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1 Introduction

This paper is devoted to the study of the elliptic equation
Apu+au+fz-Vu+lzl w'=0  in RY, (1)

ou ou

where Apu:div(|Vu|p_2Vu),p>2, Vu=|=—,,— ], N>1,¢g>1, a<0,
8%1 8.%]\[

B <0 and [ is a real number such that —p <1 <0 and —N <[ < 0.
Equations of the above form occur in the study of self-similar solutions of the nonlinear
parabolic problem

u = Apu+ |z Jul" " u in RY x (0, +00). (2)

A lot of work has been done concerning equation when [ = 0; discussions and
bibliographies are found in [3], [4], [10], |11], |13], [15], [16] and [18]. When p = 2 and
—2 < 1 < 0, equation was studied in [8]. Note also that when p > 2 and [ < 0, the
equation was investigated for o« > 0 and 8 > 0 in [9] and was initiated in |7] by the
authors for a < 0 and S < 0.

In our paper [7], we studied radial solutions near 0 of the equation

r N-—-1
(\u'\pﬂu') + —— P72 4 au + Bru’ +rtulflu =0, r>0.
r

Among the results obtained, we showed that for any radial solution u with u(0) > 0,

liH(lJ r(Nfl)/(”*l)u’(r) exists and is finite. Moreover, for any a > 0 and b € R, there exists
r—s

a unique function u € C°([0, 400[) N C*(]0, +-00[) such that ['[P~2u" € C*(]0, +00[), and
satisfying the problem

r N-—-1
(|u'|p’2u') + — W/ P2 + au + Bru’ +rtul?lu =0, r>0,
(P)

uw(0) = a, lim rN =D/ P=Dy/ (1) = b,
r—0

wherep>2,¢g>1, N>1, —p<I<0,—-N<I<0,a<0and g <0.
It is also proved that if a is small and b = 0, w is strictly positive.

Our aim in this paper, is to continue our study on the problem (P). For this we must
start with the analysis of solutions of the equation

r N-—-1
<|u’|p72u’) + T|u’|p72u’ + ou+ Bru’ +rlu? =0, r>0. (3)

N —
First of all, it should be noted that when 0 < & [+p P

we have an
B q+l—-p p-1°

explicit solution Lr~*/# where

1/(g+1—p) (p—1)/(g+1-p)
o «
ORI () (3) |

This solution is bounded near infinity but singular at the origin. However, using the
theory of ODE, the equation , for bounded solutions whether they are singular or not,
can be considered in 400 as a perturbation of the equation

r N-—-1
(|u’|p_2u’> + |u/ P72 + au + Bru’ =0,
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whose solutions behave like the function r~/# near infinity.

On the other hand, the term r'u? plays a key role in (3 for unbounded solutions and
therefore, the perturbation theory can not be applicable. Hence the interest of focusing
our study on unbounded solutions.

For this purpose, let us represent equation in an equivalent but useful form.

For any real ¢, we set

ve(t) = ru(r) where r >0 and t = Inr. (4)
Then v, satisfies
Wi (t) + Acwe(t) + ae®v(t) + BeXethe(t) + eMetul(t) = 0, (5)
where
we(t) = |he[P72he(t),  he(t) = vi(t) — cve(t), (6)

Ac=N-p—clp—-1), Kc=clp—2)+p and Mc=1l+p—cl¢g+1—-p). (7)

l
Five critical values of the parameter ¢ will be involved: %, 1 and those which
q—
— N — l
cancel A, K. or M., that is, ¢ = 7}7, = TP o &
p—2 p—1 g+1-p

The study of monotonicity of r¢u(r) for these last five values, combined with the
behavior of bounded solutions, allows us to show the existence of unbounded solutions
of problem (P).

A fine analysis of the equation in logarithmic form, using some energy function,
gives the asymptotic behavior of solutions. Our main results are given by the following
theorems.

l
Theorem 1.1 Assume that g < p—1o0r ¢ >p—1 and ¢ #+ _tp or 2
Boaq+l=p B
l+p >N—p

> . Then any positive solution of problem (P) is unbounded.
qg+1-p p

l —a N —
Theorem 1.2 Assume q > p(2—|—2p_1) —1 and P < min (;, 1p> Let u
q— b=
be an unbounded positive solution of problem (P). Then

lim /@ Vy(r) =T
r—+400

and

-1
L O
T oo q —

1/(g—1)
I'= (ﬁl — a) .
qg—1

The rest of the paper is organized as follows. In the second section, we present
fundamental properties of solutions of equation . The third section concerns the
existence and the asymptotic behavior near infinity of unbounded positive solutions of
problem (P).

L,

where
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2 Fundamental Properties

In this section, we give some fundamental properties that are the key stone of the main
results. For this purpose, we introduce, for any real ¢ # 0, the function

Ec(r) = cu(r) +rd(r), r>0. (8)

It is clear that
(reu(r)) = r*"YE.(r), r>0. (9)

With the logarithmic change , we have
vl(t) = ¢ E.(r) and h.(t) = <t (r). (10)

The monotonicity of the function r¢u(r) can be obtained by the sign of the function
E.(r). Observe that for any = > 0 such that u'(r) # 0, we have

(=D OEW) = (p=N+elp—1) /"o (r) - () -

aru(r) — vl (r)

(= N+ eo— 1) WP () + 1Bl Eaya(r) -
rHluq(T). (11)

Consequently, if E.(rg) =0 for some ry > 0, equation (3] gives
(p= 1) [/ (ro)Eilro) = —rou(ro) [a — eB 4 rou (ro) +
(p — N +c(p— 1)) |c|p_207“0_pup_2(ro)]
— —ré“uq(ro) [1 + (o — cﬁ)ralul_q(ro) +

(= 8+ clp =)l ~Zery 10|, (12

from which we can study the sign of E.(r) and we use the following remarks.

Remark 2.1 If there exists g such that E.(rg) = 0and E/(rg) # 0, then E.(r) #0
for any r > rg.

Remark 2.2 If u is a bounded solution of equation , then, by expression and
Remark we have, for any ¢ > 0 such that ¢ —a #0, E.(r) # 0 for large r.

We first give the sign of Ej/,—1) and E_,/;,—2).
Proposition 2.1 Let u be a solution of equation (@ We put

1/(g—1)
()"

and u(r) > Tr=t@=Y for large r, then Eijq—1)(r) # 0 for large

The following holds:

. N—p
(1) If b1 g

-1
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r.

(5) If g > p— l,rLirfoou(r) = +o0 and TEIJPOO /@ Dy(r) = 0, then Eyjq—1)(r) <0 for
large 7.
(iii) If ¢>p—1and lim r/ @ Dy(r) = 400, then E_p/p—2)(r) <0 for large 7.

r—+00

The proof requires the following result.
Lemma 2.1 Let u be a solution of equation @ such that for large r,
u(r) > Tr /=1,
where T is given by (13). Then u'(r) > 0 for large r.
Proof. Suppose that there exists a large rg such that «'(ro) = 0, then

!/
(\u'|p_2u’) (ro) = — [a + réuq_l(ro)} u(rg) < — 1u(r0) < 0.
q-—
Hence, u'(r) # 0 for any r > ro. Moreover, since lirf u(r) = +oo, we have u/(r) > 0
T—+00
for large r. O

Now, we turn to the proof of Proposition 2.1
Proof. (of Proposition 2.1)). The cases (i) and (ii) follow easily from Remark and
relation @D Assume now that we are in the case (iii), then again Remark gives
E_p,/p—2(r) # 0 for large r. Suppose by contradiction that E_,/;,_2)(r) > 0 for large 7.

Hence, by (EI), lim 77/ ®=2y(r) €]0, +o00]. Set

r—4o00
o(r) = rN U |P2 (r) + Brivul(r), r>0, (14)
then, by equation , we get
o' (r) = rN " u(r) [Nﬁ —a —rlut=(r)], for any r > 0, (15)
SO TEIEOO @' (r) = —o0, in particular, (r) < 0 for large r, that is,
PN PR (r) < 1Bl u(r) (16)

for large r. Note that by Lemma we have u/(r) > 0 for large r and then a simple
integration of this last inequality on (rg, ) gives lirj_a P P2y (r) = dy > 0.
r—r+00

Now we are going to the logarithmic change. First, from we obtain
w/—p/(p—2)(t) = —A_p/(p-2) Wop/(p-2) (1) = QV_p/(p—2) ()~
Bh_pp-2)(t) — Mt ().
Note that, as E_,/(,,—2)(r) > 0 for large r, then by v'_p/(p_Q)(t) > 0 for large ¢. Then,

. . —p/(p—2) o . N ’ - . . .
since rggloor u(r) = dy > 0, necessarily tginoo U/ (p—2) (t) = 0, which implies

(17)

: p . p p-l
that t_13+moo h_pjp—2)(t) = - 2d1 and therefore t_l§+moo W_p/(p—2)(t) = (p — 2d1) . As
M_,/p—2) > 0, it follows by letting ¢ — +oo in that t_l)igloo wlfp/(p72) (t) = —oo0.
This is impossible as tliinm W_p/(p—2)(t) is finite.

Consequently, E_,/,—2y(r) < 0 for large . The proof is complete. m|
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Proposition 2.2 Let u be a solution of equation (@ Then, for any c¢ >

N —p a)
max (| ——,— |, E.(r) >0 for large r.
(p—l 5 ")

We need the following lemma.

Lemma 2.2 Assume that u is a bounded solution of equation (). Then u'(r) < 0
for large r.

Proof. First, we claim that v/(r) cannot vanish for large enough r. Assume by

contradiction that there exists a large extremum 7y of w. Then, according to equation
!

, we get (|u’|p’2u’> (ro) = f[oe + Téuq’l(ro)} u(rg) > 0, then u/(r) > 0 for any

r > ro, from which it turns out that u/(r) # 0 for large r. If «/(r) > 0 for large r, it
follows by the boundedness of u that l}rf u(r) = L > 0 and from , En(r) > 0 for

large r. On the other hand, by , we have that for large r

(=12 () ENT) = (p+Np—2) [/~ + |82 (r)
+ [|a| - rluqfl] ru(r)

> [|oz| — rluqfl} ru(r) > 0. (18)

So, lim En(r) €]0,+oc].
r—r+00
Note that if lim Ex(r) = 400, then by 1?' lim 7u/(r) = 400, which contradicts
T—+00 r—+00
the boundedness of u. On the other hand, if liril En(r) is finite and strictly posi-
r—+00

tive, necessarily 1ir4{1 ru'(r) = 0 and by letting r to +oo in equation li we obtain
T—>+00

lim (Ju/|P~%u)'(r) = —aL > 0, which implies that lim «/(r) = +o0 and we have
— 400 r——+00
again a contradiction. Consequently, u’(r) < 0 for large r. O

Now we prove Proposition 2.2}
Proof. (of Proposition [2.2). We distinguish two cases.
Case 1: u is bounded.

Assume % > ip We have easily from Remark Eq5(r) # 0 for large . Sup-
p—

pose that E,/z(r) < 0 for large r, it turns out by (9) that the function r*/Pu(r) is

. . . . . «
decreasing for large r, hence luf re/ Bu(r) exists and is finite. But — > 0, then
r—+400

necessarily 11111 u(r) = 0. On the other hand, using the equation , Lemma
T—> 400

N —
the fact that £, 3(r) < 0 and % > 711)
p—
i E,/3(r) € [~00,0[. Combining this with im u(r) = 0, we obtain from ,
liI'+n ru'(r) € [—o0o,0[. But this contradicts the fact that u is positive. Consequently,
r—+00

E,/s(r) > 0 for large r and E.(r) > 0 for ¢ > %.

N —
Assume now % < 1p Then, from Remark E(N—p)/(p—1)(r) # 0 for large 7.
p—

Suppose on the contrary that E(y_p)/p—1)(r) < 0 for large r. Since <

g p—-1’

, we get E;/ﬁ(r) < 0 for large r, hence

we
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have E, /g(r) < 0 for large 7. On the other hand, by , we have EEN_p)/(p_l)(r) <0
and thereby ligl E(N—p)/(p—1)(r) € [-00,0[. Using similar arguments as before, we get
r—r+00
a contradiction. In fact, as the function r(V=P)/(P=Ny(r) is decreasing, then it admits a
finite limit, this implies that lim wu(r) = 0. So, by 7 lim ru'(r) € [—o0,0[, which is
r—+00 r—+o00
—-p

impossible. Consequently, E(n_p)/p—1)(r) > 0 for large r and E.(r) > 0 for ¢ > T
p—

Case 2: wu is unbounded.

N —
It is easy to see by Remark that for ¢ > max ( 1p7 g), E.(r) # 0 for large r, that
p—
is, by (9), r¢u(r) is strictly monotone. Since u is unbounded, necessarily lirjra ru(r) =
rT—+00

+00. Consequently, by @D, E.(r) > 0 for large r. O

3 Unbounded Solutions

In this section we study the unbounded positive solutions of problem (P) and we give
their asymptotic behavior near infinity.
l+p «

Theorem 3.1 Assume that g <p—1or g >p—1 and ¢ #* —— or — =
z BT q+l-p B
+P

N —
> p‘ Then any positive solution of problem (P) is unbounded.
qg+1l-p p

Before giving the proof, we need the behavior of bounded solutions near infinity. For
this purpose we start with the following result.

Proposition 3.1 Assume that u is a bounded solution of equation (@ Then

lim u(r) = lim ru'(r)=0. (19)

r—+00 r—+00

400

Proof. Recall Lemma and Proposition we deduce that lim wu(r) = L exists
r—

N —
and for any ¢ > max (p’ a>7
p—1p

—cu(r) <ru/(r) <0 for large r. (20)

Thus ru/(r) is bounded for large r. Assume by contradiction that L > 0.

First, suppose that 7u/(r) is monotone for large r, then necessarily hrﬂ ru’(r) =0
T—>+00

and we get from equation

!
lim <|u’|p_2u’) (r)=—alL > 0.
r—+00
This is a contradiction with «/(r) < 0 for large r.
Next, suppose that ru/(r) is oscillating for large r. Since w is positive and strictly

decreasing, one has limsupru/(r) = 0. Otherwise, there exists a constant C' > 0 such
r——400

that ru/(r) < —C for large r. This contradicts u(r) > 0. Consequently, there exists a
sequence {&;} going to +o0o as i — +oo such that the function ru’(r) has a local maximum
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in & satisfying 41i21 &u/'(&) = limsuprd/(r) = 0 and u/(&) + &'/ (&) = 0 (u” exists
1—+00

r—-+o00
because u’ < 0). Therefore

lim /(&)= lim u”(&)=0.

1—+o00 1—+00

On the other hand, take r = & in equation , we obtain

/
lim OMW”uv(@):—aL>O,

1—+o00

that is,
L
lim /[P~ (&) = ——— > 0.
im0 (6) = =

This contradicts (21)).

r—4o00

(21)

It follows from both cases that lim w(r) = 0. Hence, by inequality , we have

lim ru/(r) = 0 and the proof is complete.
r—4o00

Proposition 3.2 Assume that u is a bounded solution of equation (@ Then

@)Uo<c<%<N;1mlﬁmm:0

r—-+4oo

lim ru(r) = +o0.
T—+00

(i4) If%<c<N,

O

Proof. According to Remark and expression @[), ru(r) is monotone for large r

for any ¢ # %. Hence EIJP reu(r) € [0, 4o00].

(7) Assume by contradiction that lim r°u(r) €]0,4o00]. Then, for 0 < ¢ < 2 < N,

r—+400 ﬁ

lim rNVu(r) = +oo and by Remark En(r) > 0 for large r. Hence, using the fact

r—+00
that u is bounded, u/(r) < 0 for large r and expression of Ey, we find

/ p—1
L )]
r—+00 U

Then by , and , we have

p(r) 2 Brifu(r) <0

=0.

and
¢'(r) ~ (NS —a)yr¥ tu(r).
+oo
Combining these two estimates, we get

H(re V) ~ (e - a)rulr).

Since lim ru(r) €]0,+oo] and ¢ — a > 0, there exists some Cy > 0 such that

r—4o00

r(reNe)(r) > Cy  for large r.

(22)
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Whence lim ¢(r) = +oo. This is a contradiction with . We deduce that

r——+00
lim ru(r) =0.
r——400
(2 ssume Dby contradiction a mm 7 ulr) = € 7-’-OO . € daistinguis WO
i) A b tradicti thtl'Jr ¢ K 0 We distinguish t
r——+400
cases:

e K =0. Then necessarily F.(r) < 0 for large r, this means that

u(r)

rlu!(r)]

1
< — for larger. (25)
c

«
Using equation and the fact that v > 0,4’ < 0 and E < ¢, we obtain

’ N -1
<|u/|p72u/) (’I’) < T|u/(7")| |:B + @ + 5 |ul(r)|p72i| <0 for large r.
C r

Thus «'(r) > 0 for large r, which is a contradiction with Lemma [2.2}
e K > 0. Since ¢ < N, lirf rNu(r) = +oo and Ey(r) > 0 for large r. Therefore, 1'
r—400

is satisfied and thereby from and (24)), we get

lim ¢(r) = —cc and lim 7N/ (r) = K(NB — a). (26)

r—-+00 r—-+00
Then Hopital’s rule implies

K(NS — «
lim rchgo(r):i( s )

2
r——+o0o N —c¢ ( 7)

But from lj this limit is exactly K 3. This contradicts the fact that ¢ > %. Conse-

quently, lirf r°u(r) = 400 and the proof of the proposition is complete. O
r—+00

Proposition 3.3 Assume that u is a bounded solution of equation (@) Then the
function ro‘/ﬁu(r) s mot strictly monotone for large r.

Proof. We argue by contradiction and assume that r®/# u(r) is strictly monotone for
large r. Therefore, according to @, E,/5(r) # 0 for large r. We distinguish two cases.
Case 1: E,/3(r) > 0 for large r.

We set
Ji(r) = u(r) —rP [P (28)
Then for large r,
Ty =t = a =t <P [ = B (o= N (29)

Using now Proposition and E,/(r) > 0 for large r, we get

lim Jl(T) = O,

r—+00

T () > u(r) l1 - (g)pl uﬂ(r)] >0 for large
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and
Ji(r) ~ —arPtu(r) + BrP|u/(r)| = =BrP~'E, 5(r) > 0 for large r.

—+oo
This is a contradiction.
Case 2: E,/3(r) <0 for large r.

N —
Then necessarily % < 71]), by Proposition
p—

Now, we set
Jo(r) = rFuP (r) — P '[P, (30)

with 0 < k£ < min (%,p). Then, for large r,
Joy(r) =rP"tu [ —a—rlutt ¢ krk_pup_l} —rP|| [ - B+

(31)
Frt e (o= N2

As k< p, k < % < N f < N, E4/3(r) < 0 for large r, by Proposition and
Proposition we obtfﬁn
lim Jg(?") = O,
r—+00
p—1
Jo(r) < uP~H(r) [— (;) +r*u(r)| <0 for large r

and
J5(r) o —ar?~tu(r) + Bre|u/(r)| = —BrP " E, 5(r) < 0 for large r.

oo

Again, we have a contradiction. Consequently, the function 7/ Bu(r) is not strictly

monotone for large r. The proof of the proposition is complete. o
Proposition 3.4 Assume that u is a bounded solution of equation (H) If % =
l _
P < N p’ then
qg+1—-p p-—-1
; a/p _
TETDOT u(r)=1L (32)
and N
li a/B+1, 1 _ _—L
Jim 7 u'(r) 7L (33)
where
a 1/(a+1=p) 7\ (P=1)/(a+1-p)
L= Npp1> (> . 34
(v-p-50-1) : (31)
Proof. Define the following function:
/\p—2 /(’I“)
(1) =re/utr) [ (35)

We have I(r) < 0 for large r. Its derivative is given by

I'(r) = (g - N) rO B2y P2 (1) — B (), (36)
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The proof will be done in five steps.
Step 1: I(r) o Bre/Bu(r).

N —
Since % < Ff, Proposition implies that FE(ny_p)/p—1)(r) > 0 for large r and
()
thus, from the boundedness of u, lim ————— =0 and one deduces that I(r) ~
r—+00 rU +oo
6ra/ﬁu(r).

Step 2: lim 7*/Pu(r) exists and is finite.
r—-+00
According to Step 1, it suffices to prove that lir+n I(r) exists and is finite. For this
r—400
purpose, consider a real o such that

<o (5800 5 (309 ))

So, by Proposition , lirf ra/ﬁ_"u(r) = 0. In particular, there exists a constant C > 0
r—+o00
such that
u(r) < Cro=*/%  for large r. (37)

Recall the positivity of E(x_p)/p—1)(r) for large r, we get that there exists C; > 0 such
that
r/ B2y Tt < CPTHY for large 7 (38)

@
WherevzE(Z—p)—&—a(p—l)—p—l.

By the choice of o, the functions r — r*/#+=144(r) and r — r/#=2|u/|P~1 are integrable
near +o0, therefore, I’(r) is also integrable near +00. To conclude, we observe that for
any ro > 0,

“+oo
lim I(r)= / I'(s)ds + I(ro)

r—>+00 o
exists and is finite. Therefore,
Set lim ra/ﬁu(r) =L>0.

r—-+00

T a/p -
Step 3: TEIEOOT u(r) =L > 0.

lim 7*/Pu(r) exists and is finite.
r—400

Assume that lim 7/Pu(r) = 0. Then lim I(r) = 0. Therefore, applying Hopital’s
r—+00 r—+00
rule and using the first step, we obtain

m gy IO g (39)
r——+o0 (ro‘/ﬁu(T))/ r—+oo /By

On the other hand, using , we have

I'(r) = ra/ﬁ_2\u'|p_1 N —

a rl“‘luq(r)} (40)

ER

Let 0 < ¢ < 2 < N, then ligl r“u(r) = 0 and according to Remark we have
T—>+00

E.(r) # 0 for large r. Therefore, necessarily by (9), E.(r) < 0 for large r. Hence,

Py (r)

0< 7|u’|19_1

< M TPplpy At (p), (41)
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l I+1,,q9
Since & = i, then lim 7Pu?™17P(r) = 0 and therefore lim T ul(r)
B q+l-p r—-+oo rotoo |u/[PT

Hence, as % < N and |v/(r)] > 0 for large r, we have by , I'(r) > 0 for large 7.

=0.

Consequently, by and the fact that 8 < 0, (ro‘/ﬁu(r))/ < 0 for large r. But this
contradicts Proposition [3.3]
Consequently, lir+n ra/ﬁu(r) =L>0.
r—+00

. a1,y — ¢
Step 4: ngloor u'(r) L.

Since lim wu(r) =0, then applying Hopital’s rule, we obtain
r——4o0

i afBly i) = —% /B _“
TEELHOOT u'(r) = 3 TBTOOT u(r) = 3 L.

a (a+1=p) 7N\ (P=1/(a+1-p)
Step 5: L = N—p—ﬁ(p—1)> <>

B
According to (|11f), we have

—BrEap(r) = |u/[" ' (r) [ (N —p— - 1>>

B
42
+(p- 1)E;/ﬁ(r) rHud(r) )
W) P (r)
Using Step 3 and Step 4 and applying Hopital’s rule, we get
E’ r E ’
o Dore) g Baspl) A GO (43)
r——+oo u’(r) r——+oo u('r) r——+oo u
and 1 o
q _[atl-p
hm " _Z (’r) - 1> (44)
r——+00 |u/|p u/(,r) <a>p
B
l
when & i Suppose by contradiction
Boa+l-p
a Lat1-p
—-p— E(P -1) - ﬁ #
(5)
After combining these estimates, equation gives
« Latli-rp np=2
—BrEays(r) ~ N—p—B(p—l)— [ |7 "' (r).

So, Eqo/5(r) # 0 for large r, that is, r®/Bu(r) is strictly monotone for large 7. Again, this
contradicts Proposition
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Consequently,

1/(qg+1-p) (p—1)/(g+1-p)
« «
L:<N_p_(p_1)) (ﬁ) '

IS

The proof is complete. O

The following figure illustrates the behavior of the bounded solution.

alpha = 0.05; beta =0.007, p=3;q=5N=7,1=-1.01,a=20

Figure 1: Bounded solution.

Now, we turn to the proof of Theorem [3.1
Proof. (of Theorem [3.1]). We argue by contradiction and assume that « is bounded.
We claim that if one of the first two cases holds, then E, /g(r) # 0 for large r and this

N —
contradicts Proposition In fact, if % >
p—

from Proposition [2.2

f, we have E,/3(r) > 0 for large r,

N-p

p—1

Assume that there exists a large ro such that E,/g(ro) = 0. Recall formula with ¢ =
e 4 l+p

BT q+1—p’
we have by Proposition lim TPy P(r) = 0 or lim rFPuITITP(r) = 400

r—-+4oo r——400

«
Now we consider the case where — <

«

7 we have in the case ¢ < p—1, E;/ﬁ(ro) # 0. In the case ¢ > p—1 and

N —
lp < N). Then we have also E, / 5(ro) # 0. Consequently, Remark

gives E,/g(r) # 0 for any r > ro.

(because % <
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N — l N —
pS P < p. Recall

Suppose now that we are in the third case &
p Boq+l-p p-1

the logarithmic change with ¢ = %, then

W/ 5(t) + Aayp wayp(t) + aeersty, 5 (t) + Beerathy 5(t) + vi/ﬁ(t) =0 (45)

and Proposition gives

. _ -
lim wv,/3(t) =L and tilgrnoo heys(t) = ?L. (46)

t——+o0

Define the following energy function:

_ a 0Tt a\P !
Z(t) = ]771 |ha/5(t)|p+wa/ﬁ(t)va/g(t)—&—a/ﬁ()—l-ﬁ () ’Ug/ﬁ(t), (47)

p B q+1 B
where o a

According to [7], we have lir% ru’(r) = 0. Therefore
r—

lim 7*/Pu(r) = lim 714/ (r) = 0.
r—0 r—0
It gives
lim wv,,5(t) = tli{noo heys(t) = 0.

t——o0

This implies by that lim Z(t) = 0.
——00
On the other hand, by a straightforward calculation, the function Z satisfies

Z'(t) = oY (1) — Beerst (ha/gm n gvaw(t)) , (49)

where

p—1

Y<t>=(|ham<t>|p‘2ha/ﬁ<t>+(§) vz/gu)) (aa®)+ Grasa(®) . (50)

As 9 > 0, 8 < 0 and the function s — |s|P™2s is increasing, then Z’(t) > 0 for any
t € (—o0,+00), that is, Z is increasing on (—oo,+00). Therefore, Z(t) > 0 for any
t € (—00,+00). But letting ¢ — 400 in , we get

p—1
: _ p (& p—gq—-1
S A0 = Aass L (ﬂ) ( plg+1) ) <

This is a contradiction. Consequently, u is unbounded. The proof of Theorem is
complete. O

In the following, we are concerned with the asymptotic behavior of unbounded solu-
tions near infinity.
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N —
Theorem 3.2 Assume ¢ > p — 1 and 1p > 1 Let v be an unbounded
p—= q—
solution of equation (@) Then
: —p/(p—2) — =2/(p—2),,/ (1) =
TEIJPOOT u(r) Tginmr u'(r) = 0. (51)
The proof requires some preliminary results.
Proposition 3.5 Assume ¢ > p—1 and _f > 3 Then there is no solution
p—= q—
of equation (@ such that
u(r) > Tr= @Y for large 7, (52)

where T' is given by .

Proof. We argue by contradiction and assume that u satisfies . Then, according
to Lemma and Proposition we have u/(r) > 0 and Ej/4—1)(r) # 0 for large r.
This gives, with logarithmic change , that wy/(q—1)(t) > 0 and ’Ul//(qil)(t) # 0 for
large t. We distinguish two cases.
Case 1: v;,,_y(t) <0 for large ¢. Then tiifrnoo V/(q-1)(t) = d € [T, +o0l.

From equation , we have

Wiy g-1)(8) + Apygnywip-y (1) = —eSVa Dty g (1) {% (53)
hij-n®) g1
B———L v ()]
vyg-n(t) @D
Note that )
hiyq—1)(t) _ Ul/(q—l)(t) o - l (54)

V-1t vye-nt) g-1 " gq-1
Then we deduce from and that

Wi (q—1) () + Aryg-1ywiyg-1y(t) <0 for large ¢.

This means that the function e4/(-vtw;,,_1)(t) is decreasing for large t. As
wi/(q—1)(t) > 0 for large ¢, then e“l/(q—l)twl/(q,l)(t) has a finite limit. Since 4;/(,—1) > 0,
necessarily tlifrnoo wi/(q—1)(t) = 0. Now, recalling (EP7 we obtain tligloo hy/(q—1)(t) = 0 and
lim wvy,,1)(t) = —1d < 0. But this contradicts the fact that v;/,—1) is positive.
q—

t——+oo

Case 2: v},(,_y(t) > 0 for large t. Then tiigloo Uy/(q—1)(t) €], +o0].

. o . . / _
(a) Assume that tlgrnoo U/(g—1)(t) = d < 400, then necessarily tl}gloo Ul (q-1)(t) = 0.

R : l p—1
This implies by (H} that tilgrnoo wiy(q—1)(t) = <7 q—ild> . Therefore,
. hl/(qfl)(t) -1 Bl -
1 BATAS B? AR Dl =a— " +d7 1 >0
t= 450 {a * BUZ/(Q—l)(t) - )} R >
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. . . . 12 _ fe e . .
by letting ¢ — 400 in , we obtain t—1}+moo wl/(q_l)(t) = —oo. This is a contradiction
with wy,(4—1) being positive.

liril /@~ Dy(r) = 400. Then,
T—1+00
according to Proposition E_p/(p—2)(r) <0 for large r. Hence, according to and
the fact that u/(r) > 0 for large r, we have

(b) Assume that t_l}iinoo U/(g—1)(t) = +oo, that is,

< P for large r.
U p—2

On the other hand, we have by equation ,

Hp—2,1 ! ru’ l,,q—1
(|u\ u)(r)<—u[a+67+ruq ]

So, lim (|u’|p_2u’)/(r) = —00, which means that lim «/(r) = —oo. This is
r—>+00 r—+00
impossible.

In conclusion, the two cases can not hold, so there is no solution satisfying (52). The
proof is complete. O

As a consequence of the previous proposition, we have the following result.

—p l

Corollary 3.1 Assume ¢ > p— 1 and 1 > P Let u be a solution of
p— q—
equation (H) Then liminf réu(r) =0 for any ¢ < and liminf /@Yy (r) < T.
r—+00 q—1 r—+00

Before giving the proof of Theorem [3:2] we need a comparison between the solutions of
equation and their derivatives.

N-—p l

Proposition 3.6 Assume ¢ > p—1 and 1 > 1 Let u be an unbounded
p—= q—
solution of equation (@) Then
|u/|P~2u/ () < max <|ozN|’ |B|> ru(r)  for large r. (55)
Proof. Let A = min (%, B) < 0 and set
G(r)=rN"1 [|u’|p_2u/(r) + Ar u(r)} . (56)
From equation , we have
G'(r) = rNTu(r) [AN —a- rl|u|fH] + (A= BN (). (57)

We will show that G(r) < 0 for large r.
Suppose that there exists a large r¢ such that G(rg) = 0, then G'(rp) can be written
in the following form:

G (r0) = 3/~ ulro) [AN—a=rfut=" (ro) |+ A/ @=D (A=) 1PV 07D ). (58)
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Therefore, according to the choice of A, we have G'(rg) < 0. Hence, G(r) # 0 for any
r>Tp.
If G(r) > 0 for large r, then «/(r) > 0 for large r and by a simple integration, we deduce
that there exists a constant ¢ > 0 such that r~=?/(P=2)y(r) > ¢ for large . But this is a
contradiction with Proposition [3.5
In conclusion, G(r) < 0 for large r and the proof is complete. O

N - l

f > —1 Let u be an unbounded
b= q—
solution of equation (@ Then the functions r—P/P=2u(r) and r=2/P=2)4/ (1) are bounded
for large r.

Proposition 3.7 Assume ¢ > p—1 and

Proof. The proof will be done in two steps.
Step 1: The function r~?/(P=2)y(r) is bounded for large r.
We argue by contradiction and assume that v_,/(,—2)(t) = r~?/?=2y(r) is unbounded

for large t, where we use the notation . Since 1 > %7 Proposition ensures
q—

p—
that v_,/,—2)(f) can not converge to +oo. Hence, it must necessarily oscillate. Then
there exists a sequence {¢;} going to +oc0 as i — 400 such that v_,,,_2) has a local

maximum in &; satisfying zilﬂo U_p/(p—2)(&i) = +00. Since Ul—p/(p—2) (&) = 0, we have

p
hepp—2)(&) = o aVr/-2) (&) >0,

therefore )
P \PT p1
w*p/(p72)(§i) = (m) ng/(p_2)(€i)'
On the other hand, estimate (55) can be written in the following form:
w_p/(p-2)(t) <A v_p/p-2)(t)  for large t, (59)

|

where |A| = max (N’ |6|> In particular, for t = &;, we obtain

- p—2\r-1 '
Uﬁp?(p—Q)(fi) <Al (T) for large 3.

But this contradicts the fact that li+m VU_p/(p—2)(&i) = +o0o. Consequently, v_,/,—2)(t)
1—>+00

is bounded for large ¢.
Step 2: The function r=2/(P=2)¢/(r) is bounded for large r, that means that w_,;(,—o)(t)
is bounded for large t.

Observe preliminary that if u(r) is monotone for large r, necessarily u'(r) > 0 for
large 7 (because u is unbounded) and then w_j/,—2)(t) > 0 for large t. Therefore, by
and Step 1, w_,/(p—2)(t) is bounded for large t.

So, we only have to deal with the case where u(r) is not monotone for large r and
then the idea of the proof is the same as for Step 1.

Suppose by contradiction that w_,/,—2)(t) is not bounded and let a sequence {k;}
go to +00 as i — 400 such that W/_p/(p_z) (ki) = 0 and zllgloo W_p/(p—2) (ki) = +o0 or

—0OQ.
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First, note that as v_/(,—2)(t) is bounded for large ¢, then implies that we can not

N —
have ligl W_p/(p—2) (ki) = +00. Secondly, take some constant § > max ( » 1p, g) >
1—+00 —
0, then by Proposition Es(r) > 0 for large r. So,

h—p/(p—2) (t) > —5U_p/(p_2) (t) for large t. (60)

In particular,

h_pjp—2) (ki) > —0v_p (p—2y(k;)  for large i. (61)
Again, as v_,/(,—2)(t) is bounded for large ¢, we deduce that w_,,/;,—2)(k;) is bounded
for large i. This is a contradiction. It follows that w_,/,—2)(t) is bounded for large t¢.
Hence 7~2/(P=2)4/(r) is bounded for large r. O

Now, we are ready to give the proof of Theorem [3.2}

Proof. (of Theorem . Using the logarithmic change and Proposition
we deduce that the functions v_,/,—2)(t) and w_,/,—2)(t) are bounded for large .
We proceed in two steps.
Step 1: t_l}gloo W_p/(p—2)(t) = 0.
First, we claim that w_,/,_2)(t) converges when ¢t — +o00. Assume by contradiction
that w_,/,—2)(t) oscillates, that is, there exist two sequences {s;} and {k;} going to +o0
as i — +o0o such that w_,/,—2)(t) has a local minimum in s; and a local maximum in
k; satisfying s; < k; < s;41 and
M infwp) -2 (8) = 1im @ p/p—z)(s:) <UMSUpw_p/(p2)(t) = T _w_p/(p2)(ki)-

(62)

Applying equation at the point t = k;, we get erp/(pd)kivq_p/(p_Q)(ki) is bounded.
Therefore, since M_,,/,_2) > 0, Z_l}gloo U_p/(p—2) (ki) = 0 and thanks to , we deduce

Jm wop/p-2) (ki) = Hmsupw_p/p-2)(t) < 0.

As wu is unbounded, then u cannot be decreasing and by @ and necessarily
lims —p/(p—2)(t) = 0, so, by (62
im SUpw_p (-2) (¢) y

lim w_p,/(p—2)(s;) = liminfw_, 2 (t) <O0.

i— 400 t——+o0
This implies that ‘li1+n h_p/p—2)(s8:) < 0 and therefore, by (60), we find
1—>+00

Aligrn U_p/(p—2)(8:) > 0. On the other hand, w’

1—>+00

implies that lir+n U_p/(p—2)(8:) = 0. This is a contradiction. So, w_,/p—2)(t) is mono-
1—>+00

p/(p—2)(8i) = 0, then equation "

tone and then it has a finite limit when ¢ — +o00.
As u is positive and unbounded, then necessarily tli+m W_p/(p—2)(t) > 0. If
—+00

lim w_,/p—2)(t) > 0, then, by , there exists a constant C > 0 such

t——+oo

that v_,/p—2)(t) > C for large t. Therefore, we obtain by equation that

t_l}inoo wlp/(p72)(t) = —o0, which is a contradiction with the boundedness of w_,/(,—2)-
Consequently, t_liToo W_p/(p—2)(t) = 0. Therefore, T‘EI—iI-loo T—2/(pf2)u/(7,) -0
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Step 2: t—ljgloo V_p/(p—2) (t) =0.

Knowing that v_,,,—2)(t) is bounded, assume by contradiction that it oscillates, that
is, there exist two sequences {7;} and {&;} going to 400 as i — 400 such that v_,,/;,_2)
has a local minimum in 7; and a local maximum in &; satisfying 7; < & < 1;41 and

i infv_p)p-2)(t) = B _v_p/p2)(mi) <HMSUPV_p/p2)(t) = 1M 0—p/(p—2)(&i)-
(63)

Since v’fp/(pd)(m) = Uip/(p72)(§i) =0, then we have by @
hep) o2 (1) =~ 0y (1) And By (6) = —2—0 o2 (€0):
p—2 p—2
Since tl>i+mw h_p/p—2)(t) =0,

im hppo2y(ni) = lim h_p/p-0)(&) = 0.

1—+o00 1—+o00

This implies that

im v_p/(p-2)(i) = UM v_pp-2)(&) = 0.

1——+00 1—+o00

But this contradicts 1) Therefore, v_,/,—2) converges. Hence, by (@, U/_p/(p_Q) con-
. . . . _ _92
verges necessarily to 0. Consequently, tilgrnoo U_p/p—2)(t) = 0, e, ’I‘EIJ,I:IOOT, »/(p )u(r) =

0. The proof is complete. m]

l —a N —
Theorem 3.3 Assume q > p(2 + 2p71) —1 and —3 < min (;, f) Let u
p—
be an unbounded positive solution of problem (P). Then

i 1/(¢=1) —
TETOOT u(r) =T (64)
and l
li V@D (p) = " T
i V() = 5T )

where T' is given by .
To prove this theorem we will need the following results.

N-—p

Proposition 3.8 Assume ¢ > p— 1 and 1 > 1 Let u be an unbounded
N
positive solution of problem (P). Then, for any ¢ > <5> ,
|/ |P=2! (1) > —er'™PuP " (r)  for large r. (66)

A
Proof. Let c > (5) and

F(r) = V=Y |P72d (r) + e 7PuP 1 (7). (67)
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Then, according to equation ,
F'(r)=rN"1y { —a—rlutt fo(N —p)r”u”g] + N’ [— B+clp— 1)rpup2] . (68)

We will show that F(r) > 0 for large r.
First, we prove that F(r) # 0 for large r. Suppose that there exists a large ro such
that F(rg) = 0. Then, according to (67) and (68)), we have

F'(rg) = réVlu[— o+ et/ =D byt 4 (C(N—p) — P/ =D (p— 1)>r0pup2] . (69)
Since —a + B/~ < 0, rlu?=1(r) > 0 and liI'+n rPuP~%(r) = 0 (by Theorem ,
r—+00

we get F'(rg) < 0. Hence, F(r) # 0 for any r» > r¢ and then, as u is unbounded, F(r)
cannot be negative for large r. The proof is complete. O

l —a N —
Proposition 3.9 Assume g > p(2—|—2p’1) —1 and P < min <;, lp) Let
p—
u be an unbounded positive solution of problem (P). Then the functions r'/(9=Du(r) and
Pt/ a=D+1y (1) are bounded for large r.

Proof. (i) We first show that /(@ Dy(r) is bounded for large 7.

We make the change for ¢ = and we set

_ Kyg-nlp—-1) 1

D » -1 + Al/(q—l) > 0, (70)

We define, for any real > 0, the following energy function:

g+1
Pl Kt p D0, Viyg-1)®)
Fe(t) = T@ 1/(g—1) U’Ll/(q_l) (t)| — Tvl/(qfl) (t) =+ q_|_71
L oKyt o0 -1\ —Kijq-ty,P
—1° wi/(g—1) (E)vi/(g—1)(t) = ] e V) (g—1)(1)-
(71)
Using equation , a straightforward calculation gives
. I ?
Fé(t) = Qe Kl/(qfl)tX(t) - B (hl/(ql)(t) + - lvl/(ql)(t)) +
Dlele/(qfl)t |hl/(q_1)(t)|p + Dge*K”(‘I*”twl/(q_U(t)vz/(q_1)(t) +
L S R
/(a=1)tq,P t 72
v =1 e K Ul/(q_1)( )s (72)
where
p—2 -1\ p—1
X0 = ||hy@n®  hyg-n) - -1 U (g-1) D | [hyq-1) () +

()], (73)
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D =—(D+6) <0 (74)

and
-1 K/
D2:<D+9+”(q”>>o. (75)
q—1 P
We show in two steps that v;/(;—1)(t) is bounded for large .
Step 1: Fy(t) > 0 for large t by choosing a suitable 6.
We know that for any p > 2 and for any a,b € R, we have

ja = b7 < 2¢7 (Jal” + [b]") .

l
q—1

Therefore, particulary for p = p, a = ’Ull/(q_l)(t) and b = Uy/(g—1)(t), we obtain

p

!
V-0~ - ®)

< or-1 ’v’ (t)’p+ e pv” (t)
= 1/(qg—1) g—1 1/(g—1) ’

\huyq—n(®)|" =

Since Dy < 0,

Fy(t) > 0e™M0antX (1) + v, (1) [—6+2p—1ple—f<~wt

/ p—2
Ul/(g-1) +

p p—1
—Kijgnt, 1 l Kiyq-1f (1]
iy o[y (LY K (Y

Dawiy(g-1yv, /_(5—1):| : (76)

l
i > g, we have by Proposition
-1 p

- I\
wl/(q,l)(t)vll/(g_l)(t) > — (q|—1> for large t. (77)

As

Therefore, according to we get

Fé(t) > ge—Kz/(q—l)tX(t) +Ul/?(q71)(t) |:—ﬁ+2p_1D16_K’/(‘1—1)t

’ p=2
Ul/(qfl)’ T

—1
— Ko -1 |l] i Kl/(qfl)e |l] b
e” Mg [2p = (q 1) M a—1 -

o ()]

Now, we choose in

_ 2P|l|pD + 2|l|pD + 2|I| Ky (g-1)

0 —
Kjjq-1)(g—1) +Ip(2r=1 +1)

> 0. (79)
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Note that, since q¢ > p(2 + 2”_1) — 1, we have Kj/,—1)(q — 1) + Ip(2P~t +1) > 0, and
the expression gives

I \? Kb [ ]| \*! I \""
2p1D1(q|_|1) N z/(; 1) <q|_|1> —D2<q|_|1> > 0. (80)

qi 1U1/(q—1)(t)> , (81)

Moreover,

e K Dl (1) = oKt <h1/<q_1>(t) N

and from Theorem [3.2

Jim e a2y (1) = dim 7P/ Du(r) =0 (82)

and
Jim e K@t P=20p, 4 (t) = im r D/ (r) = 0, (83)

then
i em et o) (@) = 0. (84)

Using the last equality, the estimate , the fact that X (¢) > 0 (because the function
s — |s|P™?s is increasing), v/4—1)(t) > 0, 8 > 0 and 8 < 0, we deduce from that
Fy(t) > 0 for large t.
Step 2: The function vl/(q,l)(t) cannot oscillate about a constant B such that B >
(¢ +1)"/@=DT > T, where T is given by (13).

We argue by contradiction and assume that there exist two sequences {n;} and {&;}
going to +o0o as i — +o00 such that v;/(4_1) has a local minimum in 7; and a local
maximum in §; satisfying 7; < &§ < mi41 and vy g—1)(&) > B.

. ! :
Since hy/q—1)(1n:) = —mvl/(q,l)(m) > 0, we see that h;/(q_l)(m) exists and, more

exactly, hy,,_1)(m:) = vl”/(q_l)(m) > 0 (because vg/(q_l)(m) = 0), which implies that
l
qg—1

Wiy (g—1y(1i) = 0. Taking ¢ = in , we obtain
e Mty ) (1) = —Ayg-ne” @D Wy (E) = avyg-1 (1)
= Bhujq-) (1) = Vi1 (0)- (85)

So, for t = n;
e~ Ry, () < =(viyg-1) (),
where
Y(s)=[sT7' =T7']s, s>0. (86)
Since wy,,_1y(m:) = 0, one has ¥ (vy/(g-1)(n;)) < 0 and therefore, necessarily
V1/(q—1)(ni) < T'. On the other hand, according to , we have

), o

Fy(mi) g+ 1 + Viy(g-1) (1) —T+C2€_K‘/<“’”"Wf/_(§_1)(m‘) . (87)
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L/ =1\
where Cy = — ( ) < — 9) < 0. In particular, we obtain
p\g—1 q—1
Fop(ni) < ¢1(viy(q-1)(ni)), where
gat+1 a1

g+1 2

o1(s) = s2, §>0. (88)
Therefore, since 0 < wvy/g—1)(n:) < T', a simple study of the function ¢; gives
¢1(vy/(g—1)(n:)) < 0. Consequently, Fp(n;) < 0 for large i.

In the same way, since vl’/(qfl)(gi) =0,

vl (&) ra-!
1 1)\Si _
Fo(&) = /;T + 071 (&) [— 5~ T Cae Ki/(a- 1>§Wz/( (&) - (89)
Si li —Ki/(q-1)€iy,P )=0b ,
ince zJTme vy (§ )= y
lq+1 1 (gz)
Fp(&i) > L — I‘qflvlz/(q_l)(&) for large 1. (90)
qg+1
Set
Sq+1 1o
als) = S TR sz o1)

Therefore, by , Fy(&) > ¢2(vy)(q—1y(&)) for large i. Since vy/q—1)(&) > B >
(g + DYV, we have ¢o(vi/q—1)(&)) > 0, which implies that Fp(¢) > 0 for
large i. Hence, Fy(n;) < 0 and Fp(&;) > 0, for large i, which clearly contradicts the
monotonicity of Fy(t) for large . It follows that v;/,—1)(t) cannot oscillate about the
constant B. Moreover, since v;/(,—1)(t) cannot stay above B (from Proposition7 one
has v;/(q—1)(t) < B for large t. Consequently, v;/4—1)(t) is bounded for large ¢. That is,
rl/(@=Dy(r) is bounded for large 7.

(ii) Now, we show that r//(==D+1y/(7) is bounded for large r, i.e., by (6) and (10),
wi/(g—1)(t) is bounded for large .

We argue by contradiction. As w is positive and unbounded, then we have two pos-
sibilities.
° t—1>i+moo Wi/(q—1)(t) = 400, then t_l>i+moo hyj(q—1)(t) = 4o0. Using and the fact that

. . . ’ _
Uy/(q—1)(t) is bounded for large ¢, we obtain t_l}gloo Ul/(q—l)(t) = +4oo and therefore,
tiigloo Uy/(q—1)(t) = +00, which is impossible.
e There exists a sequence {k;} going to +oc0 as i — +oo such that w;/,—1) has a local
extremum in k; satisfying liin Wi /(g—1) (ki) = +00 or —oo.
1—+00

We use expression @, equation and the fact that w;/(q_l)(/@i) =0, then

hy(g—1y (k) [P 73] .
(92)

) . “Ky -2 :

Since thm e i/ 1)t|hl/(q,1)(t)|p =0 by 1) Z_lz+moo hyj(q—1) (ki) = +00 or —oo and

—+00

B < 0, we have

vy g1y (ki) + 01y (ki) = huygoy (ki) [=8 — Ayygnye” Ttk

lim vy (1) (i) + 0] g1y (ki) = +00

1—+00
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or
lim  ovy(g—1) (ki) + 0f) g1y (ki) = —0.

1—400
But this contradicts the fact that v;,,—1)(t) is bounded for large t.

Hence wy/(4—1)(t) is bounded for large ¢ and therefore r'/(4=D+1y/(r) is bounded for
large r. O

We can now give the proof of Theorem [3.3

Proof. (of Theorem .We use the logarithmic change, we have by Proposi-
tion U/(q—1)(t) and hy/q—1)(t) are bounded for large ¢. The proof will be done in
three steps.
Step 1: The function v;(4—1)(t) converges.
We argue by contradiction and assume that v;;,_1) oscillates, that is, there exist two
sequences {n;} and {§;} going to 400 as i — 400 such that v;/(,—1) has a local minimum
in n; and a local maximum in &; satisfying n; < & < n;41 and

i inf oy -1 (8) = Tim _oryq-n) (m) = m1 <lTmsupuvy ) (t) = 1 vy q-1)(&)

= M. (93)

On the other hand, we know by the proof of Proposition that Fy(t) > 0 for large ¢
where 6 and Fy are given, respectively, by and . Then Fy(t) # 0 for large t. We
show that Fy(t) < 0 for large t.

If Fy(t) > 0 for large ¢, then, since Fy(t) > 0 for large t, t_l)i+moo Fy(t) €]0, +o0].

Using the fact that

m Fo(ni) = ¢1(m1) < +oo (94)
and
m Fp(&i) = ¢1(M1) < +o0, (95)

where ¢ is given by , we see that tligloo Fy(t) is finite and strictly positive. More
exactly, we have
t—lg—&-moo Fg(t) = ¢1<m1) = ¢1<M1) > 0.

But this contradicts the fact that ¢1(m;) < 0 because by Corollary we have 0 <
lim inf vy /(g_1)(t) = m1 <T. We deduce that Fy(t) < 0 for large ¢.
t——+oo

Since Fj(t) > 0 for large t, one has . Ii? Fp(t) is finite and negative. Therefore,

—+oo

according to and , we have

t—+o0

Set L1 = . ligl Fy(t). Then
— 00

Ly = ¢1(m1) = ¢1(My).

Therefore, there exist v € (my, M1) and t; € (n;,&;) such that vy q—1)(t:) =, ¢1(y) =0
and ¢1(v) # L1.

On the other hand, Ul/(qi(t), hl/(qfl

y(t), wi/(q—1)(t) are bounded for large ¢ and
v/q-1)(t) = 7, we get by (71), lim Fy(t

i) = ¢1(7), hence ¢1(y) = L. But this
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contradicts the fact that ¢y () # L.
Consequently, v;/(4—1) converges. Set tiigloo V)(q—1)(t) =d > 0.

Step 2: The function h;/4_1)(t) converges.

According to @7 it suffices to show that w;/(,—1) converges. Since hy;(,—1)(t) is bounded
for large ¢, we see that w;/(q—1)(t) is also bounded for large ¢. Assume by contradiction
that it oscillates, that is, there exist two sequences {s;} and {k;} going to 400 asi — +o0
such that w;/,—1) has a local minimum in s; and a local maximum in k; satisfying
s < k; < Si+1 and

it () = B et0-0(6) < Bmepey (0 = i (k). (0D
Using equation , the fact that w;/(,—1)(t) is bounded for large ¢, tiigrnoo vg-1)(t) =d
and wy,,)(8i) = wj ;) (ki) = 0, we obtain

lim _6hl/(q71)(8i) = lim —ﬂhl/(q,l)(ki) = ad+ di.

i—~400 i—+00

Since 8 < 0,
lim hl/(q—l)(si) = lim h’l/(q—l)(ki)a

1—+00 1——+00
which gives

Jim wygn(si) = m wyg- (ki).

But this contradicts . Hence, w;/(4—1) converges and therefore h;,,_1) converges.
According to @, . liHl Ul//(q_l)(t) exists and must be 0. Hence,
—+00

: —l
lim hl/(qfl)(t) = ——2:d. (98)

t—+oo qg—1
Step 3: t£+mm v)(q-1)(t) =T
Combining equation , expression of I' given by , Step 1 and Step 2, we get
lim ele/W”)twl’/(q_l)(t) =d([Tr !t —ai7h).

t——+oo

. . _Kl/( 71)1; / . .
Since  wj/(q—1) converges and t—1>15-nooe 9w g—1)(t)  exists,  necessarily

tii?oo e M@ty 1y(t) = 0. Therefore, d(T7"*—di™') = 0. We claim that
d=T.
Assume by contradiction that d = . ligrn U1/(q-1)(t) = 0. First, we prove that
—+o0
wi/(q—1)(t) # 0 for large t.
For any large T" such that w;/q—1)(T") = 0, we have hy;,—1)(T) = 0 and by equation

(85)

e KTy, ) (T) = viyq1)(T) |[—a = (T)].

Since a < 0, vy/(g—1)(t) > 0 and tgglm vlq/_(;_l)(t) = 0, one has w;/(q_l)(T) > 0. Hence,
wi/(q—1)(t) # 0 for any t > T
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As u is positive and unbounded, then w;/;—1)(t) > 0 for large .
On the other hand, we have by

— _ -2
Rl 1) (0) = iy (®) [ =B = Auyq-ne M by O] +

Vg () [—a - Ug/—(;_l)(t)} . (99)

Using the fact that 8 < 0, a < 0, tl}gl eiK”("’”t‘hl/(q71)(t)|p_2 = 0 (by )7
lim Uf/_(;l)(t) =0, vy/(g-1)(t) > 0 and hy/(4_1(t) > 0 for large ¢, we have wy ) (t) >

t—+o0

0 for large t. This implies, since w;/(q—1)(t) > 0 for large ¢, that t_l>1+m wi(g—1)(t) €
oo

]0, +-0c]. But this contradicts the fact that tilgloo wi/(q—1)(t) = 0 by (ﬁ) and .

Consequently, d = T". It follows that

. _ 4
t—lgTw vi/g-1)(t) =T and t_13+moo hyjq—1)(t) = q_il]_",
The proof is complete. .

The behavior of unbounded solution is illustrated by the following figure.

0 5 10 15 20
apha = -5, beta=-3; p=39=25 N=T7,1=-101,a=8

Figure 2: Unbounded solution.

To finish this work, we note that if we have the monotonicity of u, then the asymptotic
behavior and is validated by reducing the assumptions of Theorem More
precisely, we have the following result.
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N — l
P > ——. Let u be an
p—1 " q-1

unbounded positive solution of problem (P). If u is an increasing function for large r,

then it satisfies and (@)

Proof. First of all we note that the idea of the proof is similar to that of Theorem 3.3
So, we follow the same steps and we only change the step where we use the monotonicity
of u.

According to the proof of Propostition we choose a suitable 6 to show that Fy(t)
is strictly increasing for large ¢, where Fy is given by . In fact, we choose in

Proposition 3.10 Assume q > p(l + 2p_1) —1 and

_ 2P|l|pD
Kjj(q—1)(q —1) + Ip2r~1

0 > 0. (100)

Note that, since ¢ > p(l + 2p*1> — 1, one has Kj/,—1y(q —1) + Ip2P~1 > 0 and by
expression (100)),

I\ K0 [ 1| \P~* I \*"'or-1ID
2p1D1( |1) + By < |1) < ||1> \l >o.
q— p q— q— q—

According to inequality and using expressions (100) and and the fact that
wi/(q—1)(t) > 0 for large t (because u'(r) > 0 for large ), we deduce that

p—2
Fé(t) > ee—Kz/(q—l)tX(t) +Ull?(q71)(t) |:—5+2p_1D16_K”(th ‘Ul//(qfl)‘ :| +

p—1 _
( ‘l| ) 2P 1|Z|D6*Kl/(q—1)tvp

- - T (101)

Using (84)), the fact that X (¢) > 0, vi/q—1)(t) > 0, 0 > 0 and § < 0, we deduce from
estimate (101) that Fy(¢) > 0 for large t. We complete the proof in the same way as that
of Theorem [3.3] O

4 Conclusion

We consider equation as a natural generalization of the pure Laplacian case (p = 2)
already studied by Filippas and Tertikas in [8]. Its appears in studying the self-similar
solution of the parabolic equation . This equation admits a family of radial self-similar
solutions defined in the form

v(x,t) =t~ %u(t™? |z]),
where u is the solution of equation with

g+1-—p
plg—1)+1Up—2)

o I+p 8=
plg—1)+1Up—2)

There is an extensive literature on equation in the case [ = 0. The study of equation
in this case is a reasonable first step towards the understanding of the behavior of
blowing up solutions of .



54 A. BOUZELMATE AND A. GMIRA

Taking the case | < 0, we have proven in [7] the existence of an entire solution u of

l
. In this paper we have proven that if ¢ <p—1or ¢ > p—1 and % + %
q -D
l N —
or % = +—|1—p > p, this solution is unbounded. The study of its asymptotic
q -Pp

behavior depends strongly on the study of the following nonlinear dynamical system by
using the logarithmic change , V1 (g—1)(t) = /@ Duy(r),

e I
Vista-n)(®) = Jryta-n) TP () + S o6 (),

Wi g1y () = = A g-1ywiyg-1)(t) — aefU @ gy (t) — BeRt D hy 1) (t) -
eBi/q-1)td (t)
1/(a-»)H):

It is shown that under some assumptions, the solution (v;;(q—1),wi/(q—1)) of the above

1 p—1
system tends to the equilibrium point (I‘, <1F> >7 where T is given by 1'
q-—

This result can be translated in terms of v and u’ by

u(r) ~ Tpt/ab

+oo
and

1 p—1

|u’|p_2u’(r) ~ T p— U/ @=D+D)(p—1)
+oo \qg—1
l N —
The more complicated case % = +—|1—p < P has not been completely inves-
q -Pp

tigated.
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