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Abstract: An SIRS epidemic model for the geographic spread is considered. The
linear stability analysis is conducted to obtain the threshold condition and a super-
critical instability region is found whenever the reproduction number R > 1. An
evolution equation for the leading order of infectives is derived by the long wave-
length expansion method and full pattern formation analysis is carried out. The
Poincaré-Lindstedt method is applied to obtain a uniformly periodic valid solution.
Numerical simulations are used to present the results.
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1 Introduction

In epidemiology the use of mathematical models starts from the pioneering works of
Kermack and McKendrick [1–4]. To describe the Great Plague of London of 1665-1666,
Kermack and McKendrick use a simple basic deterministic differential equation model
called the SIR model [3], [4]. Many mathematical models in the literature are built based
on the modeling framework of Kermack and McKendrick.

Most of existing studies rely on different types of differential equations. For instance,
first-order partial differential equations are used for modeling of age structures [5–8];
delay-differential equations or integral equations are suitable when time delay or delay
factors appear [9–13]; second-order partial differential equations are more realistic when
a diffusion term exists.
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Recently, the study of geographic spread of epidemics becomes of much interest.
Diffusion epidemic models have been studied by many authors [14–19]. Liu and Jin [18]
considered an SI model with either constant or nonlinear incidence function. The authors
studied numerically the pattern formation of the model. In [19], Hadji applied the long
wavelength expansion method to analyze a simple model for the geographic spread of a
rabies epidemic in a population of foxes. The author studied the pattern formation of the
model. In [14], the authors studied the effect of different types of animal movement on
threshold conditions for disease spread by considering a simple SI diffusion model. Jawaz
et. al. [10] considered a time delay HIV/AIDS reaction diffusion SIR model. The authors
designed a numerical scheme to solve the model. Moreover, the proposed technique was
compared with the results obtained by Euler’s technique, also the results are presented
by numerical simulations.

The main objective of this study is to develop and analyze a mathematical model of
an epidemic incorporating with diffusion of the various epidemic sub-population within
a geographical region. We conducted the linear and weakly nonlinear stability analysis
of an SIRS with diffusion model. The long wavelength expansion is applied to obtain the
evolution equation. Furthermore, a periodic uniformly valid solution is obtained by the
Poincaré-Lindstedt method.

This paper is organized as follows, The mathematical model formulation is presented
in Section 2. In Section 3, the linear stability analysis is conducted to obtain the threshold
conditions. The weakly nonlinear stability is investigated in Section 4. In Section 5, a full
pattern formation analysis is carried out. A uniformly periodic valid solution is obtained
in Section 6. The results are concluded in Section 7.

2 Mathematical Model

We consider a population which consists of three subgroups. The susceptible, S, which
can get the disease. The infected, I, those who have the disease and can transmit it.
The removed, R, those who recovered, are immune, isolated or dead. The population is
considered to have a constant size, N , where N = S + I + R. All the classes, S, I and
R depend on space and time. The SIR reaction diffusion epidemic model is presented by
J. D. Murray [20]:

∂Ŝ

∂t̂
= D∇2Ŝ − β ŜÎ + γR̂,

∂Î

∂t̂
= D∇2Î + β ŜÎ − rÎ,

∂R̂

∂t̂
= D∇2R̂+ rÎ − γR̂, (1)

where D is the diffusion coefficient, β is the disease transmission coefficient, r is the
recovery rate and γ is the loss of natural immunity. Upon using the following scaling
I = Î/S0, S = Ŝ/S0, R̂/S0, x = x̂/H and t = β S0 t̂, where S0 is a reference value of the
susceptible species, we obtain the dimensionless system which is described by

∂S

∂t
= ∇2S − SI + δ R,

∂I

∂t
= ∇2I + SI − λ I,



58 M.H. DARASSI AND M.A. SAFI

∂R

∂t
= ∇2R+ λ I − δ R, (2)

where δ = γ/β S0 and λ = r/β S0 is the reciprocal of the reproduction rate, R. The
corresponding boundary conditions are

S = 1,
∂ I

∂ z
= 0 and R = 0

at z = 0, 1. The basic states of S, I and R are

SB = 1, IB = 0 and RB = 0 (3)

for any values of λ and δ. We introduce the perturbations φ, θ and ψ to the base state
so that S = 1 +φ, I = θ+ 0 and R = ψ+ 0. Hence the system of equations (2) becomes

∂φ

∂t
= ∇2φ− θ − φ θ + δ ψ,

∂θ

∂t
= ∇2θ + φ θ + (1− λ) θ,

∂ψ

∂t
= ∇2ψ + λ θ − δ ψ, (4)

subject to

φ = 0,
∂ θ

∂ z
= 0 and ψ = 0

at z = 0, 1.

3 Stability Threshold Condition

Following a standard procedure (see [21] and [22]), the linearized system of equations
governing the convective perturbations is given by

∂φ

∂t
= ∇2φ− θ + δ ψ,

∂θ

∂t
= ∇2θ + (1− λ) θ,

∂ψ

∂t
= ∇2ψ + λ θ − δ ψ. (5)

We investigate the linear stability by considering the normal modes [Φ,Θ,Ψ] =
[Φ(z),Θ(z),Ψ(z)] exp(iK · X+ σ t), where X = 〈x, y〉, σ is the growth rate and |K| = k
is the wavenumber in the system of equations (5) to obtain the following system of second
order ordinary differential equations:

σΦ = (D2 − k2)Φ−Θ + δΨ, (6)

σΘ = (D2 − k2)Θ + (1− λ) Θ, (7)

σΨ = (D2 − k2)Ψ + λΘ− δΨ. (8)
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where D = d/d z.

Multiply both sides of equation (7) by the complex conjugate of Θ and integrate with
respect to z from 0 to 1 to get

σ =
−〈|DΘ|2〉 − (k2 + λ− 1)〈|Θ|2〉

〈|Θ|2〉
, (9)

where 〈·〉 =
∫ 1

0
· d z. If σ = 0, the solution of equation (7) is Θ = A1 coshα z+A2 sinhα z,

where α =
√
k2 + λ− 1. Apply the boundary conditions

dΘ

d z
= 0 at z = 0, 1. We get

α = 0 and hence, λ = 1 − k2. Thus, the critical λ value, λc = 1 when the wavenumber

k = 0. Therefore, the reproduction number R =
1

λ
=

1

1− k2
and hence Rc = 1.

Theorem 3.1 The model (2) has a supercritical instability region whenever the re-
production number R > 1.

The numerical simulation of the relation between the reproduction number R and
the wavenumber k is depicted in Figure 1. Figure 2 shows the plot of the recovered
compartment R as functions of z.
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Figure 1: The plot of the repro-
duction number R as a function of
the wavenumber k.
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Figure 2: The plot of the recovered
compartment, R, as functions of z
with r = 0.1, β = 0.9, δ = 0.01 and
S0 = 1000.

4 Weakly Nonlinear Stability Analysis

A nonlinear evolution equation will be derived in this section. Since the population
wavenumber is zero, the long wavelength expansion can be applied to the equations
(5). A small perturbation parameter ε, 0 < ε � 1, will be introduced. We scale the
dimensions

∂

∂ x
= ε1/2

∂

∂ X
,

∂

∂ y
= ε1/2

∂

∂ Y
,

∂

∂ z
=

∂

∂ Z
, τ = ε2 t

and we expand λ = 1− ε2µ2

φ = ε φ1 + ε2 φ2 + · · · ,

θ = ε θ1 + ε2 θ2 + · · · ,
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ψ = ε ψ1 + ε2 ψ2 + · · · ,
δ = ε δ1 + ε2 δ2 + · · · ,

where µ, δ1 and δ2 are of O(1) quantities. For simplicity, we consider the one-dimensional
problem. The O(ε) problem is described by

D2φ1 − θ1 = 0,

D2θ1 = 0,

D2ψ1 + θ1 = 0, (10)

where D = ∂/∂ Z. It is subject to the boundary conditions ψ1 = φ1 = 0 and ∂θ1/∂ Z = 0
at Z = 0, 1. Its solution is given by

θ1 = f(X, τ),

φ1 =
f

2
(Z2 − Z),

ψ1 = −f
2

(Z2 − Z).

Proceed to the next order, the O(ε2) problem is described by

D2 φ2 + (φ1)XX − θ2 − θ1 φ1 + δ1 ψ1 = 0,

D2 θ2 + (θ1)XX + θ1 φ1 = 0,

D2 ψ2 + (ψ1)XX + θ2 − δ1 ψ1 = 0,

subject to the boundary conditions ψ2 = φ2 = 0 and ∂θ2/∂ Z = 0 at Z = 0, 1. Its
solution is given by

φ2 = −fXX
12

(
Z4 − Z3

)
− f2

720

(
Z6 − 3Z5 − 30Z4 + 60Z3 − 28Z

)
,

+
δ1 f

24

(
Z4 − 2Z3 + Z

)
+
B

2

(
Z2 − Z

)
,

θ2 = −fXX
2

Z2 − f2

24

(
Z4 − 2Z3

)
+B,

ψ2 =
fXX
12

(
Z4 − Z3

)
+

f2

720

(
Z6 − 3Z5 + 2Z

)
− δ1 f

24

(
Z4 − 2Z3 + Z

)
− B

2

(
Z2 − Z

)
,

where

B =
137

1512
f2 +

1

21
fXX +

17 δ1
168

f.

Proceeding to the order O(ε3), we get

(θ1)τ = D2θ3 + (θ2)XX − µ2 θ1 + θ2 φ1 + θ1 φ2. (11)

Application of the orthogonality conditions on equation (11) yields the sought evolution
equation:

fτ = − 5

42
fXXXX−

17 δ1
168

fXX−µ2 f− 199

45360
f3− 43

5040
f2+

11

1260
f fXX+

1559

15120

(
f2
)
XX

.

(12)
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5 Pattern Formation

By generalizing the procedure which has been used above, the three-dimensional nonlin-
ear evolution equation will be obtained:

fτ = − 5

42
∇4
H f−

17 δ1
168

∇2
H f−λ1 f−

199

45360
f3− 43

5040
f2+

11

1260
f ∇2

H f+
1559

15120

(
∇2
H f

2
)
,

(13)
where ∇H = (∂/∂ X, ∂/∂ Y ). Upon using the following transformation in equation (13):

ξ =

√
17δ1
40

X, ζ =

√
17δ1
40

Y, η =
289 δ21

13440 τ
, f = µ2 F ,

equation (13) is transferred to

Fη = −∇4
H F − 2∇2

H F − ω F −AF 3 −B F 2 + C F ∇2
H + E∇2

HF
2, (14)

where ∇H = (∂/∂ ξ, ∂/∂ ζ), A =
1592µ2

7803 δ21
, B =

344µ

867 δ1
, C =

44µ

255 δ1
, E =

1559µ

765 δ1
and

ω =
13440

289 δ21
µ2.

The linear stability analysis will be applied, where the growth rate of normal modes
with small amplitude can be determined by considering the linearized version of equation
(14)

∂ F

∂ η
= −∇4

H F − 2∇2
H F − ω F. (15)

Application of the normal modes f = exp(σ η + iK · r), where σ is the growth rate, K
is the wave vector such that |K| = k and r = (ξ, ζ), in equation (15) yields

σ = −(k2 − 1)2 + 1− ω.

Hence, the range of instability is 0 < ω < 1. That is, 0 < mu2 <
289 δ21
13440

. The effect

of nonlinear terms in the evolution equation (14) can be depicted by considering the
following expansions:

F = ε F1 + ε2 F2 + · · · ,

ω = 1− ε ω1 − ε2 ω2 − · · ·

and η = ε2 η̂. The solution to the O(ε) which is described by

∇4
H F1 + 2∇2

H F1 + F1 = 0 (16)

is given by

F1(ξ, ζ, η̂) = U(η̂) cos (ζ) + V (η̂) cos

(√
3 ξ

3

)
cos

(
ζ

2

)
. (17)

Equation (17) yields a roll structure when V (η̂) = 0 and a square structure when U(η̂) =
0. Proceed to the next order O(ε2), the problem is described by

∇4
H F2 + 2∇2

H F2 + F2 = ω1 F1 −B F 2
1 + C F1∇2

H F1 + E∇2
H F

2
1 . (18)
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Upon averaging equation (18) by multiplying both sides by F1 and integrating over the
domain of ξ and ζ, we get ω1 = 0. Hence the solution of equation (18) is given by

F2 = −
(
B + C

2
+

(
B + C + 4E

2

)
cos(ζ)

)
U2

−2

(
E cos

(
3 ζ

2

)
+ (E +B + C) cos(ζ) cos

(
ζ

2

))
× cos

(√
3 ξ
)
U V+[(

B + C − E
4

)
cos(ζ)−

(
C +B

4

)
−
(

3E + C +B

4

)
+

(
4E −B − C

4

)
cos(ζ) cos(

√
3 ξ)

]
V 2.

Proceed to the next order, O(ε3), the problem is described by

∂ F1

∂η̂
= −∇4

H F3 − 2∇2
H F3 − F3 + ω1 F2 + ω2 F1

−AF 3
1 −B F1 F2 + C

(
F1∇2

HF2 + F2∇2
HF1

)
+ E∇2

H(F1 F2). (19)

In order to obtain the amplitude equations, we will average equation (19) with F1 to get

〈∂ F1

∂η̂
, F1〉 = −〈∇4

H F3 + 2∇2
H F3 + F3, F1〉

+ 〈ω2 F1 −AF 3
1 −B F1 F2, F1〉+ 〈C

(
F1∇2

HF2 + F2∇2
HF1

)
+ E∇2

H(F1 F2), F1〉. (20)

The following are the amplitude equations of U and V :

∂ U

∂η̂
= −Γ1 U

3 + ω2 U + Γ2 U V
2, (21)

∂ V

∂η̂
= −Γ3 V

3 + ω2 V + Γ2 V U
2, (22)

where

Γ1 =
398

2601 δ1
− 1341428296

169130025 δ21
, Γ2 =

2504438396

169130025 δ21
− 796

2601 δ1

and

Γ3 =
199

1734 δ1
− 320488891

56376675 δ21
.

We set V = 0 in equation (21) to determine the stability of roll structure. Hence the

equilibrium points are (U, V ) = (0, 0) and (U, V ) =

(
±
√
ω2

Γ1
, 0

)
.

Theorem 5.1 If Γ1 > 0 and ω2 > 0, then the roll solutions exist and the bifurcation
is sub-critical. If both Γ1 and ω2 are negative, then the roll solutions exist and the
bifurcation is supercritical.

Following the same analysis, the square structure can be determined. If we set U = 0

in equation (22), the equilibrium points are (U, V ) = (0, 0) and (U, V ) =

(
0,±

√
ω2

Γ3

)
.
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Theorem 5.2 The square solutions exist with sub-critical bifurcation when both Γ3

and ω2 are positive. But if both are negative, the square solutions exist with supercritical
bifurcation.

To determine the hexagons structure, we set V = 2U in equation (17) and assume
that η = ε η̂. Hence, the O(ε2) problem is described by

∂ F1

∂η̂
= −∇4

H F2 − 2∇2
H F2 − F2 + ω1 F1 −B F 2

1 + C F1∇2
H F1 + E∇2

H F
2
1 . (23)

To obtain the amplitude equation for hexagons, we average equation (23) with F1 so
that

〈∂ F1

∂η̂
, F1〉 = 〈−∇4

H F2−2∇2
H F2−F2+ω1 F1−B F 2

1 +C F1∇2
H F1+E∇2

H F
2
1 , F1〉. (24)

Thus, the amplitude equation for hexagons is given by

∂ U

∂ η̂
=

(
ω1 +

1559

765 δ1

)
U + ΓU2, (25)

where Γ = − 2468

4335 δ1
.

Theorem 5.3 Since Γ < 0, the solution of equation (14) has sub-critical down
hexagons formation.

6 Uniformly Periodic Valid Solution

Upon applying the following scales on equation (12) f = ah, ξ = bX, τ̂ = eτ , γ = aλ1,
e = 1/a, we obtain

∂ h

∂τ̂
= −hξξξξ − 2µ2 hξξ − γ h− α1 h

2 − α2 h
3 + α3 hhξξ + α4 (hξ)

2, (26)

where a =
6√
65

, b =
4

√
7

√
13

5
, µ2 =

17 δ1

8
√

455
× 4

√
13

5
, α1 =

43

9100
, α2 =

199

13650
√

65
,

α3 =
5

6
√

7
× 4

√
13

5
and α4 =

1559

1950
√

7
× 4

√
13

5
.

We investigate the stability of the static solution of equation (26), when its linear
part is given by

∂ h

∂τ̂
= −hξξξξ − 2µ2 hξξ − γ h. (27)

Upon introducing the normal modes h(ξ, τ) = eστ+i k ξ, we obtain the following dispersion
relation:

σ = −(k2 − µ2)2 − γ. (28)

The static state solution is unstable whenever γ < µ4. To investigate the weakly nonlinear
stability of the evolution equation we introduce the small parameter, ε� 1, and conduct
the perturbation analysis near the linear solution. We expand

γ = µ4 − ε γ1 − ε2 γ2, τ = ε2 η,



64 M.H. DARASSI AND M.A. SAFI

h = ε h1 + ε2 h2 + ε3 h3 + · · ·

The order O(ε) of equation (26) is described by

(h1)ξξξξ + 2µ2 (h1)ξξ + γ h1 = 0. (29)

The solution of equation (29) is h1 = cos(µξ). Because of the secular terms, we will
apply the Poincaré - Lindstedt method [23] to obtain a uniformly valid periodic solution.
Substitute ν = w ξ and expand w = 1 + εw1 + ε2 w2 + · · · in equation (26) to obtain

w4 hνννν + 2µ2 w2 hνν + γ h = α1 h
2 + α2 h

3 + w2
(
α3 hhνν + α4 (hν)2

)
. (30)

Define: L (h) = hνννν + 2µ2 hνν + γ h. The order O(ε) problem is described by

L (h1) = 0. (31)

The solution of equation (31) is h1 = cos(µν). Proceed to order O(ε2), the problem
is described by

L (h2) = γ1 cos(µν) + Γ1 + Γ2 cos(2µν). (32)

To remove the secular terms, we set γ1 = 0, which means that there is no subcritical

instability. The solution of the resulting equation is given by h2 =
Γ1

µ4
+

Γ2

9
cos(2µν),

where

Γ1 =
1

2

(
α1 − µ2 α3 + µ2 α4

)
and Γ1 =

1

2

(
α1 − µ2 α3 − µ2 α4

)
.

Proceed to the next order O(ε3), the problem is described by

L (h3) =

[
−4µ4 w2

1 + γ2 −
Γ1

µ4
(2α1 + µ2 α3)

+
Γ2

36
(−4α1 − 27α2 − 10µ2α3 + 16µ2α4)

]
cos(µν)−

[w1

18
(96µ4Γ2 + 9µ2α3)

]
cos(2µν)

+

[
Γ2

36
(−4α1 − 9α2 − 10µ2α3 + 16µ2α4)

]
cos(3µν)− w1µ

2 α3

2
. (33)

Removing the secular term by setting

−4µ4 w2
1 + γ2 −

Γ1

µ4
(2α1 + µ2 α3) +

Γ2

36
(−4α1 − 27α2 − 10µ2α3 + 16µ2α4) = 0

yields

w1 = ±

√
γ2

4µ4
− Γ1

4µ8
(2α1 + µ2α3) +

Γ2

144µ4
(−4α1 − 27α2 − 10µ2α3 + 16µ2α4).

Upon solving the rest of equation (33), we get

h3 =

[
w1

3µ2
(32µ2Γ2 + 3α3)

]
cos(2µν) +

[
Γ2

2304µ4
(−4α1 − 9α2 − 10µ2α3
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+16µ2α4)
]

cos(3µν) +
w1 α3

2µ2
. (34)

Thus, a uniformly valid steady state solution to equation (26) is given by

h = cos(µ(1 + εw1)ξ) ε+

(
Γ1

µ4
+

Γ2

9
cos(2µ(1 + εw1)ξ)

)
ε2

+

([
w1

3µ2
(32µ2Γ2 + 3α3)

]
cos(2µ(1 + εw1)ξ))

+

[
Γ2

2304µ4
(−4α1 − 9α2 − 10µ2α3 + 16µ2α4)

]
cos(3µ(1 + εw1)ξ)) +

w1 α3

2µ2

)
ε3.

(35)
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Figure 3: The plot of h as a function of ξ with µ = 0.3 (dotted line), µ = 0.7 (solid line), µ = 1
(dashed line) and γ2 = 10.

7 Conclusion

An SIRS model for the spread of a disease has been considered. This model involves
the spatial diffusion so that the effect of landscape can be captured. The domain of the
model is not infinite, it is complemented with two horizontal boundaries. The stability
threshold condition is obtained so that whenever the reproduction number R > 1, a
supercritical instability region is depicted. See Theorem 3.1.

Because of the infinite wavelength, the weakly nonlinear stability analysis was con-
ducted by applying the long wavelength asymptotic analysis method and the proposed
model is reduced to a single evolution equation (12). Full pattern formation analysis of
equation (12) is carried out and the subcritical down hexagons are depicted.

It is found that there exists a stable uniform solution, namely F = 1. Upon retrieving

the original variables, we have f = µF =

√
1− λ
ε

, which yields the following expression

of infected, susceptible and recovered:

I =

√
1− λ
ε

, S = 1 +

√
1− λ
2ε

(Z2 − Z), R =

√
1− λ
2ε

(Z − Z2).
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Figure (4) shows the plot of I as a function of the reproducing number R and the
space dependent functions S and R.
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Figure 4: The plot of the infected, I, as a function of the reproduction number, R, (left), the
plot of the susceptible, S, as a function of z, (middle), and the plot of the recovered, R, as a
function of z, (right).

Moreover, the Poincaré-Lindstedt method is applied to obtain a uniformly periodic
valid steady state solution which is depicted in Figure 3.
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