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Abstract: Selecting the best of a finite set of alternatives is a very important area
of research. In this paper, we discuss the stopping rules of the procedure of selecting
the optimum subset out of a very large alternative dynamic system. A combined
procedure with two stages is studied. The first stage employs the ordinal optimization
to select a subset that overlaps with the set of actual best k% designs with high
probability. After that, the optimal computing budget allocation is used in the second
stage to select the best m designs from the selected subset. The efficiency of selection
procedures with two different stopping rules is studied by implementing them on two
test problems to see the efficiency of the procedure in the context of the most effective
stopping rule. The first problem is a generic example and the second one is a buffer
allocation problem.

Keywords: large scale problems; simulation optimization; ordinal optimization;
stopping rules; optimal computing budget allocation.

1 Introduction

Statistical selection procedures are designed to answer the question “which treatment
can be considered the best?”, where the best refers to the design that has the maximum
or minimum expected performance measure. Different sampling assumptions, approxi-
mations, parameters and stopping rules were combined to define a procedure. Due to
the increasing demands that are being placed upon simulation optimization algorithms
together with having many differences between the statistical selection procedures, it is
getting important to find out which of these procedures is the most convenient one to

∗ Corresponding author: mailto:mh_momani@hu.edu.jo

c© 2021 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 13

mailto:mh_momani@hu.edu.jo
http://e-ndst.kiev.ua


14 M.H. ALMOMANI, M.H. ALREFAEI AND M.H. ALMOMANI

use. However, evaluating selection procedures can be done in several ways, including the
theoretical, empirical, and practical perspectives.

Simulation is often used by managers to help make a decision by exploring different
options. Creating different physical models and conducting experiments on them in order
to choose the best model usually cost a lot. Simulation is a relatively cheap alternative
for collecting information, since it provides some estimates about the performance of
a system that does not exist physically. The experiments are conducted as statistical
experiments; the number of times the simulation runs is determined, the experiments are
performed, and the output data are analyzed. A stopping rule that decides when the
experiment ends -i. e., how many replicates of the simulation are made - must be chosen
by the manager. This paper studies how different stopping rules affect the simulation
output analysis.

Selection procedures used simulation to estimate the performance measure. Since the
simulation methods are used to indicate the performance measure for each alternative, an
incorrect selection is possible. Thus, some measures are needed to determine the selection
quality. Two measures of selection quality exist; the first one is the Probability of Correct
Selection (P (CS)) and the second measure is the Expected Opportunity Cost (E(OC)) of
a potentially incorrect selection, see He et al. [1]. Traditional selection procedures identify
the best system with high probability of correct selection, by maximizing the P (CS).
However, the E(OC) is applied in business, engineering and many other applications.
This led recently to a new selection procedure that reduces the cost of a potentially
incorrect selection.

The measures of selection quality can be used to decide when to stop the sampling
process. In particular, Brank et al. [2] proposed the following stopping rules:

1. Sequential (S): Repeat sampling while
∑n
i=1 Ti < T , for some specified total budget

T and Ti is the number of samples allocated to design i, where i = 1, 2, . . . , n.

2. Expected opportunity cost (EOC): Repeat sampling while E(OC) > ε, for a
specified expected opportunity cost target ε > 0.

3. Probability of good selection (P (GS)δ∗): Repeat sampling while P (GS)δ∗ < 1 −
ϕ∗, for a specified probability target 1 − ϕ∗ ∈ [1/n, 1) and given δ∗ ≥ 0. In
the Indifference Zone (IZ) procedure, see Bechhofer et al. [3], δ∗ is the difference
between the favorable design and the best design and is called the indifference zone.
It represents the smallest difference that one wants to achieve.

In many practical problems, selecting a set of m best solutions out of n solutions is
more convenient than selecting only one solution. This is done based on the simulation
output from each design. In case of having a small size of the feasible solution set, the
best design or a subset of the best designs can be selected using Ranking and Selection
procedures, see Bechhofer et al. [3], Law and Kelton [4], and Kim and Nelson [5], [6].
Ranking and Selection procedures for large alternatives require a very big computational
time. Thus, such procedures might not be feasible for large scale problems. For com-
prehensive reviews of the Ranking and Selection procedures, see Gibbons et al. [7] and
Gupta and Panchapakesan [8].

The Ordinal Optimization (OO) that was proposed by Ho et al. [9] relaxes the ob-
jective to finding good enough designs, rather than estimating the performance of the
designs accurately. In fact, the OO procedure seeks to isolate a subset of solutions with
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high goodness probability. After that, the optimal solution(s) can be located from the iso-
lated set by using any simulation optimization procedure. Previously, many procedures
have been proposed to select a good design (designs) to solve this selection problem, see
for example Alrefaei and Almomani [10], Almomani and Alrefaei [11], Almomani and
Abdul Rahman [12], Al-Salem et al. [13], Almomani et al. [14], Almomani et al. [15],
Alrefaei et al. [16].

Consider the problem of distributing an available budget computation in simulating
the different solutions. Instead of distributing this budget evenly on different alterna-
tives, the available budget can be distributed in a way that maximizes the probability
of correct selecting the good solutions.Therefore, the idea of the Optimal Computing
Budget Allocation OCBAm has been proposed by Chen et al. [17] for selecting the best
m designs.

Recently, a sequential selection procedure was considered by Almomani and Alrefaei
[18] for selecting a good subset of solutions from a large size problem. The procedure
combines the OCBAm and the OO procedures. In the first stage, an isolation of a subset
of good enough designs with high probability is made by the OO procedure. This reduces
the feasible solution set size and makes it appropriate to apply the OCBAm procedure.
In the second stage, a maximization problem, that seeks to maximize the probability of
selecting all best m designs correctly from the subset found in the first stage, is formulated
using the OCBAm. A constraint on the total number of available simulation replications
is considered for this maximization problem. The procedure starts by simulating each
alternative in the set and considers by initial simulation replications of size t0. After that,
a fixed increment of replications ∆ is added and distributed among all solutions in the
set. The process is repeated until all available computations are consumed.

In this paper, the effect of the stopping rules is studied; we study two stopping
rules and implement them in our proposed algorithm; these are the sequential S and
the expected opportunity cost EOC. However, the third stopping rule that uses the
probability of good selection P (GS)δ∗ is not applicable in the proposed algorithm. These
stopping rules are tested and compared by different examples using different measures
to study their effect on the final solution of the selection procedure. These rules give
the chance to stop the procedure earlier whenever the evidence for correct selection is
high enough, and allow for additional sampling when it is not, which gives a kind of
flexibility. Furthermore, we apply a numerical illustration for this approach to display
the advantages and the disadvantages for each stopping rule, and to determine the most
effective stopping rule that works better with this selection procedure.

The rest of this paper is organized as follows. In Section 2, we provide the back-
ground of the problem statement, OO procedure, and OCBAm procedure. In Section 3,
the sequential selection procedure is presented with two different stopping rules. The per-
formance of the selection approach under these stopping rules is illustrated with a series
of numerical examples in Section 4. Finally, Section 5 includes concluding remarks.

2 Background

2.1 Problem statement

Consider the following simulation optimization problem

min
θ∈Θ

Y (θ), (1)
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where Θ is an arbitrary, large and finite feasible solution. Let Y (θ) = E[L(θ,X)] be the
expected performance measure in a specific complex stochastic design, where θ represents
the system parameters as a vector, X represents the random effects on the system and
L is a deterministic function of θ and X.

Simulation is used to infer the set of the best m designs, which are the designs
with the m smallest means out of the n designs we have in the feasible solution set.
Let Yij (observation) represent the jth sample of Y (i) for the design i. We assume
that Yij are independent and identically distributed (i.i.d.) normally distributed with
unknown means Yi = E(Yij) and variances σ2

i = V ar(Yij), i.e. Yi1, Yi2, . . . , YiTi are
i.i.d. N(Yi, σ

2
i ). There is no a problem with the normality assumption here since it

holds for sure. This can be shown using the Central Limit Theorem, regarding that
simulation outputs are acquired through an average performance or from batch means.
In practice, we estimate the variance σ2

i using the sample variance s2
i for Yij because

it is unknown. Our aim is to select a set, Sm, containing the best m designs. The
word “best”, in a minimization problem, refers to the one with the smallest sample
mean. Define Y [r] to be the r-th smallest (statistic order) of {Y 1, Y 2, . . . , Y n}, i.e.,

Y [1] ≤ Y [2] ≤ . . . ≤ Y [n], where Y i = 1
Ti

∑Ti
i=1 Yij is the sample mean for the design i.

After that, let Sm = {[1], [2], . . . , [m]}, which gives the correct selection that contains all
of the m designs with smallest means, i.e., CSm = {maxi∈Sm Y i ≤ mini/∈Sm Y i}.

2.2 Ordinal optimization

For large scale selection problems, the Ordinal Optimization (OO) procedure was pro-
posed by Ho et al. [9]. Due to the high cost of accurate estimating the design performance
values in the optimization process, it would be more practical to select a subset of the
feasible set containing some of the best designs with high probability. This means that
ordinal optimization is first used to isolate a subset of good enough designs, then cardinal
optimization is applied on this isolated set. The main objective is to reduce the required
simulation time for the discrete event simulation. A review of the OO procedure can be
found in Ho et al. [19], Horng and Lin [20] and Ma et al. [21].

2.3 The selection procedure

Minimizing the total computational time for different designs in the simulation process
is important to make the OO procedure more effective. Therefore, it is necessary to
allocate the simulation samples cleverly, where a greater number of samples is applied to
the designs that are more effective in identifying the best design. In this case, noncritical
designs with smaller effect on discovering the best designs are not given much simulation
samples. Chen et al. [22] have proposed the Optimal Computing Budget Allocation
(OCBA) procedure which focuses on selecting the best design. On the other hand,
an efficient allocation procedure, (OCBAm), was also proposed by Chen et al. [17] for
selecting the top m designs.

The problem is formulated by Chen et al. [17] so as to maximize the probability of
selecting the best m designs P (CSm) correctly, subject to a constraint on the available
number of samples. In mathematical notation, the problem can be written as
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max
T1,...,Tn

P (CSm)

s.t.

n∑
i=1

Ti = T,
(2)

where T is the number of available simulation samples, and for the design i we set Ti
simulation samples. n is the total number of designs, m is the size of the optimal subset,
Sm, that contains the best designs. The goal is to allocate the simulation samples we
have in a way that maximizes the probability of the correct selection, P (CSm), given
the total number of samples as

∑n
i=1 Ti. By this formulation, the computational cost

of each sample is implicitly assumed to be constant across designs. Chen and Lee [23]
suggested approximating P (CSm) by a lower bound of it, APCSm, which determines an
asymptotic approximation for the samples Ti, i = 1, . . . , n that maximize APCSm. The
following theorem of Chen and Lee [23] gives the estimates of these T ′is.

Theorem 2.1 Given a total number of simulation samples T to be distributed to
n competing designs whose performance is represented by random variables with means
Y1, Y2, . . . , Yn, and finite variances σ2

1 , σ
2
2 , . . . , σ

2
n, respectively. The Approximate Prob-

ability of Correct Selection for m best (APCSm) as T −→ ∞ can be asymptotically

maximized when Ti
Tj

=
(
σi/δi
σj/δj

)2

; for any i, j ∈ {1, 2, . . . , n} and i 6= j, where δi = Ȳi − c,
for some constant c.

3 The Selection Procedure with Stopping Rules

We consider the sequential selection procedure that consists of two stages, see Almomani
and Alrefaei [18]. In the first stage, out of the search space, a subset G is selected
randomly using the OO procedure, such that G overlaps the set containing the actual
best k% designs with high probability. After that, in the second stage, the best m designs
are identified from the subset G using the OCBAm procedure.

In this section, we present the sequential selection procedure for selecting the optimal
subset, then we discuss the different stopping rules used to stop the procedure. These
are the sequential, the expected opportunity cost and the probability of good selection.

3.1 A selection procedure for selecting the best m designs

The run length of a simulation experiment is often determined using sequential stopping
rules. These rules can be used within confidence interval procedures for simulation output
analysis. In the sequential stopping rule if the total number of samples is exceeded (i.e.,
if
∑g
i=1 T

l
i ≥ T ), then the algorithm stops. In fact, most traditional selection procedures

use this stopping rule. Since the target is selecting the best design with minimum elapsed
time, we can control this by increasing or decreasing the total budget T .

We first present the sequential algorithm proceedure and then we discuss the stopping
rules used to stop the algorithm.

Setup: Determine the precision level p0 and let |G| = g, where G is defined as
the required subset from Θ, that satisfies P (G contains at least m of the best
k% designs) ≥ p0. Determine the number of initial simulation samples t0 ≥ 5.
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Determine the total computing budget T , and the value of m (best top m). Let
l = 0 and let T l1 = T l2 = . . . = T lg = t0, where l is the iteration number.

Select a subset G of g alternatives randomly from Θ. Take random samples of t0
observations Yij (1 ≤ j ≤ t0) for each design i in G, where i = 1, 2, . . . , g.

Initialization: For each i ∈ G, find an estimate of the sample mean and the sample

variance as Ȳi = 1
T li

∑T li
j=1 Yij and s2

i = 1
T li−1

∑T li
j=1(Yij − Ȳi)2.

Order the sample means Ȳ[1] ≥ Ȳ[2] ≥ . . . ≥ Ȳ[g]. Then select the set of top m
designs, Sm.

Stopping Rule: Test the stopping rule, if it is satisfied, then stop, return Sm as the
required subset. Otherwise, select randomly a subset Sz of g−m alternatives from
Θ−Sm. Take random samples of t0 observations Yij (1 ≤ j ≤ t0) for each design i
in Sz. Compute Ȳi and si as in the Initialization step above. Let G = Sm

⋃
Sz.

Simulation Budget Allocation: Increase the computing budget by ∆ and compute

the new budget allocation, T l+1
1 , T l+1

2 , . . . , T l+1
g using

T l+1
1(
s1
δ1

)2 =
T l+1
2(
s2
δ2

)2 = · · · =

T l+1
g(
sg
δg

)2 , where δi = Ȳi − c and c =
σ̂im+1

Ȳim+σ̂im Ȳim+1

σ̂im+σ̂im+1
with σ̂i = si/

√
T li , for all

i = 1, 2, . . . , g, see Chen and Lee [23].

Perform additional max{0, T l+1
i −T li } simulations samples for each designs i, where

i = 1, 2, . . . , g, let l←− l + 1. Go to Initialization.

We consider two Stopping Rules for the proposed algorithm.

3.2 The sequential cost stopping rule

In this rule, a total number of samples T is predetermined. If the number of samples
used in the algorithm reaches T , stop the algorithm, otherwise, continue. Therefore, the
stopping rule becomes:

Stopping Rule: If
∑g
i=1 T

l
i ≤ T , for a specified total number of samples T, then stop.

Otherwise, proceed.

3.3 The expected opportunity cost stopping rule

This rule uses the expected opportunity cost EOC to stop the algorithm. In fact, the
EOC stopping rule is recommended when the goal is to select the best design with
the minimum E(OC), especially, in business applications. Therefore, the stopping rule
becomes:

Stopping Rule: If E(OC) ≤ ε, for a specified expected opportunity cost significant
ε > 0, then stop. Otherwise, proceed.

As we stated before, there is another stopping rule that was used in the literature but
it is not applicable in our algorithm. This stopping rule is called the probability of good
selection stopping rule. A selected design within δ∗ from the best design is called the
“good” design. However, since the objective in this paper is to select good enough designs
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from the actual best designs, but we are not concerned with the difference between the
selected design and the actual best design(s), this stopping rule is not applicable. For
more details about these three stopping rules, please, refer to Brank et al. [2] who provide
an illustration about the difference between these three stopping rules through KN++
procedure, see also Goldsman et al. [24].

4 Numerical Examples

In this section, we present two numerical examples: a generic monotone increasing mean
example and a queuing model example. In both examples, the algorithm is applied under
different experiment settings and different stopping rules.

4.1 Example 1

Consider n different designs, each one is normally distributed N(µi, σ
2) with mean µi

and variance σ2 for i = 1, 2, . . . , n. Such problem is called the Monotone Increasing Mean
(MIM), which aims to find the best m designs with the minimum mean. If we let Θ be
the feasible solution set, then Θ = {θ1, θ2, . . . , θn} and f(θi) represents the index of θi in
the feasible region, the optimization problem is

min
i=1,...,n

f(θi). (3)

The proposed algorithm is applied on this example where n = 1, 000, using the
proposed selection procedure by implementing the first two stopping rules. It is assumed

that for each i ∈ Θ, µi = 10 + (i−1)
10 and variance σ2

i = 1. Let θ[1], θ[2], . . . , θ[n] be the
order of alternatives and we seek to select a subset of m = 5 solutions from the best 10%
designs that have minimum means. If the selected design is in {θ[1], θ[2], . . . , θ[100]}, then
it is considered as a correct selection. The selection algorithm is applied using g = 100
solutions in G in order to study the effect of the simulation parameters, such as t0 and ∆,
on the performance of the algorithm. Furthermore, to achieve the normality assumption
we use multiple replications method, where the number of multiple replications for each
alternative equals M .

In the first experiment, we implement the proposed algorithm using the first stopping
rule- the sequential S stopping rule. Here n = 1, 000, g = 100, k% = 10%, ∆ = 40,
t0 = 10 and the total budget T = 10, 000 (these settings are chosen arbitrary). In
the second experiment, we implement the algorithm using the second stopping rule-
the expected opportunity cost stopping rule with the same parameters setting as in
the first experiment. The total budget condition is removed and replaced with the
expected opportunity cost condition such that E(OC) ≤ 0.05 (i.e., the significance level
ε = 0.05). Table 1 contains the average performance of the algorithm over 100 replications
for selecting 5 of the best 10% designs, for the first and the second experiment. In
Table 1, T represents the average total sample size used in the algorithm

∑g
i=1 Ti over

the 100 replications. P represents the average probability of correctly selecting the
best m designs; P (CSm) over the 100 replications, E represents the average expected
opportunity cost for selecting the best m designs, E(OCm) over the 100 replications.

From Table 1, we note that the performance of the algorithm under the two stopping
rules, the sequential S and the expected opportunity cost EOC, are almost the same
with a preference of EOC on S when the measure is the expected opportunity cost used.
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Table 1: The performance of the proposed procedure under different stopping rules for n =
1000, g = 100,∆ = 40, t0 = 10, k% = 10% over 100 replications.

Sequential Stopping Rule EOC Stopping Rule

T 6913 6995
P 93% 93%
E 0.010549 0.000523

To see the effect of the two stopping rules over different values of simulation budget
on the probability of correct selection P (CSm), the results are depicted in Figure 1. It is
clear from Figure 1 that the proposed algorithm with these two stopping rules produces
a high P (CSm) quickly. Moreover, the performance of the two stopping rules is almost
the same.

Figure 1: Comparison of the P (CSm) of S and EOC stopping rules over T budget for (MIM).

To study the effect of the two stopping rules on the proposed algorithm from the
prospective of E(OCm), the results are depicted in Figure 2. Figure 2 shows the E(OCm)
for the proposed algorithm using these two stopping rules over different values of simula-
tion budget. From Figure 2, it is clear that the second stopping rule that uses the EOC
gives better performance over the sequential procedure and that E(OCm) becomes close
to 0 using this stopping rule under reasonable number of samples.

To enhance the performance of the algorithm, we increase the number of samples
used in the multiple replication simulation method in order to get better estimates of
the sample mean. Figure 3 shows the performance of the algorithm on the E(OCm)
performance measure using the two stopping rules. Here M represents the samples used
for each alternative. Obviously, it shows that the increase in the number of multiple
replications M decreases the E(OCm) in both of the stopping rules. Moreover, the
algorithm gives better performance when the EOC stopping rule is used. This is because
when we increase the value of M we get better estimate value of the mean, therefore,
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Figure 2: Comparison of the E(OCm) of S and EOC stopping rules over T budget for (MIM).

the difference between the estimated mean and the actual mean will be very small. In
particular, when M is increased, then the E(OCm) approaches zero.

Figure 3: Comparison of the E(OCm) of S and EOC stopping rules over M replications for
(MIM).

4.2 The buffer allocation problem (BAP)

We consider the Buffer Allocation Problem (BAP ). The BAP consists of q+ 1 machines
and q intermediate buffers in between. The question is how to distribute the available Q
buffer slots over the q buffers in a way that meets a specific purpose.
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Each station is modeled as a single server queuing model with q + 1 machines
M0,M1, . . . ,Mq and q intermediate buffers B1, B2, . . . , Bq in a production line as shown
in Figure 4. Suppose that there are limits neither on the jobs in front of machine M0,
nor on the space for completed jobs after machine Mq. The service time at each machine
is assumed to be independent and exponentially distributed random variable with rate
µi, i = 1, 2, . . . , q. After the service is finished in machine Mi, the job tries to enter the
queue of machine M(i+1). This cannot be done if the queue is full, and this prevents
machine Mi from receiving new jobs to serve until the current job leaves it. Our goal
is to maximize the production rate (throughput) by allocating the available spaces opti-
mally on the intermediate buffers. Let Θ be the solution set, then Θ contains

(
Q+q−1
Q

)
different solutions, see Almomani et al. [25], Papadopoulos et al. [26], Yuzukirmizia and
Smith [27] and Alrefaei and Andradóttir [28].

Figure 4: A production line with q+ 1 machines, q buffers, no limits either on the jobs in front
of the machine M0, or on the space for completed jobs after the machine Mq

The proposed algorithm is applied here on the specific type of BAP , with two stop-
ping rules under some assumptions. In fact, there are different classifications for BAP
problems. The first one is according to the length of the production line, which was
presented by Papadopoulos et al. [26]. A production line is considered as “short” if the
number of the machines is up to 6 with no more than 20 buffer spaces. Otherwise, the
line is “large”. Another point of view defines the BAP according to whether it has a
balanced line, with equal mean service time at each machine, or an unbalanced one.
Moreover, production lines can be seen as reliable (no machine fails) or unreliable. For
more information about these classifications, see Almomani et al. [25].

Suppose that there are Q = 15 slots to be allocated over q = 5 buffers. Thus, we have
6 workstation and Θ contains 3,876 different designs (n = 3, 876). In addition, assume
that µ0 = µ1 = µ2 = µ3 = 5 and µ4 = µ5 = 10, which means that we assumed an
unbalanced production line in this example. Furthermore, let the size of the set G be
g = 80, the number of initial simulation samples t0 = 20, the total computing budget
T = 100, 000, and the increment in simulation samples ∆ = 50. Suppose that our
objective is to select the two design from the best 5% designs of Θ. This means that the
correct selection here is to select the 2 designs that belong to the set {θ[1], θ[2], . . . , θ[193]},
where θ[i], i = 1, 2, . . . , 193 represents the set of the actual top 5% designs with the
maximum throughput in the set Θ.

We apply the proposed algorithm using the two stopping rules, the sequential S
and the expected opportunity cost EOC rules. The experiment is repeated for 100
replications and the results are summarized in Table 2. In Table 2, T represents the
average total sample size used in the algorithm

∑g
i=1 Ti over the 100 replications. P

represents the average probability of correct selecting the best m designs; P (CSm) over
the 100 replications, E represents the average expected opportunity cost for selecting
the best m designs, E(OCm) over the 100 replications. Clearly, the proposed algorithm
selected the best buffer profile with high P (CSm) and small E(OCm). At the same time,
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there is a relatively small number of simulation samples needed.

Table 2: The performance of the proposed procedure under different stopping rules for n =
3876, g = 80,∆ = 50, t0 = 20, k% = 5% over 100 replications.

The S Stopping Rule The EOC Stopping Rule

T 241334 245921
P 85% 89%
E 0.002032 0.0000876

Figure 5 shows the average P (CSm) for selecting the 2 designs of the best 5% designs,
with the two stopping rules, the sequential S and the expected opportunity cost EOC
over different values of simulation budget. It is clear that the proposed algorithm selects
the best designs with hight P (CSm) for the two stopping rules S and EOC and the two
stopping rules give almost the same results.

Figure 5: Comparison of the P (CSm) of S and EOC stopping rules over T budget for (BAP ).

Figure 6 gives the E(OCm) performance measure for the proposed algorithm with
two stopping rules, S and EOC, over different values of simulation budget. Clearly,
the algorithm produces a very small E(OCm) under the two stopping rules with a little
preferance of the EOC stopping rule over the sequential stopping rule. Also, with high
value of total budget, the algorithm gives a very small value of E(OCm) which is close
to 0, especially when the expected opportunity cost EOC stopping rule is used.

To enhance the performance of the algorithm, we increase the number of samples
used in the multiple replication simulation method in order to get better estimates of the
sample mean. Figure 7 gives the value of the E(OCm) against the number of samples M
in the multiple replications method, for the two stopping rules S and EOC. Obviously, it
shows that the increase in M gives a smaller value of E(OCm). It is clear again that the
second stopping rule that uses EOC gives a slight better performance over the sequential
stopping rule.
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Figure 6: Comparison of the E(OCm) of S and EOC stopping rules over T budget for (BAP ).

Figure 7: Comparison of the E(OCm) of S and EOC stopping rules over M replications for
(BAP ).

From MIM and BAP examples, it is clear that if objective is to select the best
designs with high P (CSm) and minimum elapsed time, then the algorithm with the two
stopping rules gives almost the same results. On the other hand, if the objective is to
select the best design with minimum E(OCm), then the algorithm behaves better when
the expected opportunity cost EOC is used as a stopping rule. Moreover, increasing the
samples in the multiple replications M increases the performance of the algorithm under
the second stopping rule. However, it is clear that when the value of the significant level
ε is decreased, then the E(OCm) will decrease, but we get the optimal value for the
E(OCm) which is 0 when the ε = 0. In this case the mean of the selected design will be
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equal to the mean of the actual best design. Nevertheless, we cannot take too small value
of ε since this will require that the number of multiple replications M to be increased,
and, of course, this leads to a huge computational time.

5 Conclusion

In this paper, we have discussed the effect of two stopping rules on the performance of a
sequential selection procedure that is used to select a set of good enough simulated designs
when the number of alternatives is very large. These two rules include the sequential S
stopping rule and the expected opportunity cost EOC stopping rule. We have applied
these rules on two different examples.

The results obtained from the numerical applications of the procedure using the two
stopping rules indicate that to improve the efficiency of the approach using the EOC
stopping rule, we need to increase the number of multiple replications M . We conclude
that if the objective of the experiment is to select the best designs with high P (CSm),
then both stopping rules give almost the same performance. However, if the objective
is to select the best designs with minimum E(OCm), then the second stopping rule that
uses EOC gives better performance.
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