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Abstract: This paper is a contribution to the study of the elliptic equation

∆p u+ αu+ βx · ∇u+ |x|l uq = 0 in RN ,

where p > 2, q > 1, N ≥ 1, α < 0, β < 0 and l < 0.

If q ≤ p − 1 or q > p − 1 and
α

β
6= l + p
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=

l + p
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N − p
p

, we

prove the existence of unbounded radial solutions u and we obtain their asymptotic

behavior. In particular, if
α

β
<
−l
q − 1

, lim
r→+∞

rl/(q−1)u(r) =

(
βl

q − 1
− α

)1/(q−1)
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1 Introduction

This paper is devoted to the study of the elliptic equation

∆p u+ αu+ βx · ∇u+ |x|l uq = 0 in RN , (1)

where ∆p u = div
(
|∇u|p−2∇u

)
, p > 2, ∇u =

(
∂u

∂x1
, · · · , ∂u

∂xN

)
, N ≥ 1, q > 1, α < 0,

β < 0 and l is a real number such that −p < l < 0 and −N < l < 0.
Equations of the above form occur in the study of self-similar solutions of the nonlinear

parabolic problem

ut = ∆p u+ |x|l |u|q−1 u in RN × (0,+∞). (2)

A lot of work has been done concerning equation (1) when l = 0; discussions and
bibliographies are found in [3], [4], [10], [11], [13], [15], [16] and [18]. When p = 2 and
−2 < l < 0, equation (1) was studied in [8]. Note also that when p > 2 and l < 0, the
equation was investigated for α > 0 and β > 0 in [9] and was initiated in [7] by the
authors for α < 0 and β < 0.

In our paper [7], we studied radial solutions near 0 of the equation(
|u′|p−2u′

)′
+
N − 1

r
|u′|p−2u′ + αu+ βru′ + rl|u|q−1u = 0, r > 0.

Among the results obtained, we showed that for any radial solution u with u(0) > 0,
lim
r→0

r(N−1)/(p−1)u′(r) exists and is finite. Moreover, for any a > 0 and b ∈ R, there exists

a unique function u ∈ C0([0,+∞[)∩C1(]0,+∞[) such that |u′|p−2u′ ∈ C1(]0,+∞[), and
satisfying the problem

(P)


(
|u′|p−2u′

)′
+
N − 1

r
|u′|p−2u′ + αu+ βru′ + rl|u|q−1u = 0, r > 0,

u(0) = a, lim
r→0

r(N−1)/(p−1)u′(r) = b,

where p > 2, q > 1, N ≥ 1, −p < l < 0, −N < l < 0, α < 0 and β < 0.
It is also proved that if a is small and b = 0, u is strictly positive.

Our aim in this paper, is to continue our study on the problem (P). For this we must
start with the analysis of solutions of the equation(

|u′|p−2u′
)′

+
N − 1

r
|u′|p−2u′ + αu+ βru′ + rluq = 0, r > 0. (3)

First of all, it should be noted that when 0 <
α

β
=

l + p

q + 1− p
<
N − p
p− 1

, we have an

explicit solution Lr−α/β , where

L =

(
N − p− α

β
(p− 1)

)1/(q+1−p)(
α

β

)(p−1)/(q+1−p)

.

This solution is bounded near infinity but singular at the origin. However, using the
theory of ODE, the equation (3), for bounded solutions whether they are singular or not,
can be considered in +∞ as a perturbation of the equation(

|u′|p−2u′
)′

+
N − 1

r
|u′|p−2u′ + αu+ βru′ = 0,
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whose solutions behave like the function r−α/β near infinity.
On the other hand, the term rluq plays a key role in (3) for unbounded solutions and

therefore, the perturbation theory can not be applicable. Hence the interest of focusing
our study on unbounded solutions.

For this purpose, let us represent equation (3) in an equivalent but useful form.
For any real c, we set

υc(t) = rcu(r) where r > 0 and t = ln r. (4)

Then υc satisfies

ω′c(t) +Ac ωc(t) + αeKctυc(t) + βeKcthc(t) + eMctυqc (t) = 0, (5)

where
ωc(t) = |hc|p−2hc(t), hc(t) = υ′c(t)− cυc(t), (6)

Ac = N − p− c(p− 1), Kc = c(p− 2) + p and Mc = l + p− c(q + 1− p). (7)

Five critical values of the parameter c will be involved:
α

β
,

l

q − 1
and those which

cancel Ac, Kc or Mc, that is, c =
−p
p− 2

, c =
N − p
p− 1

or c =
l + p

q + 1− p
.

The study of monotonicity of rcu(r) for these last five values, combined with the
behavior of bounded solutions, allows us to show the existence of unbounded solutions
of problem (P).

A fine analysis of the equation in logarithmic form, using some energy function,
gives the asymptotic behavior of solutions. Our main results are given by the following
theorems.

Theorem 1.1 Assume that q ≤ p − 1 or q > p − 1 and
α

β
6= l + p

q + 1− p
or

α

β
=

l + p

q + 1− p
≥ N − p

p
. Then any positive solution of problem (P) is unbounded.

Theorem 1.2 Assume q ≥ p
(

2 + 2p−1
)
− 1 and

l

q − 1
< min

(
−α
β
,
N − p
p− 1

)
. Let u

be an unbounded positive solution of problem (P). Then

lim
r→+∞

rl/(q−1)u(r) = Γ

and

lim
r→+∞

rl/(q−1)+1u′(r) =
−l
q − 1

Γ,

where

Γ =

(
βl

q − 1
− α

)1/(q−1)

.

The rest of the paper is organized as follows. In the second section, we present
fundamental properties of solutions of equation (3). The third section concerns the
existence and the asymptotic behavior near infinity of unbounded positive solutions of
problem (P).
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2 Fundamental Properties

In this section, we give some fundamental properties that are the key stone of the main
results. For this purpose, we introduce, for any real c 6= 0, the function

Ec(r) = cu(r) + ru′(r), r > 0. (8)

It is clear that
(rcu(r))′ = rc−1Ec(r), r > 0. (9)

With the logarithmic change (4), we have

υ′c(t) = rcEc(r) and hc(t) = rc+1u′(r). (10)

The monotonicity of the function rcu(r) can be obtained by the sign of the function
Ec(r) . Observe that for any r > 0 such that u′(r) 6= 0, we have

(p− 1) |u′|p−2 (r)E′c(r) =
(
p−N + c(p− 1)

)
|u′|p−2 u′(r)− βr2u′(r)−

αru(r)− rl+1uq(r)

=
(
p−N + c(p− 1)

)
|u′|p−2 u′(r) + |β|r Eα/β(r)−

rl+1uq(r). (11)

Consequently, if Ec(r0) = 0 for some r0 > 0, equation (3) gives

(p− 1) |u′|p−2 (r0)E′c(r0) = −r0u(r0)

[
α− cβ + rl0u

q−1(r0) +(
p−N + c(p− 1)

)
|c|p−2c r−p0 up−2(r0)

]
= −rl+1

0 uq(r0)

[
1 + (α− cβ)r−l0 u1−q(r0) +(

p−N + c(p− 1)
)
|c|p−2c r−l−p0 up−1−q(r0)

]
, (12)

from which we can study the sign of Ec(r) and we use the following remarks.

Remark 2.1 If there exists r0 such that Ec(r0) = 0 and E′c(r0) 6= 0, then Ec(r) 6= 0
for any r > r0.

Remark 2.2 If u is a bounded solution of equation (3), then, by expression (12) and
Remark 2.1, we have, for any c > 0 such that cβ − α 6= 0, Ec(r) 6= 0 for large r.

We first give the sign of El/(q−1) and E−p/(p−2).

Proposition 2.1 Let u be a solution of equation (3).We put

Γ =

(
βl

q − 1
− α

)1/(q−1)

. (13)

The following holds:

(i) If
N − p
p− 1

>
l

q − 1
and u(r) > Γr−l/(q−1) for large r, then El/(q−1)(r) 6= 0 for large
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r.
(ii) If q ≥ p− 1, lim

r→+∞
u(r) = +∞ and lim

r→+∞
rl/(q−1)u(r) = 0, then El/(q−1)(r) < 0 for

large r.
(iii) If q ≥ p− 1 and lim

r→+∞
rl/(q−1)u(r) = +∞, then E−p/(p−2)(r) < 0 for large r.

The proof requires the following result.

Lemma 2.1 Let u be a solution of equation (3) such that for large r,

u(r) > Γr−l/(q−1),

where Γ is given by (13). Then u′(r) > 0 for large r.

Proof. Suppose that there exists a large r0 such that u′(r0) = 0, then(
|u′|p−2u′

)′
(r0) = −

[
α+ rl0u

q−1(r0)
]
u(r0) < − βl

q − 1
u(r0) < 0.

Hence, u′(r) 6= 0 for any r > r0. Moreover, since lim
r→+∞

u(r) = +∞, we have u′(r) > 0

for large r. 2

Now, we turn to the proof of Proposition 2.1.
Proof. (of Proposition 2.1). The cases (i) and (ii) follow easily from Remark 2.1 and
relation (9). Assume now that we are in the case (iii), then again Remark 2.1 gives
E−p/p−2(r) 6= 0 for large r. Suppose by contradiction that E−p/(p−2)(r) > 0 for large r.

Hence, by (9), lim
r→+∞

r−p/(p−2)u(r) ∈]0,+∞]. Set

ϕ(r) = rN−1|u′|p−2u′(r) + βrNu(r), r > 0, (14)

then, by equation (3), we get

ϕ′(r) = rN−1u(r)
[
Nβ − α− rluq−1(r)

]
, for any r > 0, (15)

so lim
r→+∞

ϕ′(r) = −∞, in particular, ϕ(r) < 0 for large r, that is,

rN−1|u′|p−2u′(r) < |β|rNu(r) (16)

for large r. Note that by Lemma 2.1, we have u′(r) > 0 for large r and then a simple
integration of this last inequality on (r0, r) gives lim

r→+∞
r−p/(p−2)u(r) = d1 > 0.

Now we are going to the logarithmic change. First, from (5) we obtain

ω′−p/(p−2)(t) = −A−p/(p−2) ω−p/(p−2)(t)− αυ−p/(p−2)(t)−
βh−p/(p−2)(t)− eM−p/(p−2)tυq−p/(p−2)(t).

(17)

Note that, as E−p/(p−2)(r) > 0 for large r, then by (10) υ′−p/(p−2)(t) > 0 for large t. Then,

since lim
r→+∞

r−p/(p−2)u(r) = d1 > 0, necessarily lim
t→+∞

υ′−p/(p−2)(t) = 0, which implies

that lim
t→+∞

h−p/(p−2)(t) =
p

p− 2
d1 and therefore lim

t→+∞
ω−p/(p−2)(t) =

( p

p− 2
d1

)p−1
. As

M−p/(p−2) > 0, it follows by letting t → +∞ in (17) that lim
t→+∞

ω′−p/(p−2)(t) = −∞.

This is impossible as lim
t→+∞

ω−p/(p−2)(t) is finite.

Consequently, E−p/(p−2)(r) < 0 for large r. The proof is complete. 2
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Proposition 2.2 Let u be a solution of equation (3). Then, for any c ≥

max

(
N − p
p− 1

,
α

β

)
, Ec(r) > 0 for large r.

We need the following lemma.

Lemma 2.2 Assume that u is a bounded solution of equation (3). Then u′(r) < 0
for large r.

Proof. First, we claim that u′(r) cannot vanish for large enough r. Assume by
contradiction that there exists a large extremum r0 of u. Then, according to equation

(3), we get
(
|u′|p−2u′

)′
(r0) = −

[
α + rl0u

q−1(r0)
]
u(r0) > 0, then u′(r) > 0 for any

r > r0, from which it turns out that u′(r) 6= 0 for large r. If u′(r) > 0 for large r, it
follows by the boundedness of u that lim

r→+∞
u(r) = L > 0 and from (8), EN (r) > 0 for

large r. On the other hand, by (11), we have that for large r

(p− 1) |u′|p−2 (r)E′N (r) = (p+N(p− 2)) |u′|p−1 + |β|r2u′(r)

+
[
|α| − rluq−1

]
ru(r)

>
[
|α| − rluq−1

]
ru(r) > 0. (18)

So, lim
r→+∞

EN (r) ∈]0,+∞].

Note that if lim
r→+∞

EN (r) = +∞, then by (8), lim
r→+∞

ru′(r) = +∞, which contradicts

the boundedness of u. On the other hand, if lim
r→+∞

EN (r) is finite and strictly posi-

tive, necessarily lim
r→+∞

ru′(r) = 0 and by letting r to +∞ in equation (3), we obtain

lim
r→+∞

(|u′|p−2u′)′(r) = −αL > 0, which implies that lim
r→+∞

u′(r) = +∞ and we have

again a contradiction. Consequently, u′(r) < 0 for large r. 2

Now we prove Proposition 2.2.
Proof. (of Proposition 2.2). We distinguish two cases.
Case 1: u is bounded.

Assume
α

β
≥ N − p

p− 1
. We have easily from Remark 2.1, Eα/β(r) 6= 0 for large r. Sup-

pose that Eα/β(r) < 0 for large r, it turns out by (9) that the function rα/βu(r) is

decreasing for large r, hence lim
r→+∞

rα/βu(r) exists and is finite. But
α

β
> 0, then

necessarily lim
r→+∞

u(r) = 0. On the other hand, using the equation (11), Lemma 2.2,

the fact that Eα/β(r) < 0 and
α

β
≥ N − p

p− 1
, we get E′α/β(r) < 0 for large r, hence

lim
r→+∞

Eα/β(r) ∈ [−∞, 0[. Combining this with lim
r→+∞

u(r) = 0, we obtain from (8),

lim
r→+∞

ru′(r) ∈ [−∞, 0[. But this contradicts the fact that u is positive. Consequently,

Eα/β(r) > 0 for large r and Ec(r) > 0 for c ≥ α

β
.

Assume now
α

β
<
N − p
p− 1

. Then, from Remark 2.2, E(N−p)/(p−1)(r) 6= 0 for large r.

Suppose on the contrary that E(N−p)/(p−1)(r) < 0 for large r. Since
α

β
<
N − p
p− 1

, we
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have Eα/β(r) < 0 for large r. On the other hand, by (11), we have E′(N−p)/(p−1)(r) < 0

and thereby lim
r→+∞

E(N−p)/(p−1)(r) ∈ [−∞, 0[. Using similar arguments as before, we get

a contradiction. In fact, as the function r(N−p)/(p−1)u(r) is decreasing, then it admits a
finite limit, this implies that lim

r→+∞
u(r) = 0. So, by (8), lim

r→+∞
ru′(r) ∈ [−∞, 0[, which is

impossible. Consequently, E(N−p)/(p−1)(r) > 0 for large r and Ec(r) > 0 for c ≥ N − p
p− 1

.

Case 2: u is unbounded.

It is easy to see by Remark 2.1 that for c ≥ max

(
N − p
p− 1

,
α

β

)
, Ec(r) 6= 0 for large r, that

is, by (9), rcu(r) is strictly monotone. Since u is unbounded, necessarily lim
r→+∞

rcu(r) =

+∞. Consequently, by (9), Ec(r) > 0 for large r. 2

3 Unbounded Solutions

In this section we study the unbounded positive solutions of problem (P) and we give
their asymptotic behavior near infinity.

Theorem 3.1 Assume that q ≤ p − 1 or q > p − 1 and
α

β
6= l + p

q + 1− p
or

α

β
=

l + p

q + 1− p
≥ N − p

p
. Then any positive solution of problem (P) is unbounded.

Before giving the proof, we need the behavior of bounded solutions near infinity. For
this purpose we start with the following result.

Proposition 3.1 Assume that u is a bounded solution of equation (3). Then

lim
r→+∞

u(r) = lim
r→+∞

ru′(r) = 0. (19)

Proof. Recall Lemma 2.2 and Proposition 2.2, we deduce that lim
r→+∞

u(r) = L exists

and for any c ≥ max

(
N − p
p− 1

,
α

β

)
,

− cu(r) < r u′(r) < 0 for large r. (20)

Thus ru′(r) is bounded for large r. Assume by contradiction that L > 0.

First, suppose that ru′(r) is monotone for large r, then necessarily lim
r→+∞

ru′(r) = 0

and we get from equation (3)

lim
r→+∞

(
|u′|p−2u′

)′
(r) = −αL > 0.

This is a contradiction with u′(r) < 0 for large r.

Next, suppose that ru′(r) is oscillating for large r. Since u is positive and strictly
decreasing, one has lim sup

r→+∞
ru′(r) = 0. Otherwise, there exists a constant C > 0 such

that ru′(r) < −C for large r. This contradicts u(r) > 0. Consequently, there exists a
sequence {ξi} going to +∞ as i→ +∞ such that the function ru′(r) has a local maximum
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in ξi satisfying lim
i→+∞

ξiu
′(ξi) = lim sup

r→+∞
ru′(r) = 0 and u′(ξi) + ξiu

′′(ξi) = 0 (u′′ exists

because u′ < 0). Therefore

lim
i→+∞

u′(ξi) = lim
i→+∞

u′′(ξi) = 0. (21)

On the other hand, take r = ξi in equation (3), we obtain

lim
i→+∞

(
|u′|p−2u′

)′
(ξi) = −αL > 0,

that is,

lim
i→+∞

|u′|p−2u′′(ξi) = − αL

p− 1
> 0.

This contradicts (21).
It follows from both cases that lim

r→+∞
u(r) = 0. Hence, by inequality (20), we have

lim
r→+∞

ru′(r) = 0 and the proof is complete. 2

Proposition 3.2 Assume that u is a bounded solution of equation (3). Then

(i) If 0 < c <
α

β
< N, lim

r→+∞
rcu(r) = 0.

(ii) If
α

β
< c < N, lim

r→+∞
rcu(r) = +∞.

Proof. According to Remark 2.2 and expression (9), rcu(r) is monotone for large r

for any c 6= α

β
. Hence lim

r→+∞
rcu(r) ∈ [0,+∞].

(i) Assume by contradiction that lim
r→+∞

rcu(r) ∈]0,+∞]. Then, for 0 < c <
α

β
< N ,

lim
r→+∞

rNu(r) = +∞ and by Remark 2.2, EN (r) > 0 for large r. Hence, using the fact

that u is bounded, u′(r) < 0 for large r and expression of EN , we find

lim
r→+∞

|u′(r)|p−1

ru
= 0. (22)

Then by (22), (14) and (15), we have

ϕ(r) ∼
+∞

βrNu(r) < 0 (23)

and
ϕ′(r) ∼

+∞
(Nβ − α)rN−1u(r). (24)

Combining these two estimates, we get

r(rc−Nϕ)′ ∼
+∞

(cβ − α)rcu(r).

Since lim
r→+∞

rcu(r) ∈]0,+∞] and cβ − α > 0, there exists some C1 > 0 such that

r(rc−Nϕ)′(r) > C1 for large r.
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Whence lim
r→+∞

ϕ(r) = +∞. This is a contradiction with (23). We deduce that

lim
r→+∞

rcu(r) = 0.

(ii) Assume by contradiction that lim
r→+∞

rcu(r) = K ∈ [0,+∞[. We distinguish two

cases:
• K = 0. Then necessarily Ec(r) < 0 for large r, this means that

u(r)

r|u′(r)|
<

1

c
for large r. (25)

Using equation (3) and the fact that u > 0, u′ < 0 and
α

β
< c, we obtain

(
|u′|p−2u′

)′
(r) < r|u′(r)|

[
β +
|α|
c

+
N − 1

r2
|u′(r)|p−2

]
< 0 for large r.

Thus u′(r) > 0 for large r, which is a contradiction with Lemma 2.2.
• K > 0. Since c < N , lim

r→+∞
rNu(r) = +∞ and EN (r) > 0 for large r. Therefore, (22)

is satisfied and thereby from (23) and (24), we get

lim
r→+∞

ϕ(r) = −∞ and lim
r→+∞

rc+1−Nϕ′(r) = K(Nβ − α). (26)

Then Hopital’s rule implies

lim
r→+∞

rc−Nϕ(r) =
K(Nβ − α)

N − c
. (27)

But from (23), this limit is exactly Kβ. This contradicts the fact that c >
α

β
. Conse-

quently, lim
r→+∞

rcu(r) = +∞ and the proof of the proposition is complete. 2

Proposition 3.3 Assume that u is a bounded solution of equation (3). Then the
function rα/βu(r) is not strictly monotone for large r.

Proof. We argue by contradiction and assume that rα/βu(r) is strictly monotone for
large r. Therefore, according to (9), Eα/β(r) 6= 0 for large r. We distinguish two cases.
Case 1: Eα/β(r) > 0 for large r.
We set

J1(r) = u(r)− rp−1|u′|p−1. (28)

Then for large r,

J ′1(r) = rp−1u
[
− α− rluq−1

]
− rp|u′|

[
− β + r−p + (p−N)r−2|u′|p−2

]
. (29)

Using now Proposition 3.1 and Eα/β(r) > 0 for large r, we get

lim
r→+∞

J1(r) = 0,

J1(r) > u(r)

[
1−

(
α

β

)p−1
up−2(r)

]
> 0 for large r
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and
J ′1(r) ∼

+∞
−αrp−1u(r) + βrp|u′(r)| = −βrp−1Eα/β(r) > 0 for large r.

This is a contradiction.
Case 2: Eα/β(r) < 0 for large r.

Then necessarily
α

β
<
N − p
p− 1

, by Proposition 2.2.

Now, we set
J2(r) = rkup(r)− rp−1|u′|p−1, (30)

with 0 < k < min
(α
β
, p
)

. Then, for large r,

J ′2(r) = rp−1u

[
− α− rluq−1 + krk−pup−1

]
− rp|u′|

[
− β+

+ prk−pup−1 + (p−N)r−2|u′|p−2
]
.

(31)

As k < p, k <
α

β
<

N − p
p− 1

< N , Eα/β(r) < 0 for large r, by Proposition 3.1 and

Proposition 3.2, we obtain
lim

r→+∞
J2(r) = 0,

J2(r) < up−1(r)

[
−
(
α

β

)p−1
+ rku(r)

]
< 0 for large r

and
J ′2(r) ∼

+∞
−αrp−1u(r) + βrp|u′(r)| = −βrp−1Eα/β(r) < 0 for large r.

Again, we have a contradiction. Consequently, the function rα/βu(r) is not strictly
monotone for large r. The proof of the proposition is complete. 2

Proposition 3.4 Assume that u is a bounded solution of equation (3). If
α

β
=

l + p

q + 1− p
<
N − p
p− 1

, then

lim
r→+∞

rα/βu(r) = L (32)

and

lim
r→+∞

rα/β+1u′(r) =
−α
β
L, (33)

where

L =

(
N − p− α

β
(p− 1)

)1/(q+1−p)(
α

β

)(p−1)/(q+1−p)

. (34)

Proof. Define the following function:

I(r) = rα/βu(r)

[
|u′|p−2u′(r)

ru(r)
+ β

]
. (35)

We have I(r) < 0 for large r. Its derivative is given by

I ′(r) =

(
α

β
−N

)
rα/β−2|u′|p−2u′(r)− rα/β+l−1uq(r). (36)
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The proof will be done in five steps.
Step 1: I(r) ∼

+∞
βrα/βu(r).

Since
α

β
<

N − p
p− 1

, Proposition 2.2 implies that E(N−p)/(p−1)(r) > 0 for large r and

thus, from the boundedness of u, lim
r→+∞

|u′|p−2u′(r)
ru

= 0 and one deduces that I(r) ∼
+∞

βrα/βu(r).
Step 2: lim

r→+∞
rα/βu(r) exists and is finite.

According to Step 1, it suffices to prove that lim
r→+∞

I(r) exists and is finite. For this

purpose, consider a real σ such that

0 < σ < min

(
α

β
,

1

q

(
α

β
(q − 1)− l

)
,

1

p− 1

(
α

β
(p− 2) + p

))
.

So, by Proposition 3.2, lim
r→+∞

rα/β−σu(r) = 0. In particular, there exists a constant C > 0

such that
u(r) ≤ Crσ−α/β for large r. (37)

Recall the positivity of E(N−p)/(p−1)(r) for large r, we get that there exists C1 > 0 such
that

rα/β−2|u′|p−1 < Cp−11 rγ for large r, (38)

where γ =
α

β
(2− p) + σ(p− 1)− p− 1.

By the choice of σ, the functions r → rα/β+l−1uq(r) and r → rα/β−2|u′|p−1 are integrable
near +∞, therefore, I ′(r) is also integrable near +∞. To conclude, we observe that for
any r0 > 0,

lim
r→+∞

I(r) =

∫ +∞

r0

I ′(s)ds+ I(r0)

exists and is finite. Therefore, lim
r→+∞

rα/βu(r) exists and is finite.

Set lim
r→+∞

rα/βu(r) = L ≥ 0.

Step 3: lim
r→+∞

rα/βu(r) = L > 0.

Assume that lim
r→+∞

rα/βu(r) = 0. Then lim
r→+∞

I(r) = 0. Therefore, applying Hopital’s

rule and using the first step, we obtain

lim
r→+∞

I ′(r)(
rα/βu(r)

)′ = lim
r→+∞

I(r)

rα/βu
= β. (39)

On the other hand, using (36), we have

I ′(r) = rα/β−2|u′|p−1
[
N − α

β
− rl+1uq(r)

|u′|p−1

]
. (40)

Let 0 < c <
α

β
< N , then lim

r→+∞
rcu(r) = 0 and according to Remark 2.2, we have

Ec(r) 6= 0 for large r. Therefore, necessarily by (9), Ec(r) < 0 for large r. Hence,

0 <
rl+1uq(r)

|u′|p−1
< c1−prl+puq+1−p(r). (41)
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Since
α

β
=

l + p

q + 1− p
, then lim

r→+∞
rl+puq+1−p(r) = 0 and therefore lim

r→+∞

rl+1uq(r)

|u′|p−1
= 0.

Hence, as
α

β
< N and |u′(r)| > 0 for large r, we have by (40), I ′(r) > 0 for large r.

Consequently, by (39) and the fact that β < 0,
(
rα/βu(r)

)′
< 0 for large r. But this

contradicts Proposition 3.3.
Consequently, lim

r→+∞
rα/βu(r) = L > 0.

Step 4: lim
r→+∞

rα/β+1u′(r) =
−α
β
L.

Since lim
r→+∞

u(r) = 0, then applying Hopital’s rule, we obtain

lim
r→+∞

rα/β+1u′(r) =
−α
β

lim
r→+∞

rα/βu(r) =
−α
β
L.

Step 5: L =

(
N − p− α

β
(p− 1)

)1/(q+1−p)(
α

β

)(p−1)/(q+1−p)

.

According to (11), we have

−βrEα/β(r) = |u′|p−2 u′(r)

[(
N − p− α

β
(p− 1)

)
+ (p− 1)

E′α/β(r)

u′(r)
+

rl+1uq(r)

|u′|p−2 u′(r)

]
.

(42)

Using Step 3 and Step 4 and applying Hopital’s rule, we get

lim
r→+∞

E′α/β(r)

u′(r)
= lim
r→+∞

Eα/β(r)

u(r)
= lim
r→+∞

(
α

β
+
ru′(r)

u

)
= 0 (43)

and

lim
r→+∞

rl+1uq(r)

|u′|p−2 u′(r)
=
−Lq+1−p(
α

β

)p−1 , (44)

when
α

β
=

l + p

q + 1− p
. Suppose by contradiction

N − p− α

β
(p− 1)− Lq+1−p(

α

β

)p−1 6= 0.

After combining these estimates, equation (42) gives

−βrEα/β(r) ∼
+∞

N − p− α

β
(p− 1)− Lq+1−p(

α

β

)p−1
 |u′|p−2 u′(r).

So, Eα/β(r) 6= 0 for large r, that is, rα/βu(r) is strictly monotone for large r. Again, this
contradicts Proposition 3.3.
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Consequently,

L =

(
N − p− α

β
(p− 1)

)1/(q+1−p)(
α

β

)(p−1)/(q+1−p)

.

The proof is complete. 2

The following figure illustrates the behavior of the bounded solution.

Figure 1: Bounded solution.

Now, we turn to the proof of Theorem 3.1.
Proof. (of Theorem 3.1). We argue by contradiction and assume that u is bounded.
We claim that if one of the first two cases holds, then Eα/β(r) 6= 0 for large r and this

contradicts Proposition 3.3. In fact, if
α

β
≥ N − p

p− 1
, we have Eα/β(r) > 0 for large r,

from Proposition 2.2.

Now we consider the case where
α

β
<
N − p
p− 1

.

Assume that there exists a large r0 such that Eα/β(r0) = 0. Recall formula (12) with c =
α

β
, we have in the case q ≤ p−1, E′α/β(r0) 6= 0. In the case q > p−1 and

α

β
6= l + p

q + 1− p
,

we have by Proposition 3.2, lim
r→+∞

rl+puq+1−p(r) = 0 or lim
r→+∞

rl+puq+1−p(r) = +∞

(because
α

β
<
N − p
p− 1

< N). Then we have also E′α/β(r0) 6= 0. Consequently, Remark 2.1

gives Eα/β(r) 6= 0 for any r > r0.
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Suppose now that we are in the third case
N − p
p
≤ α

β
=

l + p

q + 1− p
<
N − p
p− 1

. Recall

the logarithmic change with c =
α

β
, then

ω′α/β(t) +Aα/β ωα/β(t) + αeKα/βtυα/β(t) + βeKα/βthα/β(t) + υqα/β(t) = 0 (45)

and Proposition 3.4 gives

lim
t→+∞

υα/β(t) = L and lim
t→+∞

hα/β(t) =
−α
β
L. (46)

Define the following energy function:

Z(t) =
p− 1

p

∣∣hα/β(t)
∣∣p +

α

β
ωα/β(t)υα/β(t) +

υq+1
α/β(t)

q + 1
+
%

p

(
α

β

)p−1
υpα/β(t), (47)

where
% =

α

β
−Aα/β =

α

β
p− (N − p) ≥ 0. (48)

According to [7], we have lim
r→0

ru′(r) = 0. Therefore

lim
r→0

rα/βu(r) = lim
r→0

r1+α/βu′(r) = 0.

It gives
lim

t→−∞
υα/β(t) = lim

t→−∞
hα/β(t) = 0.

This implies by (47) that lim
t→−∞

Z(t) = 0.

On the other hand, by a straightforward calculation, the function Z satisfies

Z ′(t) = % Y (t)− βeKα/βt
(
hα/β(t) +

α

β
υα/β(t)

)2

, (49)

where

Y (t) =

(∣∣hα/β(t)
∣∣p−2 hα/β(t) +

(
α

β

)p−1
υp−1α/β (t)

)(
hα/β(t) +

α

β
υα/β(t)

)
. (50)

As % ≥ 0, β < 0 and the function s → |s|p−2s is increasing, then Z ′(t) ≥ 0 for any
t ∈ (−∞,+∞), that is, Z is increasing on (−∞,+∞). Therefore, Z(t) ≥ 0 for any
t ∈ (−∞,+∞). But letting t→ +∞ in (47), we get

lim
t→+∞

Z(t) = Aα/β L
p

(
α

β

)p−1(
p− q − 1

p(q + 1)

)
< 0.

This is a contradiction. Consequently, u is unbounded. The proof of Theorem 3.1 is
complete. 2

In the following, we are concerned with the asymptotic behavior of unbounded solu-
tions near infinity.
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Theorem 3.2 Assume q ≥ p − 1 and
N − p
p− 1

>
l

q − 1
. Let u be an unbounded

solution of equation (3). Then

lim
r→+∞

r−p/(p−2)u(r) = lim
r→+∞

r−2/(p−2)u′(r) = 0. (51)

The proof requires some preliminary results.

Proposition 3.5 Assume q ≥ p− 1 and
N − p
p− 1

>
l

q − 1
. Then there is no solution

of equation (3) such that

u(r) > Γr−l/(q−1) for large r, (52)

where Γ is given by (13).

Proof. We argue by contradiction and assume that u satisfies (52). Then, according
to Lemma 2.1 and Proposition 2.1, we have u′(r) > 0 and El/(q−1)(r) 6= 0 for large r.
This gives, with logarithmic change (4), that ωl/(q−1)(t) > 0 and υ′l/(q−1)(t) 6= 0 for
large t. We distinguish two cases.
Case 1: υ′l/(q−1)(t) < 0 for large t. Then lim

t→+∞
υl/(q−1)(t) = d ∈ [Γ,+∞[.

From equation (5), we have

ω′l/(q−1)(t) +Al/(q−1) ωl/(q−1)(t) = −eKl/(q−1)tυl/(q−1)(t)

[
α+

β
hl/(q−1)(t)

υl/(q−1)(t)
+ υq−1l/(q−1)(t)

]
.

(53)

Note that
hl/(q−1)(t)

υl/(q−1)(t)
=
υ′l/(q−1)(t)

υl/(q−1)(t)
− l

q − 1
< − l

q − 1
. (54)

Then we deduce from (52) and (53) that

ω′l/(q−1)(t) +Al/(q−1) ωl/(q−1)(t) < 0 for large t.

This means that the function eAl/(q−1)tωl/(q−1)(t) is decreasing for large t. As

ωl/(q−1)(t) > 0 for large t, then eAl/(q−1)tωl/(q−1)(t) has a finite limit. Since Al/(q−1) > 0,
necessarily lim

t→+∞
ωl/(q−1)(t) = 0. Now, recalling (6), we obtain lim

t→+∞
hl/(q−1)(t) = 0 and

lim
t→+∞

υ′l/(q−1)(t) =
l

q − 1
d < 0. But this contradicts the fact that υl/(q−1) is positive.

Case 2: υ′l/(q−1)(t) > 0 for large t. Then lim
t→+∞

υl/(q−1)(t) ∈]Γ,+∞].

(a) Assume that lim
t→+∞

υl/(q−1)(t) = d < +∞, then necessarily lim
t→+∞

υ′l/(q−1)(t) = 0.

This implies by (6) that lim
t→+∞

ωl/(q−1)(t) =
(
− l

q − 1
d
)p−1

. Therefore,

lim
t→+∞

[
α+ β

hl/(q−1)(t)

υl/(q−1)(t)
+ υq−1l/(q−1)(t)

]
= α− βl

q − 1
+ dq−1 > 0,
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by letting t → +∞ in (53), we obtain lim
t→+∞

ω′l/(q−1)(t) = −∞. This is a contradiction

with ωl/(q−1) being positive.

(b) Assume that lim
t→+∞

υl/(q−1)(t) = +∞, that is, lim
r→+∞

rl/(q−1)u(r) = +∞. Then,

according to Proposition 2.1, E−p/(p−2)(r) < 0 for large r. Hence, according to (8) and
the fact that u′(r) > 0 for large r, we have

0 <
ru′(r)

u
<

p

p− 2
for large r.

On the other hand, we have by equation (3),(
|u′|p−2u′

)′
(r) < −u

[
α+ β

ru′

u
+ rluq−1

]
.

So, lim
r→+∞

(
|u′|p−2u′

)′
(r) = −∞, which means that lim

r→+∞
u′(r) = −∞. This is

impossible.
In conclusion, the two cases can not hold, so there is no solution satisfying (52). The
proof is complete. 2

As a consequence of the previous proposition, we have the following result.

Corollary 3.1 Assume q ≥ p − 1 and
N − p
p− 1

>
l

q − 1
. Let u be a solution of

equation (3). Then lim inf
r→+∞

rcu(r) = 0 for any c <
l

q − 1
and lim inf

r→+∞
rl/(q−1)u(r) ≤ Γ.

Before giving the proof of Theorem 3.2, we need a comparison between the solutions of
equation (3) and their derivatives.

Proposition 3.6 Assume q ≥ p − 1 and
N − p
p− 1

>
l

q − 1
. Let u be an unbounded

solution of equation (3). Then

|u′|p−2u′(r) < max

(
|α|
N
, |β|

)
ru(r) for large r. (55)

Proof. Let λ = min
( α
N
, β
)
< 0 and set

G(r) = rN−1
[
|u′|p−2u′(r) + λr u(r)

]
. (56)

From equation (3), we have

G′(r) = rN−1u(r)
[
λN − α− rl|u|q−1

]
+ (λ− β)rNu′(r). (57)

We will show that G(r) < 0 for large r.
Suppose that there exists a large r0 such that G(r0) = 0, then G′(r0) can be written

in the following form:

G′(r0) = rN−10 u(r0)
[
λN−α−rl0uq−1(r0)

]
+|λ|1/(p−1)(λ−β)r

N+1/(p−1)
0 u1/(p−1)(r0). (58)
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Therefore, according to the choice of λ, we have G′(r0) < 0. Hence, G(r) 6= 0 for any
r > r0.
If G(r) > 0 for large r, then u′(r) > 0 for large r and by a simple integration, we deduce
that there exists a constant c > 0 such that r−p/(p−2)u(r) ≥ c for large r. But this is a
contradiction with Proposition 3.5.

In conclusion, G(r) < 0 for large r and the proof is complete. 2

Proposition 3.7 Assume q ≥ p − 1 and
N − p
p− 1

>
l

q − 1
. Let u be an unbounded

solution of equation (3). Then the functions r−p/(p−2)u(r) and r−2/(p−2)u′(r) are bounded
for large r.

Proof. The proof will be done in two steps.
Step 1: The function r−p/(p−2)u(r) is bounded for large r.
We argue by contradiction and assume that υ−p/(p−2)(t) = r−p/(p−2)u(r) is unbounded

for large t, where we use the notation (4). Since
l

q − 1
>
−p
p− 2

, Proposition 3.5 ensures

that υ−p/(p−2)(t) can not converge to +∞. Hence, it must necessarily oscillate. Then
there exists a sequence {ξi} going to +∞ as i → +∞ such that υ−p/(p−2) has a local
maximum in ξi satisfying lim

i→+∞
υ−p/(p−2)(ξi) = +∞. Since υ′−p/(p−2)(ξi) = 0, we have

h−p/(p−2)(ξi) =
p

p− 2
υ−p/(p−2)(ξi) > 0,

therefore

ω−p/(p−2)(ξi) =
( p

p− 2

)p−1
υp−1−p/(p−2)(ξi).

On the other hand, estimate (55) can be written in the following form:

ω−p/(p−2)(t) < |λ| υ−p/(p−2)(t) for large t, (59)

where |λ| = max

(
|α|
N
, |β|

)
. In particular, for t = ξi, we obtain

υp−2−p/(p−2)(ξi) < |λ|
(p− 2

p

)p−1
for large i.

But this contradicts the fact that lim
i→+∞

υ−p/(p−2)(ξi) = +∞. Consequently, υ−p/(p−2)(t)

is bounded for large t.
Step 2: The function r−2/(p−2)u′(r) is bounded for large r, that means that ω−p/(p−2)(t)
is bounded for large t.

Observe preliminary that if u(r) is monotone for large r, necessarily u′(r) ≥ 0 for
large r (because u is unbounded) and then ω−p/(p−2)(t) ≥ 0 for large t. Therefore, by
(59) and Step 1, ω−p/(p−2)(t) is bounded for large t.

So, we only have to deal with the case where u(r) is not monotone for large r and
then the idea of the proof is the same as for Step 1.

Suppose by contradiction that ω−p/(p−2)(t) is not bounded and let a sequence {ki}
go to +∞ as i → +∞ such that ω′−p/(p−2)(ki) = 0 and lim

i→+∞
ω−p/(p−2)(ki) = +∞ or

−∞.
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First, note that as υ−p/(p−2)(t) is bounded for large t, then (59) implies that we can not

have lim
i→+∞

ω−p/(p−2)(ki) = +∞. Secondly, take some constant δ > max

(
N − p
p− 1

,
α

β

)
>

0, then by Proposition 2.2, Eδ(r) > 0 for large r. So,

h−p/(p−2)(t) > −δυ−p/(p−2)(t) for large t. (60)

In particular,
h−p/(p−2)(ki) > −δυ−p/(p−2)(ki) for large i. (61)

Again, as υ−p/(p−2)(t) is bounded for large t, we deduce that ω−p/(p−2)(ki) is bounded
for large i. This is a contradiction. It follows that ω−p/(p−2)(t) is bounded for large t.

Hence r−2/(p−2)u′(r) is bounded for large r. 2

Now, we are ready to give the proof of Theorem 3.2.
Proof. (of Theorem 3.2). Using the logarithmic change (4) and Proposition 3.7,

we deduce that the functions υ−p/(p−2)(t) and ω−p/(p−2)(t) are bounded for large t.
We proceed in two steps.
Step 1: lim

t→+∞
ω−p/(p−2)(t) = 0.

First, we claim that ω−p/(p−2)(t) converges when t → +∞. Assume by contradiction
that ω−p/(p−2)(t) oscillates, that is, there exist two sequences {si} and {ki} going to +∞
as i → +∞ such that ω−p/(p−2)(t) has a local minimum in si and a local maximum in
ki satisfying si < ki < si+1 and

lim inf
t→+∞

ω−p/(p−2)(t) = lim
i→+∞

ω−p/(p−2)(si) < lim sup
t→+∞

ω−p/(p−2)(t) = lim
i→+∞

ω−p/(p−2)(ki).

(62)
Applying equation (17) at the point t = ki, we get eM−p/(p−2)kiυq−p/(p−2)(ki) is bounded.

Therefore, since M−p/(p−2) > 0, lim
i→+∞

υ−p/(p−2)(ki) = 0 and thanks to (59), we deduce

lim
i→+∞

ω−p/(p−2)(ki) = lim sup
t→+∞

ω−p/(p−2)(t) ≤ 0.

As u is unbounded, then u cannot be decreasing and by (6) and (10) necessarily
lim sup
t→+∞

ω−p/(p−2)(t) = 0, so, by (62)

lim
i→+∞

ω−p/(p−2)(si) = lim inf
t→+∞

ω−p/(p−2)(t) < 0.

This implies that lim
i→+∞

h−p/(p−2)(si) < 0 and therefore, by (60), we find

lim
i→+∞

υ−p/(p−2)(si) > 0. On the other hand, ω′−p/(p−2)(si) = 0, then equation (17)

implies that lim
i→+∞

υ−p/(p−2)(si) = 0. This is a contradiction. So, ω−p/(p−2)(t) is mono-

tone and then it has a finite limit when t→ +∞.
As u is positive and unbounded, then necessarily lim

t→+∞
ω−p/(p−2)(t) ≥ 0. If

lim
t→+∞

ω−p/(p−2)(t) > 0, then, by (59), there exists a constant C > 0 such

that υ−p/(p−2)(t) > C for large t. Therefore, we obtain by equation (17) that
lim

t→+∞
ω′−p/(p−2)(t) = −∞, which is a contradiction with the boundedness of ω−p/(p−2).

Consequently, lim
t→+∞

ω−p/(p−2)(t) = 0. Therefore, lim
r→+∞

r−2/(p−2)u′(r) = 0.
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Step 2: lim
t→+∞

υ−p/(p−2)(t) = 0.

Knowing that υ−p/(p−2)(t) is bounded, assume by contradiction that it oscillates, that
is, there exist two sequences {ηi} and {ξi} going to +∞ as i→ +∞ such that υ−p/(p−2)
has a local minimum in ηi and a local maximum in ξi satisfying ηi < ξi < ηi+1 and

lim inf
t→+∞

υ−p/(p−2)(t) = lim
i→+∞

υ−p/(p−2)(ηi) < lim sup
t→+∞

υ−p/(p−2)(t) = lim
i→+∞

υ−p/(p−2)(ξi).

(63)
Since υ′−p/(p−2)(ηi) = υ′−p/(p−2)(ξi) = 0, then we have by (6)

h−p/(p−2)(ηi) =
p

p− 2
υ−p/(p−2)(ηi) and h−p/(p−2)(ξi) =

p

p− 2
υ−p/(p−2)(ξi).

Since lim
t→+∞

h−p/(p−2)(t) = 0,

lim
i→+∞

h−p/(p−2)(ηi) = lim
i→+∞

h−p/(p−2)(ξi) = 0.

This implies that

lim
i→+∞

υ−p/(p−2)(ηi) = lim
i→+∞

υ−p/(p−2)(ξi) = 0.

But this contradicts (63). Therefore, υ−p/(p−2) converges. Hence, by (6), υ′−p/(p−2) con-

verges necessarily to 0. Consequently, lim
t→+∞

υ−p/(p−2)(t) = 0, i.e., lim
r→+∞

r−p/(p−2)u(r) =

0. The proof is complete. 2

Theorem 3.3 Assume q ≥ p
(

2 + 2p−1
)
− 1 and

l

q − 1
< min

(
−α
β
,
N − p
p− 1

)
. Let u

be an unbounded positive solution of problem (P). Then

lim
r→+∞

rl/(q−1)u(r) = Γ (64)

and

lim
r→+∞

rl/(q−1)+1u′(r) =
−l
q − 1

Γ, (65)

where Γ is given by (13).

To prove this theorem we will need the following results.

Proposition 3.8 Assume q ≥ p − 1 and
N − p
p− 1

>
l

q − 1
. Let u be an unbounded

positive solution of problem (P). Then, for any c >

(
α

β

)p−1
,

|u′|p−2u′(r) > −cr1−pup−1(r) for large r. (66)

Proof. Let c >

(
α

β

)p−1
and

F (r) = rN−1|u′|p−2u′(r) + crN−pup−1(r). (67)
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Then, according to equation (3),

F ′(r) = rN−1u

[
−α− rluq−1 + c(N −p)r−pup−2

]
+ rNu′

[
−β+ c(p−1)r−pup−2

]
. (68)

We will show that F (r) > 0 for large r.
First, we prove that F (r) 6= 0 for large r. Suppose that there exists a large r0 such

that F (r0) = 0. Then, according to (67) and (68), we have

F ′(r0) = rN−10 u

[
−α+βc1/(p−1)−rl0uq−1 +

(
c(N −p)−cp/(p−1)(p−1)

)
r−p0 up−2

]
. (69)

Since −α + βc1/(p−1) < 0, rluq−1(r) > 0 and lim
r→+∞

r−pup−2(r) = 0 (by Theorem 3.2),

we get F ′(r0) < 0. Hence, F (r) 6= 0 for any r > r0 and then, as u is unbounded, F (r)
cannot be negative for large r. The proof is complete. 2

Proposition 3.9 Assume q ≥ p
(

2+2p−1
)
−1 and

l

q − 1
< min

(
−α
β
,
N − p
p− 1

)
. Let

u be an unbounded positive solution of problem (P). Then the functions rl/(q−1)u(r) and
rl/(q−1)+1u′(r) are bounded for large r.

Proof. (i) We first show that rl/(q−1)u(r) is bounded for large r.

We make the change (4) for c =
l

q − 1
and we set

D =
Kl/(q−1)(p− 1)

p
− l

q − 1
+Al/(q−1) > 0, (70)

We define, for any real θ > 0, the following energy function:

Fθ(t) =
p− 1

p
e−Kl/(q−1)t

∣∣hl/(q−1)(t)∣∣p − Γq−1

2
υ2l/(q−1)(t) +

υq+1
l/(q−1)(t)

q + 1
+

l

q − 1
e−Kl/(q−1)tωl/(q−1)(t)υl/(q−1)(t)−

θ

p

(
−l
q − 1

)p−1
e−Kl/(q−1)tυpl/(q−1)(t).

(71)
Using equation (5), a straightforward calculation gives

F ′θ(t) = θe−Kl/(q−1)tX(t)− β
(
hl/(q−1)(t) +

l

q − 1
υl/(q−1)(t)

)2

+

D1e
−Kl/(q−1)t

∣∣hl/(q−1)(t)∣∣p +D2e
−Kl/(q−1)tωl/(q−1)(t)υl/(q−1)(t) +

Kl/(q−1)θ

p

(
−l
q − 1

)p−1
e−Kl/(q−1)tυpl/(q−1)(t), (72)

where

X(t) =

[ ∣∣hl/(q−1)(t)∣∣p−2 hl/(q−1)(t)− ( −l
q − 1

)p−1
υp−1l/(q−1)(t)

][
hl/(q−1)(t) +

l

q − 1
υl/(q−1)(t)

]
, (73)
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D1 = −(D + θ) < 0 (74)

and

D2 =
−l
q − 1

(
D + θ +

Kl/(q−1)

p

)
> 0. (75)

We show in two steps that υl/(q−1)(t) is bounded for large t.
Step 1: F ′θ(t) > 0 for large t by choosing a suitable θ.
We know that for any ρ ≥ 2 and for any a, b ∈ R, we have

|a− b|ρ ≤ 2ρ−1 (|a|ρ + |b|ρ) .

Therefore, particulary for ρ = p, a = υ′l/(q−1)(t) and b =
l

q − 1
υl/(q−1)(t), we obtain

∣∣hl/(q−1)(t)∣∣p =

∣∣∣∣υ′l/(q−1)(t)− l

q − 1
υl/(q−1)(t)

∣∣∣∣p
≤ 2p−1

(∣∣∣υ′l/(q−1)(t)∣∣∣p +

(
|l|

q − 1

)p
υpl/(q−1)(t)

)
.

Since D1 < 0,

F ′θ(t) ≥ θe−Kl/(q−1)tX(t) + υ′2l/(q−1)(t)

[
−β + 2p−1D1e

−Kl/(q−1)t
∣∣∣υ′l/(q−1)∣∣∣p−2]+

e−Kl/(q−1)tυpl/(q−1)(t)

[
2p−1D1

(
|l|

q − 1

)p
+
Kl/(q−1)θ

p

(
|l|

q − 1

)p−1
+

D2 ωl/(q−1)υ
1−p
l/(q−1)

]
. (76)

As
|l|

q − 1
>
α

β
, we have by Proposition 3.8,

ωl/(q−1)(t)υ
1−p
l/(q−1)(t) > −

(
|l|

q − 1

)p−1
for large t. (77)

Therefore, according to (76) we get

F ′θ(t) ≥ θe−Kl/(q−1)tX(t) + υ′2l/(q−1)(t)

[
−β + 2p−1D1e

−Kl/(q−1)t
∣∣∣υ′l/(q−1)∣∣∣p−2]+

e−Kl/(q−1)tυpl/(q−1)

[
2p−1D1

(
|l|

q − 1

)p
+
Kl/(q−1)θ

p

(
|l|

q − 1

)p−1
−

D2

(
|l|

q − 1

)p−1]
. (78)

Now, we choose in (71)

θ =
2p|l|pD + 2|l|pD + 2|l|Kl/(q−1)

Kl/(q−1)(q − 1) + lp(2p−1 + 1)
> 0. (79)
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Note that, since q ≥ p
(

2 + 2p−1
)
− 1, we have Kl/(q−1)(q − 1) + lp(2p−1 + 1) > 0, and

the expression (79) gives

2p−1D1

(
|l|

q − 1

)p
+
Kl/(q−1)θ

p

(
|l|

q − 1

)p−1
−D2

(
|l|

q − 1

)p−1
> 0. (80)

Moreover,

e−Kl/(q−1)t/(p−2)υ′l/(q−1)(t) = e−Kl/(q−1)t/(p−2)
(
hl/(q−1)(t) +

l

q − 1
υl/(q−1)(t)

)
, (81)

and from Theorem 3.2,

lim
t→+∞

e−Kl/(q−1)t/(p−2)υl/(q−1)(t) = lim
r→+∞

r−p/(p−2)u(r) = 0 (82)

and

lim
t→+∞

e−Kl/(q−1)t/(p−2)hl/(q−1)(t) = lim
r→+∞

r−2/(p−2)u′(r) = 0, (83)

then

lim
t→+∞

e−Kl/(q−1)t/(p−2)υ′l/(q−1)(t) = 0. (84)

Using the last equality, the estimate (80), the fact that X(t) ≥ 0 (because the function
s → |s|p−2s is increasing), υl/(q−1)(t) > 0, θ > 0 and β < 0, we deduce from (78) that
F ′θ(t) > 0 for large t.
Step 2: The function υl/(q−1)(t) cannot oscillate about a constant B such that B >

(q + 1)1/(q−1)Γ > Γ, where Γ is given by (13).
We argue by contradiction and assume that there exist two sequences {ηi} and {ξi}

going to +∞ as i → +∞ such that υl/(q−1) has a local minimum in ηi and a local
maximum in ξi satisfying ηi < ξi < ηi+1 and υl/(q−1)(ξi) > B.

Since hl/(q−1)(ηi) = − l

q − 1
υl/(q−1)(ηi) > 0, we see that h′l/(q−1)(ηi) exists and, more

exactly, h′l/(q−1)(ηi) = υ′′l/(q−1)(ηi) ≥ 0 (because υ′l/(q−1)(ηi) = 0), which implies that

ω′l/(q−1)(ηi) ≥ 0. Taking c =
l

q − 1
in (4), we obtain

e−Kl/(q−1)tω′l/(q−1)(t) = −Al/(q−1)e−Kl/(q−1)tωl/(q−1)(t)− αυl/(q−1)(t)
− βhl/(q−1)(t)− υql/(q−1)(t). (85)

So, for t = ηi
e−Kl/(q−1)ηiω′l/(q−1)(ηi) < −ψ(υl/(q−1)(ηi)),

where

ψ(s) =
[
sq−1 − Γq−1

]
s, s ≥ 0. (86)

Since ω′l/(q−1)(ηi) ≥ 0, one has ψ(υl/(q−1)(ηi)) < 0 and therefore, necessarily

υl/(q−1)(ηi) < Γ. On the other hand, according to (71), we have

Fθ(ηi) =
υq+1
l/(q−1)(ηi)

q + 1
+ υ2l/(q−1)(ηi)

[
−Γq−1

2
+ C2e

−Kl/(q−1)ηiυp−2l/(q−1)(ηi)

]
, (87)
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where C2 =
1

p

(
−l
q − 1

)p−1(
l

q − 1
− θ
)
< 0. In particular, we obtain

Fθ(ηi) < φ1(υl/(q−1)(ηi)), where

φ1(s) =
sq+1

q + 1
− Γq−1

2
s2, s ≥ 0. (88)

Therefore, since 0 < υl/(q−1)(ηi) < Γ, a simple study of the function φ1 gives
φ1(υl/(q−1)(ηi)) < 0. Consequently, Fθ(ηi) < 0 for large i.

In the same way, since υ′l/(q−1)(ξi) = 0,

Fθ(ξi) =
υq+1
l/(q−1)(ξi)

q + 1
+ υ2l/(q−1)(ξi)

[
−Γq−1

2
+ C2e

−Kl/(q−1)ξiυp−2l/(q−1)(ξi)

]
. (89)

Since lim
i→+∞

e−Kl/(q−1)ξiυp−2l/(q−1)(ξi) = 0 by (82),

Fθ(ξi) >
υq+1
l/(q−1)(ξi)

q + 1
− Γq−1υ2l/(q−1)(ξi) for large i. (90)

Set

φ2(s) =
sq+1

q + 1
− Γq−1s2, s ≥ 0. (91)

Therefore, by (90), Fθ(ξi) > φ2(υl/(q−1)(ξi)) for large i. Since υl/(q−1)(ξi) > B >

(q + 1)1/(q−1)Γ, we have φ2(υl/(q−1)(ξi)) > 0, which implies that Fθ(ξi) > 0 for
large i. Hence, Fθ(ηi) < 0 and Fθ(ξi) > 0, for large i, which clearly contradicts the
monotonicity of Fθ(t) for large t. It follows that υl/(q−1)(t) cannot oscillate about the
constant B. Moreover, since υl/(q−1)(t) cannot stay above B (from Proposition 3.5), one
has υl/(q−1)(t) ≤ B for large t. Consequently, υl/(q−1)(t) is bounded for large t. That is,

rl/(q−1)u(r) is bounded for large r.

(ii) Now, we show that rl/(q−1)+1u′(r) is bounded for large r, i.e., by (6) and (10),
ωl/(q−1)(t) is bounded for large t.

We argue by contradiction. As u is positive and unbounded, then we have two pos-
sibilities.
• lim

t→+∞
ωl/(q−1)(t) = +∞, then lim

t→+∞
hl/(q−1)(t) = +∞. Using (6) and the fact that

υl/(q−1)(t) is bounded for large t, we obtain lim
t→+∞

υ′l/(q−1)(t) = +∞ and therefore,

lim
t→+∞

υl/(q−1)(t) = +∞, which is impossible.

• There exists a sequence {ki} going to +∞ as i → +∞ such that ωl/(q−1) has a local
extremum in ki satisfying lim

i→+∞
ωl/(q−1)(ki) = +∞ or −∞.

We use expression (6), equation (85) and the fact that ω′l/(q−1)(ki) = 0, then

αυl/(q−1)(ki) + υql/(q−1)(ki) = hl/(q−1)(ki)
[
−β −Al/(q−1)e−Kl/(q−1)ki |hl/(q−1)(ki)|p−2

]
.

(92)
Since lim

t→+∞
e−Kl/(q−1)t|hl/(q−1)(t)|p−2 = 0 by (83), lim

i→+∞
hl/(q−1)(ki) = +∞ or −∞ and

β < 0, we have
lim

i→+∞
αυl/(q−1)(ki) + υql/(q−1)(ki) = +∞
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or
lim

i→+∞
αυl/(q−1)(ki) + υql/(q−1)(ki) = −∞.

But this contradicts the fact that υl/(q−1)(t) is bounded for large t.

Hence ωl/(q−1)(t) is bounded for large t and therefore rl/(q−1)+1u′(r) is bounded for
large r. 2

We can now give the proof of Theorem 3.3.
Proof. (of Theorem 3.3). We use the logarithmic change, we have by Proposi-

tion 3.9, υl/(q−1)(t) and hl/(q−1)(t) are bounded for large t. The proof will be done in
three steps.
Step 1: The function υl/(q−1)(t) converges.
We argue by contradiction and assume that υl/(q−1) oscillates, that is, there exist two
sequences {ηi} and {ξi} going to +∞ as i→ +∞ such that υl/(q−1) has a local minimum
in ηi and a local maximum in ξi satisfying ηi < ξi < ηi+1 and

lim inf
t→+∞

υl/(q−1)(t) = lim
i→+∞

υl/(q−1)(ηi) = m1 < lim sup
t→+∞

υl/(q−1)(t) = lim
i→+∞

υl/(q−1)(ξi)

= M1. (93)

On the other hand, we know by the proof of Proposition 3.9 that F ′θ(t) > 0 for large t
where θ and Fθ are given, respectively, by (79) and (71). Then Fθ(t) 6= 0 for large t. We
show that Fθ(t) < 0 for large t.
If Fθ(t) > 0 for large t, then, since F ′θ(t) > 0 for large t, lim

t→+∞
Fθ(t) ∈]0,+∞].

Using the fact that
lim

i→+∞
Fθ(ηi) = φ1(m1) < +∞ (94)

and
lim

i→+∞
Fθ(ξi) = φ1(M1) < +∞, (95)

where φ1 is given by (88), we see that lim
t→+∞

Fθ(t) is finite and strictly positive. More

exactly, we have
lim

t→+∞
Fθ(t) = φ1(m1) = φ1(M1) > 0.

But this contradicts the fact that φ1(m1) ≤ 0 because by Corollary 3.1, we have 0 ≤
lim inf
t→+∞

υl/(q−1)(t) = m1 ≤ Γ. We deduce that Fθ(t) < 0 for large t.

Since F ′θ(t) > 0 for large t, one has lim
t→+∞

Fθ(t) is finite and negative. Therefore,

according to (94) and (95), we have

lim
t→+∞

Fθ(t) = φ1(m1) = φ1(M1) ≤ 0. (96)

Set L1 = lim
t→+∞

Fθ(t). Then

L1 = φ1(m1) = φ1(M1).

Therefore, there exist γ ∈ (m1,M1) and ti ∈ (ηi, ξi) such that υl/(q−1)(ti) = γ, φ′1(γ) = 0
and φ1(γ) 6= L1.

On the other hand, υl/(q−1)(t), hl/(q−1)(t), ωl/(q−1)(t) are bounded for large t and
υl/(q−1)(ti) = γ, we get by (71), lim

i→+∞
Fθ(ti) = φ1(γ), hence φ1(γ) = L1. But this
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contradicts the fact that φ1(γ) 6= L1.
Consequently, υl/(q−1) converges. Set lim

t→+∞
υl/(q−1)(t) = d ≥ 0.

Step 2: The function hl/(q−1)(t) converges.
According to (6), it suffices to show that ωl/(q−1) converges. Since hl/(q−1)(t) is bounded
for large t, we see that ωl/(q−1)(t) is also bounded for large t. Assume by contradiction
that it oscillates, that is, there exist two sequences {si} and {ki} going to +∞ as i→ +∞
such that ωl/(q−1) has a local minimum in si and a local maximum in ki satisfying
si < ki < si+1 and

lim inf
t→+∞

ωl/(q−1)(t) = lim
i→+∞

ωl/(q−1)(si) < lim sup
t→+∞

ωl/(q−1)(t) = lim
i→+∞

ωl/(q−1)(ki). (97)

Using equation (85), the fact that ωl/(q−1)(t) is bounded for large t, lim
t→+∞

υl/(q−1)(t) = d

and ω′l/(q−1)(si) = ω′l/(q−1)(ki) = 0, we obtain

lim
i→+∞

−βhl/(q−1)(si) = lim
i→+∞

−βhl/(q−1)(ki) = αd+ dq.

Since β < 0,

lim
i→+∞

hl/(q−1)(si) = lim
i→+∞

hl/(q−1)(ki),

which gives

lim
i→+∞

ωl/(q−1)(si) = lim
i→+∞

ωl/(q−1)(ki).

But this contradicts (97). Hence, ωl/(q−1) converges and therefore hl/(q−1) converges.
According to (6), lim

t→+∞
υ′l/(q−1)(t) exists and must be 0. Hence,

lim
t→+∞

hl/(q−1)(t) =
−l
q − 1

d. (98)

Step 3: lim
t→+∞

υl/(q−1)(t) = Γ.

Combining equation (85), expression of Γ given by (13), Step 1 and Step 2, we get

lim
t→+∞

e−Kl/(q−1)tω′l/(q−1)(t) = d
(
Γq−1 − dq−1

)
.

Since ωl/(q−1) converges and lim
t→+∞

e−Kl/(q−1)tω′l/(q−1)(t) exists, necessarily

lim
t→+∞

e−Kl/(q−1)tω′l/(q−1)(t) = 0. Therefore, d
(
Γq−1 − dq−1

)
= 0. We claim that

d = Γ.

Assume by contradiction that d = lim
t→+∞

υl/(q−1)(t) = 0. First, we prove that

ωl/(q−1)(t) 6= 0 for large t.

For any large T such that ωl/(q−1)(T ) = 0, we have hl/(q−1)(T ) = 0 and by equation
(85)

e−Kl/(q−1)Tω′l/(q−1)(T ) = υl/(q−1)(T )
[
−α− υq−1l/(q−1)(T )

]
.

Since α < 0, υl/(q−1)(t) > 0 and lim
t→+∞

υq−1l/(q−1)(t) = 0, one has ω′l/(q−1)(T ) > 0. Hence,

ωl/(q−1)(t) 6= 0 for any t > T .
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As u is positive and unbounded, then ωl/(q−1)(t) > 0 for large t.
On the other hand, we have by (85)

e−Kl/(q−1)tω′l/(q−1)(t) = hl/(q−1)(t)
[
−β −Al/(q−1)e−Kl/(q−1)t

∣∣hl/(q−1)(t)∣∣p−2] +

υl/(q−1)(t)
[
−α− υq−1l/(q−1)(t)

]
. (99)

Using the fact that β < 0, α < 0, lim
t→+∞

e−Kl/(q−1)t
∣∣hl/(q−1)(t)∣∣p−2 = 0 (by (83)),

lim
t→+∞

υq−1l/(q−1)(t) = 0, υl/(q−1)(t) > 0 and hl/(q−1)(t) > 0 for large t, we have ω′l/(q−1)(t) >

0 for large t. This implies, since ωl/(q−1)(t) > 0 for large t, that lim
t→+∞

ωl/(q−1)(t) ∈
]0,+∞]. But this contradicts the fact that lim

t→+∞
ωl/(q−1)(t) = 0 by (6) and (98).

Consequently, d = Γ. It follows that

lim
t→+∞

υl/(q−1)(t) = Γ and lim
t→+∞

hl/(q−1)(t) =
−l
q − 1

Γ.

The proof is complete. 2

The behavior of unbounded solution is illustrated by the following figure.

Figure 2: Unbounded solution.

To finish this work, we note that if we have the monotonicity of u, then the asymptotic
behavior (64) and (65) is validated by reducing the assumptions of Theorem 3.3. More
precisely, we have the following result.
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Proposition 3.10 Assume q ≥ p
(

1 + 2p−1
)
− 1 and

N − p
p− 1

>
l

q − 1
. Let u be an

unbounded positive solution of problem (P). If u is an increasing function for large r,
then it satisfies (64) and (65).

Proof. First of all we note that the idea of the proof is similar to that of Theorem 3.3.
So, we follow the same steps and we only change the step where we use the monotonicity
of u.

According to the proof of Propostition 3.9, we choose a suitable θ to show that Fθ(t)
is strictly increasing for large t, where Fθ is given by (71). In fact, we choose in (71)

θ =
2p|l|pD

Kl/(q−1)(q − 1) + lp2p−1
> 0. (100)

Note that, since q ≥ p
(

1 + 2p−1
)
− 1, one has Kl/(q−1)(q − 1) + lp2p−1 > 0 and by

expression (100),

2p−1D1

(
|l|

q − 1

)p
+
Kl/(q−1)θ

p

(
|l|

q − 1

)p−1
=

(
|l|

q − 1

)p−1
2p−1|l|D
q − 1

> 0.

According to inequality (76) and using expressions (100) and (75) and the fact that
ωl/(q−1)(t) ≥ 0 for large t (because u′(r) ≥ 0 for large r), we deduce that

F ′θ(t) ≥ θe−Kl/(q−1)tX(t) + υ′2l/(q−1)(t)

[
−β + 2p−1D1e

−Kl/(q−1)t
∣∣∣υ′l/(q−1)∣∣∣p−2]+(

|l|
q − 1

)p−1
2p−1|l|D
q − 1

e−Kl/(q−1)tυpl/(q−1). (101)

Using (84), the fact that X(t) ≥ 0, υl/(q−1)(t) > 0, θ > 0 and β < 0, we deduce from
estimate (101) that F ′θ(t) > 0 for large t. We complete the proof in the same way as that
of Theorem 3.3. 2

4 Conclusion

We consider equation (1) as a natural generalization of the pure Laplacian case (p = 2)
already studied by Filippas and Tertikas in [8]. Its appears in studying the self-similar
solution of the parabolic equation (2). This equation admits a family of radial self-similar
solutions defined in the form

v(x, t) = t−αu(t−β |x|),

where u is the solution of equation (3) with

α =
l + p

p(q − 1) + l(p− 2)
, β =

q + 1− p
p(q − 1) + l(p− 2)

.

There is an extensive literature on equation (2) in the case l = 0. The study of equation
(1) in this case is a reasonable first step towards the understanding of the behavior of
blowing up solutions of (2).
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Taking the case l < 0, we have proven in [7] the existence of an entire solution u of

(3). In this paper we have proven that if q ≤ p − 1 or q > p − 1 and
α

β
6= l + p

q + 1− p
or

α

β
=

l + p

q + 1− p
≥ N − p

p
, this solution is unbounded. The study of its asymptotic

behavior depends strongly on the study of the following nonlinear dynamical system by
using the logarithmic change (4), υl/(q−1)(t) = rl/(q−1)u(r),

υ′l/(q−1)(t) = |ωl/(q−1)|(2−p)/(p−1)ωl/(q−1)(t) +
l

q − 1
υl/(q−1)(t),

ω′l/(q−1)(t) = −Al/(q−1)ωl/(q−1)(t)− αeKl/(q−1)tυl/(q−1)(t)− βeKl/(q−1)thl/(q−1)(t)−
eKl/(q−1)tυql/(q−1)(t).

It is shown that under some assumptions, the solution (υl/(q−1), ωl/(q−1)) of the above

system tends to the equilibrium point

(
Γ,

(
−l
q − 1

Γ

)p−1)
, where Γ is given by (13).

This result can be translated in terms of u and u′ by

u(r) ∼
+∞

Γ r−l/(q−1)

and

|u′|p−2u′(r) ∼
+∞

(
−l
q − 1

Γ

)p−1
r−(l/(q−1)+1)(p−1).

The more complicated case
α

β
=

l + p

q + 1− p
<
N − p
p

has not been completely inves-

tigated.
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