(27)

and
Γ5 =

{
(a, b, x0, x1) ∈ R4/|b| = 1, and |a| ≥ 1

}
. (28)

Hence, the proof (ii) is completed.

6 Some Observed New Attractors

As already mentioned in the introduction, we study the two-dimensional discrete chaotic
system with two parameters a and b, obtained via a direct modification in the Lozi map,
where the absolute value term is replaced by the rational fraction defined on all R and
being differentiable continuous. This fact is the central idea which makes the solutions
of system (1) bounded for some values of b. This new map generates chaotic attractors
with multiple ”multifold” that evolves around three points as shown in Fig.1.

7 Numerical Simulations and Route to Chaos

In this section, the dynamic behavior of the map (1) is studied numerically. We shall
illustrate some observed chaotic attractors. The bifurcation diagram is a way for a
discrete dynamical system to make a transition from regular behavior to chaos [12]. To
demonstrate the chaotic dynamics, the largest Lyapunov exponent should be the first
thing to be considered, because any system containing at least one positive Lyapunov
exponent is defined to be chaotic. From Fig.2 and Fig.3, it is clear that the bifurcation
diagram well coincides with the spectrum of Lyapunov exponents. Fig.2 shows that
the system (1) can evolve into periodic and chaotic behaviors. Indeed, when a varies
from 0.108 to 0.347, it can be seen that there is a positive Lyapunov exponent over a
wide range of parameters, implying that the system is chaotic over this range. When a
increases in the region [0.118, 0.220], the system (1) converges to a stable fixed point.
In the interval section (0.108, 0.112), the trajectory of the system will turn to a stable
limit cycle. In addition, the system shows a periodic motion of some windows in the
chaotic region, i.e., [0.245, 0.255]. Finally, it is clear that the system is chaotic for
a ∈ (0.220, 0.245) ∪ (0.255, 0.347).
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Figure 1: Attractors of the map (1) with (a) a = 0.9, b = 0.9, (b) a = 0.9, b = 2, (c) a = 0.3,
b = 0.115, (d) a = 0.3, b = 0.3, (e) a = 0.6, b = 0.4, (f) a = 0.6, b = 0.9.

 

Figure 2: (a) The bifurcation diagram for the map (1) obtained for b = 0.3 and 0, 108 < a <
0.347. (b) Variation of the Lyapunov exponents of map (1) versus the parameter 0, 108 < a <
0.347 with b = 0.3.
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Figure 3: (a) The bifurcation diagram for the map (3) obtained for b = 0.9 and 0, 13 < a < 2.
(b) Variation of the Lyapunov exponents of map (3) versus the parameter 0, 13 < a < 2 with
b = 0.9.

8 Conclusion

In this paper we have presented a modified two-dimensional discrete chaotic system
with rational fraction, obtained via direct modification of the Hénon mapping. The
detailed dynamical behaviors of this map (which is useful for the evolutionary algorithm
and secure communication) are further investigated using both theoretical analysis and
numerical simulation.
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