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On Approximate Controllability of Impulsive
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Abstract: In this paper we apply a fixed-point theorem to study the existence and
uniqueness of a mild solution and the approximate controllability of a fractional order
impulsive differential equation with deviated argument in Hilbert spaces. An example
is provided to show the effectiveness of the theory.

Keywords: controllability; differential equations with impulses; deviated arguments;
fractional derivatives and integrals; semigroup theory; fixed-point theorems.

Mathematics Subject Classification (2010): 93B05, 34A37, 34K30, 26A33,
47H10.

1 Introduction

Differential equations with deviated arguments have received considerable attention in
recent years due to their ability to generalize differential equations that show an un-
known quantity and their derivatives in different values of their arguments. It is an ideal
model for the study of automatic control theory, self-oscillating systems theory, long-term
planning problems in economics, etc. For more details about differential equations with
deviated arguments, we refer to the papers [8, 11,15] and the references therein.

Interestingly, in this paper, we will enhance the study of differential equations with
deviated arguments by fractional calculus, which, in turn, is currently attracting consid-
erable interest from researchers, due to its wide range of applications in various scientific
and technological fields such as thermal engineering, electromagnetism, control, robotics,

∗ Corresponding author: mailto:djam_seba@yahoo.fr
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viscoelasticity, edge detection, signal processing, and many other physical and biologi-
cal processes. Fractional differential equations have also been applied in the modeling of
many physical and engineering problems. For more details, the reader is kindly requested
to go through [12,14,17] and the references therein.

On the other hand, impulsive differential equations have become the target of several
authors, mainly because of their ability to model processes that undergo sudden changes
of their states. They appear in nano-electronics, population dynamics, heat propagation,
electromagnetic wave radiation, control theory and pharmacology. See [1, 3, 4, 10, 18–20]
and the references therein.

Controllability of linear and nonlinear systems for various type of differential equa-
tions and inclusions was studied, on a large scale, using fixed point and semigroup theo-
ries, for more details the reader is kindly requested to go through [2, 5, 7, 9, 13] in order
to know more details about these results. However, the controllability of fractional im-
pulsive systems with deviated arguments requires a lot of attention since it has not yet
received a careful study, and many aspects of this field have not been discovered yet.

In this paper, we consider the approximate controllability of fractional impulsive
differential equations with deviated argument of the form

CDαx(t) = Ax(t) +Bu(t) + f(t, x(t), x(ϕ(x(t), t))), t ∈ [0, b], 0 < α < 1,

∆x(tk) = Ik(x(tk)), k = 1,m, 0 < t1 < t2 < · · · < tm < b,

x(0) = x0,

(1)

where the state function ϕ(·) takes values in a Hilbert space E. CDα is the Caputo
fractional derivative of order α. The control function u(·) is given in L2([0, b], U), where
U is a Hilbert space. B is a bounded linear operator from U into E. The linear operator
A generates a strongly continuous semigroup (T (t))t≥0 on E. f and ϕ are suitably
defined functions satisfying certain conditions to be specified in Section 3. Ik ∈ C(E,E),
k = 1, 2, · · · ,m, and ∆x(tk) = x(t+k )− x(t−k ) = x(t+k )− x(tk).

This paper is organized as follows. In Section 2, we introduce some notations and
necessary preliminaries. In Section 3 we prove the existence of mild solutions for control
systems and we establish its approximate controllability. In Section 4, an example is
given to illustrate our results.

2 Preliminaries

Let J = [0, b], 0 < t1 < t2 < · · · < tm < b, and J
′

= [0, b]\{t1, t2, · · · , tm} ⊂ J . (E, ‖ · ‖)
is a Hilbert space and C(J,E) is the Hilbert space of all E-valued continuous functions
from J into E,

PC(J,E)=
{
x : [0, b]→ E; x ∈ C(J

′
, E), x(t+k ) and x(t−k ) exist, x(t−k ) = x(tk), 1 ≤ k ≤ m

}
,

PC(J,E) is a Banach space with norm ‖x‖ = sup
t∈J
‖x(t)‖,

D = CL(J,E) =
{
x ∈ PC(J,E) : ‖x(t)− x(s)‖ ≤ L|t− s|, ∀t, s ∈ J

′
}
, (2)

where L is a positive constant. It is clear that D is a Banach space with the sup-norm
‖x‖ = sup

t∈J
‖x(t)‖.
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Definition 2.1 [17] The fractional (arbitrary) order integral of the function f ∈
L1([a, b],R+) of order α ∈ R+ is defined by

Iαa f(t) =
1

Γ(α)

t∫
a

f(s)

(t− s)1−α
ds,

where Γ is the Gamma function, when a = 0, we write Iαa f(t) = Iαf(t).

Definition 2.2 [17] For a function f given on the interval [a, b], the Riemann-
Liouville fractional-order derivative of order α of f is defined by

(R−L)Dα
a f(t) =

1

Γ(n− α)

(
d

dt

)n t∫
a

(t− s)n−α−1f(s) ds,

here n = [α] + 1 and [α] denotes the integer part of α, when a = 0, Dα
a f(t) = Dαf(t).

Definition 2.3 [17] For a function f given on the interval [a, b], the Caputo
fractional-order derivative of order α of f is defined by

CDα
a f(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds,

where n = [α] + 1.

Definition 2.4 [16] A one parameter family (T (t))t≥0 of bounded linear operators
from E into E is a semi group of bounded linear operators on E if

(1) T (0) = I ( I is the identity operator in E ).

(2) T (t+ s) = T (t)T (s), for every t ≥ 0, s ≥ 0 (the semigroup property).

A semigroup of bounded linear operators T (t) is uniformly continuous if

lim
t→0
‖T (t)− I‖ = 0.

The linear operator A defined by

D(A) =

{
x ∈ E : lim

t→0

T (t)x− x
t

exists

}
and

Ax = lim
t→0

T (t)x− x
t

=
d+T (t)x

dt

∣∣∣∣
t=0

, for x ∈ D(A),

is the infinitesimal generator of the semigroup T (t), D(A) is the domain of A.

Definition 2.5 A mild solution of problem (1) is defined as a function x(.) ∈ D that
satisfies:

(i) x(0) = x0.

(ii) ∆x(tk) = Ik(x(tk)), k = 1, 2, · · · ,m.
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(iii) The restriction of x(t) to the interval J ′ is continuous and the following integral
equation is satisfied:

x(t) = T (t)x0 +
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)Bux(s)ds

+
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)Bux(s)ds

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds

+
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds

+
∑

0<tk<t

T (t− tk)Ik(x(tk)), 0 ≤ s < t < b, and t 6= tk. (3)

Let xb(x0;u) be the state value of (1) at terminal time b corresponding to the control u
and the initial value x0. Introduce the set

R(b;x0) = {xb(x0;u) : u ∈ L2(J, U)}

which is called the reachable set of system (1) at terminal time b, its closure in E is
denoted by R(b, x0).

Definition 2.6 The system (1) is said to be approximately controllable on J if
R(b;x0) = E, that is, given an arbitrary ε > 0, it is possible to steer from the point
x0 to within a distance ε from all point in the state space E at time b.

Consider the linear fractional differential system{
CDαx(t) = Ax(t) +Bu(t), t ∈ J = [0, b], 0 < α < 1,
x(0) = x0,

(4)

is approximately controllable. It is convenient at this position to introduce the control-
lability operator associated with (4), thus

Γb0x =
1

Γ(α)

b∫
0

(b− s)α−1T (b− s)BB∗T ∗(b− s)xds, for x ∈ E.

For λ > 0, we consider the relevant operator R(λ; Γb0) = (λI + Γb0)−1. It is convenient
at this point to define the operators

Γbtk =
1

Γ(α)

b∫
tk

(b− s)α−1T (b− s)BB∗T ∗(b− s)ds,

Γtktk−1
=

1

Γ(α)

tk∫
tk−1

(tk − s)α−1T (tk − s)BB∗T ∗(tk − s)ds,

R(λ; Γtktk−1
) = (λI + Γtktk−1

)−1, for λ > 0, k = 1, · · · ,m,
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where B∗ denotes the adjoint of B and T ∗(t) is the adjoint of T (t). It is straightforward
that the operator Γb0 is a linear bounded operator.

3 Main Result

This section deals with the existence and uniqueness of mild solutions and approximate
controllability of the problem (1). Before stating and proving the main results, we intro-
duce the following hypotheses:

(H1) A generates a strongly continuous semigroup (T (t))t≥0 in the Hilbert space E (T (t)

is compact for t ≥ 0) and there exists a constant M̂ ≥ 1 such that

‖T (t)‖ ≤ M̂ for every t ≥ 0

has an inverse operator T−1(t) and there exists a positive constant M̂1 such that

‖T−1(t)‖ ≤ M̂1 for every t ≥ 0.

(H2) The nonlinear map f : J × E × E → E satisfies the Lipschitz condition such that
there exist constants M1 = M1(t, x, y, r) > 0 and M2 = M2(t, 0, x, r) > 0, we have
for all xi, yi ∈ Br, i = 1, 2.

‖f(t, x1, y1)− f(t, x2, y2)‖ ≤M1 {‖x1 − x2‖+ ‖y1 − y2‖} for each t ∈ J

and max
t∈J
‖f(t, 0, x(0))‖ = M2.

(H3) ϕ : D × R+ → R+ is globally continuous on E × R+ and satisfies ϕ(·, 0) = 0 and
there exists a constant Lϕ = Lϕ(x, t, r) > 0 such that

|ϕ(x, t)− ϕ(y, s)| ≤ Lϕ {‖x− y‖+ |t− s|}

for every x, y ∈ Br, and t, s ∈ J .

(H4) B is a bounded linear operator from U into E, such that ‖B‖ = M̃ , for a constant

M̃ > 0.

(H5) for each 0 ≤ t < b and t 6= tk, k = 1, · · · ,m the operators λR(λ; Γbtk) → 0 and

λR(λ; Γtktk−1
)→ 0 as λ→ 0+ in the strong operator topology.

(H6) There exist constants d, Lk, `, dk > 0, k = 1,m, such that ‖Ik(·)‖ < dk,
m∑
k=1

dk = d,

‖Ik(x)− Ik(y)‖ ≤ Lk‖x− y‖, for every x, y ∈ E, and
m∑
k=1

Lk = `.

For brevity, let ω1, ω2 be the positive numbers

M̂2

λ
M̃

(
‖ẑb‖+ M̂‖x0‖+

bα

Γ(α+ 1)
M̂(rM1 +M2) +

bα+1

Γ(α+ 1)
M̂M1LLϕ(1 + L)

)
= ω1,

M̂2

mλ
M̂1M̃

(
‖z̃b‖+m

bα

Γ(α+ 1)
M̂(rM1 +M2) +m

bα+1

Γ(α+ 1)
M̂M1LLϕ(1 + L) +mM̂d

)
= ω2,

and put

M̂‖x0‖+
bα

Γ(α+ 1)
M̂M̃(mω2+ω1)+mM̂d+(m+1)

bα

Γ(α+ 1)
M̂
(
rM1+M2+M1LLϕ(1+L)

)
≤ r,

(5)

where r > 0 is a constant.
We denote Br = {x ∈ D; ‖x(t)‖ ≤ r} .
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Theorem 3.1 Suppose (H1)− (H6) and (5) hold, moreover, let

ρ =
bα

Γ(α+ 1)
M̂M1(2 + LLϕ)

( bα

λΓ(α+ 1)
M̂3M̃2 + 1

)
+m

( bα

Γ(α+ 1)
M̂M1(2 + LLϕ) + M̂`

)( bα

λΓ(α+ 1)
M̂3M̂1M̃

2 + 1
)

(6)

be such that ρ ∈ (0, 1). Then the problem (1) is approximate controllable on J .

In this section, it will be shown that the system (1) is approximately controllable if
for all λ > 0, there exists a continuous function x(·) ∈ D such that

x(t) = T (t)x0 +
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)Bux(s)ds

+
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)Bux(s)ds

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds

+
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds

+
∑

0<tk<t

T (t− tk)Ik(x(tk)) = ẑ(t) + z̃(t). (7)

For k = 1, · · · ,m, we put

ẑ(t) = T (t)x0 +
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)Bux(s)ds

+
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds.

z̃(t) =
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)Bux(s)ds

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds

+
∑

0<tk<t

T (t− tk)Ik(x(tk)).

Proof. Transform the problem (1) into a fixed-point problem. For λ > 0, we define
the operators Fλ, Gλ : D → D as (Fλx+Gλx) = x(t), where

Fλx(t) = T (t)x0 +
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)Bu(s)ds

+
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds, for k = 1, · · · ,m. (8)
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Gλx(t) =
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)Bv(s)ds

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds

+
∑

0<tk<t

T (t− tk)Ik(x(tk)), for k = 1, · · · ,m. (9)

We take the controls

u(t) = B∗T ∗(b− t)R(λ,Γbtk)p(x(·)), (10)

v(t) =
1

m
B∗T ∗(tk − t)T−1(b− tk)R(λ,Γtktk−1

)q(x(·)), (11)

where, for k = 1, · · · ,m

p(x(·)) = ẑb − T (b)x0 −
1

Γ(α)

b∫
tk

(b− s)α−1T (b− s)f(s, x(s), x(ϕ(x(s), s)))ds, (12)

q(x(·)) = z̃b −
1

Γ(α)

m∑
k=1

tk∫
tk−1

(tk − s)α−1T (b− s)f(s, x(s), x(ϕ(x(s), s)))ds

−
m∑
k=1

T (b− tk)Ik(x(tk)), (13)

for any λ > 0, we shall show that Fλ+Gλ has a fixed point on D, which is a mild solution
of the system (1). Clearly, (Fλx+Gλx) (b) = xb = ẑb + z̃b.

From (10) and (11), we have

‖u(t)‖ ≤ M̂2

λ
M̃‖p(x(·))‖; ‖v(t)‖ ≤ M̂2

mλ
M̂1M̃‖q(x(·))‖,

using (H1)− (H6) and (2), we get

‖p(x(·))‖ ≤ ‖ẑb‖+‖T (b)‖‖x0‖+
1

Γ(α)

b∫
tk

(b−s)α−1‖T (b− s)‖‖f(s, x(s), x(ϕ(x(s), s)))‖ds

≤ ‖ẑb‖+ M̂‖x0‖+
M̂

Γ(α)

b∫
tk

(b− s)α−1
{
‖f(s, x(s), x(ϕ(x(s), s)))−f(s, 0, x(0))‖

+ ‖f(s, 0, x(0))‖
}
ds

≤‖ẑb‖+M̂‖x0‖+
M̂

Γ(α)
M1

b∫
tk

(b−s)α−1
{
‖x(s)‖

+ ‖x(ϕ(x(s), s))−x(ϕ(x(0), 0))‖
}
ds+

bα

Γ(α+ 1)
M̂M2
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‖p(x(·))‖ ≤ ‖ẑb‖+ M̂‖x0‖+
bα

Γ(α+ 1)
M̂(rM1 +M2)

+
M̂

Γ(α)
M1L

b∫
tk

(b− s)α−1|ϕ(x(s), s)− ϕ(x(0), 0)|ds

≤ ‖ẑb‖+ M̂‖x0‖+
bα

Γ(α+ 1)
M̂(rM1 +M2)

+
M̂

Γ(α)
M1LLϕ

b∫
tk

(b− s)α−1{‖x(s)− x(0)‖+ |s|}ds

≤ ‖ẑb‖+ M̂‖x0‖+
bα

Γ(α+ 1)
M̂(rM1 +M2) +

bα+1

Γ(α+ 1)
M̂M1LLϕ(1 + L),

in the same way for tk < b, k = 1, · · · ,m, we get

‖q(x(·))‖ ≤ ‖z̃b‖+m
bα

Γ(α+ 1)
M̂(rM1 +M2) +m

bα+1

Γ(α+ 1)
M̂M1LLϕ(1 + L) +mM̂d.

Thus there exist positive numbers ω1, ω2 such that

‖u(t)‖ ≤ M̂2

λ
M̃

(
‖ẑb‖+ M̂‖x0‖+

bα

Γ(α+ 1)
M̂(rM1 +M2)

+
bα+1

Γ(α+ 1)
M̂M1LLϕ(1 + L)

)
= ω1,

‖v(t)‖ ≤ M̂2

mλ
M̂1M̃

(
‖z̃b‖+m

bα

Γ(α+ 1)
M̂(rM1 +M2)

+m
bα+1

Γ(α+ 1)
M̂M1LLϕ(1 + L) +mM̂d

)
= ω2.

(14)

The proof will be given in two steps.

Step 1. Fλ +Gλ maps Br into itself.
Let x ∈ Br. By (14), we have for each t ∈ J

‖(Fλx)(t) + (Gλx)(t)‖ ≤ ‖T (t)‖‖x0‖+
1

Γ(α)

m∑
k=1

tk∫
tk−1

(tk − s)α−1‖T (t− s)‖‖B‖‖v(s)‖ds

+
1

Γ(α)

t∫
tk

(t− s)α−1‖T (t− s)‖‖B‖‖u(s)‖ds

+
1

Γ(α)

m∑
k=1

tk∫
tk−1

(tk − s)α−1‖T (t− s)‖‖f(s, x(s), x(ϕ(x(s), s)))‖ds

+
1

Γ(α)

t∫
tk

(t− s)α−1‖T (t− s)‖‖f(s, x(s), x(ϕ(x(s), s)))‖ds

+
m∑
k=1

‖T (t− tk)‖‖Ik(x(tk))‖.
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Using the same method to find ‖p(x(·))‖, ‖q(x(·))‖ and (14), we get

‖(Fλx+Gλx)(t)‖ ≤ M̂‖x0‖+
bα

Γ(α+ 1)
M̂M̃(mω2 + ω1) +mM̂d

+ (m+ 1)
bα

Γ(α+ 1)
M̂
(
rM1 +M2 +M1LLϕ(1 + L)

)
≤ r.

Thus, Fλ +Gλ maps Br into itself.
Step 2. We shall show now that the operator Fλ +Gλ is a contraction mapping.
Let x, y ∈ Br. By (10) and (11), for each t ∈ J , we have

‖Fλ(x)(t)− Fλ(y)(t)‖ ≤ 1

Γ(α)

t∫
tk

(t− s)α−1‖T (t− s)‖‖B‖‖B∗‖‖T ∗(b− t)‖‖R(λ,Γbtk )‖

×

(
1

Γ(α)

b∫
tk

(b− τ)α−1‖T (b− τ)‖

×
{
‖f(τ, y(τ), y(ϕ(y(τ), τ)))− f(τ, x(τ), x(ϕ(x(τ), τ)))‖

}
dτ

)
ds

+
1

Γ(α)

t∫
tk

(t− s)α−1‖T (t− s)‖‖f(s, x(s), x(ϕ(x(s), s)))

− f(s, y(s), y(ϕ(y(s), s)))‖ ds

≤ bα

λΓ(α+ 1)
M̂4M̃2M1

( 1

Γ(α)

b∫
tk

(b− s)α−1
{
‖y(s)− x(s)‖

+ ‖y(ϕ(y(s), s))− x(ϕ(x(s), s))‖
}
ds
)

+
M̂

Γ(α)
M1

t∫
tk

(t− s)α−1
{
‖x(s)− y(s)‖

+ ‖x(ϕ(x(s), s))− y(ϕ(y(s), s))‖
}
ds

≤ bα

λΓ(α+ 1)
M̂4M̃2M1

( 1

Γ(α)

b∫
tk

(b− s)α−1
{
‖y(s)− x(s)‖

+ ‖y(ϕ(y(s), s))− x(ϕ(y(s), s))‖

+ ‖x(ϕ(y(s), s))− x(ϕ(x(s), s))‖
}
ds
)

+
M̂

Γ(α)
M1

t∫
tk

(t− s)α−1
{
‖x(s)− y(s)‖

+ ‖x(ϕ(x(s), s))− y(ϕ(x(s), s))‖

+ ‖y(ϕ(x(s), s))− y(ϕ(y(s), s))‖
}
ds
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‖Fλ(x)(t)− Fλ(y)(t)‖ ≤ bα

λΓ(α+ 1)
M̂4M̃2M1

( 1

Γ(α)

b∫
tk

(b− s)α−1
{
‖y(s)− x(s)‖

+ ‖y(ϕ(y(s), s))− x(ϕ(y(s), s))‖+ L|ϕ(y(s), s)− ϕ(x(s), s)|
}
ds
)

+
M̂

Γ(α)
M1

t∫
tk

(t− s)α−1
{
‖x(s)− y(s)‖

+ ‖x(ϕ(x(s), s))− y(ϕ(x(s), s))‖+ L|ϕ(x(s), s)− ϕ(y(s), s)|
}
ds

≤ bα

λΓ(α+ 1)
M̂4M̃2M1

( 1

Γ(α)

b∫
tk

(b− s)α−1
{
‖y(s)− x(s)‖

+ ‖y(ϕ(y(s), s))− x(ϕ(y(s), s))‖+ LLϕ‖y(s)− x(s)‖
}
ds
)

+
M̂

Γ(α)
M1

t∫
tk

(t− s)α−1
{
‖x(s)− y(s)‖

+ ‖x(ϕ(x(s), s))− y(ϕ(x(s), s))‖+ LLϕ‖x(s)− y(s)‖
}
ds

≤ b2α

λ(Γ(α+ 1))2
M̂4M̃2M1(2 + LLϕ)‖y − x‖

+
bα

Γ(α+ 1)
M̂M1(2 + LLϕ)‖x− y‖

≤ bα

Γ(α+ 1)
M̂M1(2 + LLϕ)

( bα

λΓ(α+ 1)
M̂3M̃2 + 1

)
‖x− y‖.

On the other hand, we have

‖(Gλx)(t)− (Gλy)(t)‖ ≤ 1

mΓ(α)

m∑
k=1

tk∫
tk−1

(tk − s)α−1‖T (t− s)‖‖B‖‖B∗‖‖T ∗(tk − t)‖

× ‖T−1(b− tk)‖‖R(λ,Γ
tk
tk−1

)‖

(
1

Γ(α)

m∑
k=1

tk∫
tk−1

(tk − τ)α−1‖T (b− τ)‖

× ‖f(τ, y(τ), y(ϕ(y(τ), τ)))− f(τ, x(τ), x(ϕ(x(τ), τ)))‖dτ

+
m∑
k=1

‖T (b− tk)‖‖Ik(y(tk))− Ik(x(tk))‖

)
ds

+
1

Γ(α)

m∑
k=1

tk∫
tk−1

(tk − s)α−1‖T (t− s)‖

× ‖f(s, x(s), x(ϕ(x(s), s)))− f(s, y(s), y(ϕ(x(s), s)))‖ds

+

m∑
k=1

‖T (t− tk)‖‖Ik(x(tk))− Ik(y(tk))‖

≤m
( bα

Γ(α+1)
M̂M1(2+LLϕ)+M̂`

)( bα

λΓ(α+1)
M̂3M̂1M̃

2+1
)
‖x−y‖.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 20 (5) (2020) 465–478 475

So, we write

‖(Fλx+Gλx)(t)− (Fλ +Gλ)(y)(t)‖ ≤ ‖Fλ(x)(t) + Fλ(y)(t)‖+ ‖Gλ(x)(t)−Gλ(y)(t)‖

≤

{
bα

Γ(α+ 1)
M̂M1(2 + LLϕ)

( bα

λΓ(α+ 1)
M̂3M̃2 + 1

)
+m

( bα

Γ(α+ 1)
M̂M1(2 + LLϕ) + M̂`

)
×
( bα

λΓ(α+ 1)
M̂3M̂1M̃

2 + 1
)}
‖x− y‖.

From (6), we have
‖(Fλ +Gλ)(x)− (Fλ +Gλ)(y)‖ ≤ ρ‖x− y‖.

So, for λ > 0, we say the operator Fλ + Gλ is a contraction mapping on Br. Hence
there exists a unique fixed point x ∈ Br such that (Fλx + Gλx)(t) = x(t). The unique
fixed point of Fλ + Gλ is a mild solution of (1) on J , which satisfies x(b) = xb. Hence,
by the Banach contraction principle, the semilinear fractional system (1) is approximate
controllable on J .

4 An Example

Throughout this section, we provide an illustrative example to demonstrate the effec-
tiveness of the previously proven theoretical results using the heat equation, which is a
parabolic partial differential equation, to describe the physical phenomenon of thermal
conduction in a metal bar. Then, we consider an initial boundary value problem with
time-fractional differential equation of the following form:

∂αν

∂tα
(t, ε) =

∂2ν

∂ε2
(t, ε) + µ(t, ε) + sin

(
|ν(t, ε)|

)
+
(
1 + e(ν(t,ε))

)β
, β ∈ R,

ν(t, 0) = ν(t, 1) = 0, t ∈ [0, b],

ν(0, ε) = ν0(ε), ε ∈ (0, 1),

∆ν(tk)(ε) = ε
(∣∣ν(tk)(ε)

∣∣+ etk
)
, k = 1, · · · ,m,

(15)

where α ∈ (0, 1), and µ : J×(0, 1)→ (0, 1) is the control function and it is continuous.

• ν(t, ε) is the temperature at any point ε and any time t.

• Q(t, ε) = sin
(
|ν(t, ε)|

)
+
(
1+e(ν(t,ε))

)β
is the heat energy generated per unit volume

per unit time.

If Q(t, ε) > 0, then the heat energy is being added to the system at that location
and time, and if Q(t, ε) < 0, then the heat energy is being removed from the system
at that location and time.

• ν(t, 0) and ν(t, 1) are the temperatures at the ends of the bar. These are called the
boundary conditions.
To keep things simple, we will solve the IBVP (15) for the heat equation with
ν(t, 0) = ν(t, 1) = 0 ◦C. These are called the homogeneous boundary conditions.
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• ν(0, ε) is the initial temperature distribution. This is called the initial condition.

• ∆ν(tk)(ε) is the sudden instantaneous perturbation in heat distribution. This is
called the impulsive condition.

One end of the bar is assumed to be at ε0 = 0 and the other is at ε1 = 1 (a long metal
bar of length |ε0 − ε1| = 1). The bar is much longer than it is thick, so we can treat the
distribution of heat as a function of just t and ε. Assuming that the bar specific heat
capacity is known, we will know how heat is distributed if we can find a function for the
temperature ν(t, ε).

Now, we will satisfy the previous assumptions and theoretical results using the IBVP
(15) and get the required controllability.

Set E = L2
[
(0, 1)

]
, and A : D(A) ⊂ E → E is an operator defined by

Aω = ω
′′
, ω ∈ D(A)

with the domain

D(A) = {ω ∈ E;ω, ω
′

are absolutely continuous, ω
′′
∈ E,ω(0) = ω(1) = 0}.

Then

Aω =

∞∑
n=1

n2(ω, ωn)ωn, ω ∈ D(A),

where ωn(x) =
√

2 sin(nx), n ∈ N is the orthogonal set of eigenvectors of A.
It is well known that A is a generator of an analytic semigroup

(
T (t)

)
t≥0 in E which

is given by

T (t)ω =

∞∑
n=1

e−n
2t(ω, ωn)ωn, ω ∈ E, t > 0.

Further, for each t ∈ J , we have T ∗(t)x = T (t)x, where x ∈ E.
Therefore, for (t, ε) ∈ [0, b]× (0, 1), we have

x(t)(ε) = ν(t, ε),
f(t, ν(t), ν(a(ν(t), t)))(ε) = Q(t, ε),

I(ν(tk))(ε) = ε
(∣∣ν(tk)(ε)

∣∣+ etk
)
, k = 1, 2, · · · ,m,

Bu(t)(ε) = µ(t, ε).

The system (15) is the abstract form of (1).
We define an infinite dimensional control space as

U = {u : u =

∞∑
n=2

unωn,

∞∑
n=2

|un|2 <∞},

endowed with the norm ‖u‖U =
( ∞∑
n=2
|un|2

)1/2
.

Let B : U → E and

Bu = 2u2ω1 +

∞∑
n=2

unωn.
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Then B is a bounded linear map and the adjoint is

B∗v = (2v1 + v2)ω2 +

∞∑
n=3

vnωn.

Moreover,

B∗T ∗(t)y = (2y1e
−t + y2e

−4t)ω2 +

∞∑
n=3

yne
−n2tωn

for v =
∞∑
n=1

vnωn and y =
∞∑
n=1

ynωn. For t ∈ J , it can be shown that

‖B∗T ∗(t)y‖ = 0⇒ ‖2y1e−t + y2e
−4t‖2 +

∞∑
n=3

‖yne−n
2t‖2 = 0⇒ y = 0.

Therefore, by Theorem 4.1.7 [6], the linear system corresponding to (15) is approx-
imately controllable. On the other hand, we have λR(λ,Πb

tk
) → 0, λR(λ,Πtk

tk−1
) → 0,

as λ → 0+, for k = 1, · · · ,m in the strong operator topology, which is a necessary
and sufficient condition for the linear system to be approximately controllable. Further,
the conditions (H1) − (H6) are satisfied. Hence, by Theorem 3.1, the IBVP (15) is
approximate controllable on J.

5 Conclusions

This paper focuses on establishing the approximate controllability of an impulsive frac-
tional semilinear system with deviated argument in Hilbert spaces through the applica-
tion of one of the most important results of the analysis and it is considered the main
source of the metric fixed point theory known as the ”Banach Contraction Principle”
that accompanied the formulation of a certain set of sufficient conditions. These ease the
proof of the existence and uniqueness of the mild solution attached to the system under
study.

In the future, we aim to expand this study by adapting some techniques used to
other ideas and extracting new results that show the effectiveness of this study and its
effect in the midst of scientific research. The closest result we would like to prove is the
establishment of the approximate controllability of an impulsive stochastic differential
system with deviated argument delay of fractional order.
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Abstract: In this paper, we study the persistence of asymptotic behavior of trajecto-
ries generated by the product of discrete-time dynamical systems and also generated
by conjugate systems as well, using some shadowing and bishadowing properties. In
particular, we establish a relationship between the asymptotic behavior of product
systems and their subsystems and give some new results in this direction. We also
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under certain conditions.
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1 Introduction

In recent years, the theory of shadowing has become a significant part of qualitative
theory of dynamical systems. It plays an important role in the investigation of stability
theory and asymptotic behavior of discrete systems, see also [2, 3]. It is usually used to
verify computer calculations of the system by ensuring the existence of the true trajectory
of the system close to the calculated trajectory (also known as the pseudo trajectory),
see [4,15]. Shadowing firstly appeared in the work of Anosov [6], see also Bowen [7] and
is now developed as part of the global theory of dynamical systems, see Palmer [20] and
Pilyugin [21]. The relationship between pseudo trajectories and true trajectories became
more important particularly in chaotic systems.

Nevertheless, it is natural to pose the inverse problem: given a dynamical system
and a family of approximate trajectories, is it possible, for any true trajectory to find
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a close approximate trajectory? In general, the answer to this problem is yes, but in
practice, only approximate trajectories with specific properties are considered. This is
known as inverse shadowing. In the last three decades, shadowing and inverse shadowing
properties have been studied extensively by many authors and various extensions of these
concepts have also been obtained and applied for dynamical systems in different ways.
For example, the Lipschitz shadowing property [17], limit shadowing property [11], orbital
and weak shadowing properties [19], shadowing property for maps on Banach spaces [14],
asymptotic shadowing [21], average shadowing property for diffeomorphisms [22], pseudo–
orbit tracing property for flows [16], weak inverse shadowing [8], inverse shadowing for
set-valued systems [18] and continuous inverse shadowing [12]. A combination of the two
concepts of direct and inverse (indirect) shadowing, called bishadowing, was introduced in
[10], see also [9]. Bishadowing was considered for set-valued systems with an application
to iterated function systems in [1] and for infinite dimensional dynamical systems in [5].

The paper is organized as follows. Some definitions and preliminaries needed through-
out the paper will be given in Section 2. The results of bishadowing for the product of
systems will be established in Section 3 and those for conjugate systems will be given in
Section 4.

2 Definitions and Preliminaries

Let (X, dX) be a metric space and let f : X → X be a continuous map from X into itself.
In this paper, we shall consider the discrete-time dynamical system on X generated by
f along with its iterates. That is,

f0 = idX and f i+1 = f i ◦ f, i = 0, 1, 2, · · ·

We usually identify the map f with the dynamical system that generates.
A sequence {xi}∞i=0 ⊂ X satisfying xi+1 = f(xi), i = 0, 1, · · · is called a true trajec-

tory of (the system) f . While a sequence {yi}∞i=0 ⊂ X satisfying

dX(f(yi), yi+1)) ≤ δ

for i = 0, 1, · · · and for some δ > 0 is called a δ-pseudo-trajectory of f . Note that a true
trajectory is also a δ-pseudo trajectory with δ = 0. The totality of all continuous maps
from the metric space X into itself will be denoted by C(X).

For a given ε > 0, a δ-pseudo trajectory {xi}∞i=0 of f is said to be ε-traced by x ∈ X
if d(f i(x), xi) < ε for all i = 0, 1, 2, · · · . We say that the dynamical system generated
by f has the shadowing property if for each ε > 0 there exists δ > 0 such that every
δ-pseudo trajectory is ε-traced by some point x ∈ X. We say that the dynamical system
has the inverse shadowing property if for any ε > 0 there exists δ > 0 such that for any
continuous map φ ∈ C(X) satisfying supx∈X d(f(x), φ(x)) < δ and for any x ∈ X there
exists a point x′ ∈ X for which d(f i(x′), φi(x)) < ε, i = 0, 1, 2, · · · .

We now give the definition of bishadowing of [10] in the context of a metric space.

Definition 2.1 A continuous map f : X → X is said to be bishadowing on a subset
K of X with positive parameters α and β, ( or (α, β)-bishadowing), if for any given
δ-pseudo trajectory y = {yi}∞i=0 of f in the set K with 0 ≤ δ ≤ β and any continuous
comparison map Φ ∈ C(X) satisfying

δ + sup
x∈X

dX(Φ(x), f(x)) ≤ β, (1)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 20 (5) (2020) 479–489 481

there exists a trajectory x = {xi}∞i=0 of Φ in K such that

dX(xi, yi) ≤ α
(
δ + sup

x∈X
dX(Φ(x), f(x))

)
(2)

for all i for which xi and yi are defined.
Note that the definition of bishadowing include both the direct shadowing by taking

as a special case Φ = f and the inverse shadowing by taking δ = 0 in Definition 2.1.

3 The Product System

Throughout this section, we consider two compact metric spaces (X, dX) and (Y, dY ) and
their product metric space X × Y with metric defined by

D((x1, y1), (x2, y2)) = max {dX(x1, x2), dY (y1, y2)}

for (x1, y1), (x2, y2) ∈ X × Y . We also consider continuous maps f : X → X, g : Y →
Y , and the product f × g : X × Y → X × Y , where the product map is defined by
(f × g)(x, y) = (f(x), g(y)).

The proof of the following lemma is straightforward, so will be omitted.

Lemma 3.1 Let ψ : X → X and ϕ : Y → Y be two continuous maps and let
a = supx∈X dX(f(x), ψ(x)) and b = supy∈Y dY (g(y), ϕ(y)), then for x ∈ X and y ∈ Y
we have

sup
x∈X,y∈Y

{max{dX(f(x), ψ(x)), dY (g(y), ϕ(y))}} = max{a, b}.

Theorem 3.1 Assume that both f and g are (α, β)- bishadowing with respect to the
comparison classes C(X) and C(Y ), respectively. Then the product system f×g is (α, β)-
bishadowing with respect to the class C(X)× C(Y ).

Proof. Let {(xi, yi)}∞i=0 be a δ-pseudo trajectory of the map f × g, with 0 ≤ δ ≤ β,
and let ψ × ϕ ∈ C(X)× C(Y ) satisfying

δ + sup
(x,y)∈X×Y

D((f × g)(x, y), (ψ × ϕ)(x, y)) ≤ β. (3)

Since {(xi, yi)}∞i=0 is a δ-pseudo trajectory of the map f×g we have, for each i = 0, 1, · · · ,
that

max{dX(f(xi), xi+1), dY (g(yi), yi+1)} = D((f(xi), g(yi)), (xi+1, yi+1))

= D((f × g)(xi, yi), (xi+1, yi+1)) < δ.

Thus, dX(f(xi), xi+1) < δ and dY (g(yi), yi+1) < δ, for i = 0, 1, · · · , which implies that
both {xi}∞i=0 and {yi}∞i=0 are δ-pseudo trajectories of f and g, respectively. Since both
f and g are bishadowing, then for any ψ ∈ C(X) and ϕ ∈ C(Y ) satisfying

δ + sup
x∈X

dX (f(x), ψ(x)) ≤ β (4)

and
δ + sup

y∈Y
dY (g(y), ϕ(y)) ≤ β, (5)
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there exist true trajectories {wi}∞i=0 of ψ and {zi}∞i=1 of ϕ such that

dX(xi, wi) ≤ α
(
δ + sup

x∈X
dX(f(x), ψ(x)

)
(6)

and

dY (yi, zi) ≤ α
(
δ + sup

y∈Y
dY (g(y), ϕ(y)

)
, for i = 0, 1, · · · . (7)

We may assume supx∈X dX(f(x), ψ(x)) > supy∈Y dY (g(y), ϕ(y)), as the other direction
can be treated similarly. We consider the following three cases.
Case 1: For the values of i, for which dX(xi, wi) > dY (yi, zi), and using the relation
(6), we have

D((xi, yi), (wi, zi)) = max{dX(xi, wi), dY (yi, zi)} = dX(xi, wi)

≤ α
(
δ + sup

x∈X
dX(f(x), ψ(x))

)
.

So, for every x ∈ X, y ∈ Y , and using Lemma 3.1, we have

D((xi, yi), (wi, zi)) ≤ α
(
δ + sup

x∈X
dX(f(x), ψ(x))

)
= α

(
δ + max

{
sup
x∈X

dX(f(x), ψ(x)), sup
y∈Y

dY (g(y), ϕ(y))

})
= α

(
δ + sup

x∈X,y∈Y
max{dX(f(x), ψ(x)), dY (g(y), ϕ(y))}

)
= α

(
δ + sup

(x,y)∈X×Y
D((f × g)(x, y), (ψ × ϕ)(x× y))

)
.

Case 2: For the values of i, for which dX(xi, wi) < dY (yi, zi), and using the relation
(7), we have

D((xi, yi), (wi, zi)) = max{dX(xi, wi), dY (yi, zi)} = dY (yi, zi)

≤ α
(
δ + sup

y∈Y
dY (g(y), ϕ(y))

)
≤ α

(
δ + sup

x∈X
dX(f(x), ψ(x))

)
.

From the argument of Case 1 above we obtain

D((xi, yi), (wi, zi)) ≤ α

(
δ + sup

(x,y)∈X×Y
D((f × g)(x, y), (ψ × ϕ)(x× y))

)
.

Case 3: For the values of i, for which dX(xi, wi) = dY (yi, zi), we have the same result
as in Case 1 and Case 2.

By combining the three cases, we have

D((xi, yi), (wi, zi)) ≤ α

(
δ + sup

(x,y)∈X×Y
D((f × g)(x, y), (ψ × ϕ)(x× y))

)
, i = 0, 1, · · · .
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Finally, the sequence {(wi, zi)}∞i=0 is a true trajectory of ψ × ϕ since

(ψ × ϕ)(wi, zi) = (ψ(wi), ϕ(zi)) = (wi+1, zi+1), i = 0, 1, · · · .

This means that f × g is (α, β)- bishadowing with respect to the class C(X) × C(Y ).
This ends the proof of Theorem 3.1. 2

For the converse direction of Theorem 3.1, we have the following partial result.

Theorem 3.2 Assume that f and g are both continuous and that the product system
f × g is (α, β)- bishadowing with respect to the class C(X) ×C(Y ). Then at least one
of the maps f and g is (α, β)-bishadowing with respect to the corresponding class of
comparison maps.

Proof. Let {xi}∞i=0 and {yi}∞i=0 be δ-pseudo trajectories of f and g, respectively,
with 0 ≤ δ ≤ β, and let ψ ∈ C(X) and ϕ ∈ C(Y ) satisfy the relations (4) and (5)
respectively. Then for i = 0, 1, · · · we have the following estimates:

D((f × g)(xi, yi), (xi+1, yi+1)) = D((f(xi), g(yi)), (xi+1, yi+1))

= max{dX(f(xi), xi+1), dY (g(yi), yi+1)} < δ.

Thus, the sequence {(xi, yi)}∞i=0 is a δ-pseudo trajectory of f × g and since f × g is
bishadowing, for any map ψ × ϕ ∈ C(X)× C(Y ) satisfying the relation (3) there exists
a true trajectory {(wi, zi)}∞i=0 of ψ × ϕ such that

D((xi, yi), (wi, zi)) ≤ α

(
δ + sup

(x,y)∈X×Y
D ((f × g)(x, y), (ψ × ϕ)(x, y))

)
, i = 0, 1, · · · .

So, for every x ∈ X, y ∈ Y , and using Lemma 3.1, we have

max{dX(xi, wi), dY (yi, zi)}

≤ α

(
δ + sup

(x,y)∈X×Y
D((f × g)(x, y), (ψ × ϕ)(x, y))

)

= α

(
δ + sup

(x,y)∈X×Y
max{dX(f(x), ψ(x)), dY (g(y), ϕ(y))}

)

= α

(
δ + max

{
sup
x∈X

dX(f(x), ψ(x)), sup
y∈Y

dY (g(y), ϕ(y))

})
.

These estimates imply the following three cases.
Case 1: If sup

x∈X
dX(f(x), ψ(x)) > sup

y∈Y
dY (g(y), ϕ(y)), then we have

dX(xi, wi) ≤ α
(
δ + sup

x∈X
dX(f(x), ψ(x))

)
, i = 0, 1, · · · , (8)

and hence f is (α, β)- bishadowing with respect to C(X).
Case 2: If sup

x∈X
dX(f(x), ψ(x)) < sup

y∈Y
dY (g(y), ϕ(y)), then we have

dX(yi, zi) ≤ α
(
δ + sup

y∈Y
dY (g(y), ϕ(y))

)
, i = 0, 1, · · · , (9)
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and hence g is (α, β)-bishadowing with respect to C(Y ).

Case 3: If sup
x∈X

dX(f(x), ψ(x)) = sup
y∈Y

dY (g(y), ϕ(y)), then the relations in (8) and (9)

are both satisfied, and consequently, both f and g are (α, β)-bishadowing with respect
to C(X) and C(Y ), respectively.

Finally, it should be mentioned that both {wi}∞i=0 and {zi}∞i=0 are true trajectories
of ψ and ϕ, respectively, since

(ψ(wi), ϕ(zi)) = (ψ × ϕ)(wi, zi) = (wi+1, zi+1), i = 0, 1, · · · .

This completes the proof of Theorem 3.2. 2

Now, we introduce the following definition of mutual bishadowing for a pair of systems
generated by the continuous maps f : X → X and g : Y → Y and then establish a result
that is related to the converse of Theorem 3.1.

Definition 3.1 The pair of systems (f, g) is called mutually bishadowing with re-
spect to the comparison classes C(X) and C(Y ) of f and g, respectively, with positive
parameters α and β (or mutually (α, β)-bishadowing), if for any given δ-pseudo trajecto-
ries {xi}∞i=0 and {yi}∞i=0 for f and g, respectively, and for any ψ ∈ C(X) and ϕ ∈ C(Y )
satisfying the relations (4) and (5), respectively, there exist true trajectories {wi}∞i=1 of
ψ and {zi}∞i=1 of ϕ such that

dX(xi, wi) ≤ α
(
δ + max

{
sup
x∈X

dX(f(x), ψ(x)), sup
y∈Y

dY (g(y), ϕ(y))

})
(10)

and

dX(yi, zi) ≤ α
(
δ + max

{
sup
x∈X

dX(f(x), ψ(x)), sup
y∈Y

dY (g(y), ϕ(y))

})
(11)

for i = 0, 1, · · · and x ∈ X, y ∈ Y .

In the context of the preceding definition of mutually bishadowing for a pair of systems
generated by the continuous maps f : X → X and g : Y → Y , we have the following
result, which is an improved version of Theorem 3.2.

Theorem 3.3 The pair of systems (f, g) is mutually (α, β)-bishadowing with respect
to the comparison classes C(X) and C(Y ) of f and g, respectively, and with positive
parameters α and β if and only if f × g is bishadowing with respect to the comparison
class C(X)× C(Y ).

Proof. Let {(xi, yi)}∞i=0 be a δ-pseudo trajectory of the map f × g, with 0 ≤ δ ≤ β,
and let ψ × ϕ ∈ C(X) × C(Y ) satisfying the relation (3). It follows from the proof
of Theorem 3.1 that both {xi}∞i=0 and {yi}∞i=0 are δ-pseudo trajectories of f and g,
respectively. Since the pair of systems (f, g) is mutually bishadowing, then for any
ψ ∈ C(X) and ϕ ∈ C(Y ) satisfying the relations (4) and (5) there exist true trajectories
{wi}∞i=0 of ψ and {zi}∞i=0 of ϕ satisfying the relations (10) and (11). Thus, using Lemma
3.1 and from the preceding estimates we obtain for x ∈ X and y ∈ Y and for i = 0, 1, · · ·



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 20 (5) (2020) 479–489 485

that

max{dX(xi, wi), dY (yi, zi)}

≤ α
(
δ + max

{
sup
x∈X

dX(f(x), ψ(x)), sup
y∈Y

dY (g(y), ϕ(y))

})
= α

(
δ + sup

(x,y)∈X×Y
{max{dX(f(x), ψ(x)), dY (g(y), ϕ(y))}

)

= α

(
δ + sup

(x,y)∈X×Y
D((f × g)(x, y), (ψ × ϕ)(x, y))

)
.

Therefore

D((xi, yi), (wi, zi)) ≤ α

(
δ + sup

(x,y)∈X×Y
D((f × g)(x, y), (ψ × ϕ)(x, y))

)
, i = 0, 1, · · · .

This shows that the map f × g is (α, β)- bishadowing with respect to the comparison
class C(X)× C(Y ).

Conversely, let {xi}∞i=0 and {yi}∞i=0 be δ-pseudo trajectories of f and g, respectively,
with 0 ≤ δ ≤ β, and let ψ ∈ C(X) and ϕ ∈ C(Y ) satisfy the relations (4) and (5),
respectively. From the proof of Theorem 3.2 it follows that the sequence {(xi, yi)}∞i=0 is
a δ-pseudo trajectory of the map f × g. Since the map f × g is (α, β)-bi- shadowing, for
any map ψ × ϕ ∈ C(X)× C(Y ) satisfying the relation (3) there exists a true trajectory
{(wi, zi)}∞i=0 of ψ × ϕ such that

D((xi, yi), (wi, zi)) ≤ α

(
δ + sup

(x,y)∈X×Y
D((f × g)(x, y), (ψ × ϕ)(x, y))

)
, i = 0, 1, · · · .

Thus

max{dX(xi, wi), dY (yi, zi)} ≤ α
(
δ + max

{
sup
x∈X

dX(f(x), ψ(x)),

sup
y∈Y

dY (g(y), ϕ(y))

})
, i = 0, 1, · · · .

This implies that

dX(xi, wi) ≤ α
(
δ + max

{
sup
x∈X

dX(f(x), ψ(x)), sup
y∈Y

dY (g(y), ϕ(y))

})
,

and

dX(yi, zi) ≤ α
(
δ + max

{
sup
x∈X

dX(f(x), ψ(x)), sup
y∈Y

dY (g(y), ϕ(y))

})
, i = 0, 1, · · · .

Hence, the pair of systems (f, g) is mutually (α, β)- bishadowing. This ends the proof of
Theorem 3.3. 2

Finally, for the continuous maps f : X → X and g : Y → Y , we relate mutual
bishadowing of the pair of systems (f, g) with bishadowing of f and g.
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Corollary 3.1 If both f and g are (α, β)- bishadowing with respect to the classes
C(X) and C(Y ), respectively, then the pair of systems (f, g) is mutually (α, β)-
bishadowing with respect to C(X) and C(Y ).

Proof. The proof follows from Theorem 3.1 and Theorem 3.3. 2

Corollary 3.2 If the pair of systems (f, g) is mutually (α, β)-bishadowing with re-
spect to C(X) and C(Y ), respectively, then at least one of the two maps f and g is
(α, β)-bishadowing with the same corresponding classes.

Proof. The proof follows from Theorem 3.2 and Theorem 3.3. 2

4 Topologically Conjugate Systems

If (X, dX) and (Y, dY ) are two metric spaces and f : X → X and g : Y → Y are
two maps on X and Y , respectively, then we say that f and g are topologically con-
jugate if there exists a homeomorphism h : X → Y such that h ◦ f = g ◦ h. If, in
addition, h is uniformly continuous, then f and g are called uniformly topologically
conjugate, or simply uniformly conjugate. The two classes C(X) and C(Y ) are called
(C(X), C(Y ))-topologically conjugate by h in the sense that individual maps in one class
are topologically conjugate to a map in the other class by h.

The following two results on invariance of the shadowing and inverse shadowing prop-
erties for topologically conjugate systems are standard in the theory of shadowing, see,
for example, [23].

Theorem 4.1 Let (X, dX) and (Y, dY ) be metric spaces and let f : X → X and
g : Y → Y be two continuous maps. If f and g are uniformly conjugate then f has the
shadowing property if and only if g has the shadowing property.

Theorem 4.2 Let (X, dX) and (Y, dY ) be metric spaces and let f : X → X and
g : Y → Y be two continuous maps. Assume that C(X) and C(Y ) are (C(X), C(Y ))-
topologically conjugate. If f and g are uniformly conjugate, then f has the inverse shad-
owing property with respect to the class C(X) if and only if g has the inverse shadowing
property with respect to the class C(Y ).

For the invariance of (α, β)-bishadowing for topologically conjugate systems we have
the following result.

Theorem 4.3 Let (X, dX) and (Y, dY ) be metric spaces and let f : X → X and
g : Y → Y be two continuous maps that are topologically conjugate by h : X → Y .
Assume also that C(X) and C(Y ) are (C(X), C(Y ))-topologically conjugate. If there
exists λ ≥ 1 such that

dX(x′, x′′) ≤ dY (h(x′), h(x′′)) ≤ λ dX(x′, x′′), for all x′, x′′ ∈ X, (12)

then we have

a) If f is (α, β)-bishadowing with respect to the comparison class C(X), then g is
(λα, β)-bishadowing with respect to C(Y ).

b) If g has the (α, λβ)-bishadowing with respect to C(Y ), then f is (λα, β)-bishadowing
with respect to C(X).
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Proof. a) Let {yi}∞i=1 be a δ-pseudo trajectory of g with 0 ≤ δ ≤ β, which implies
that dY (g(yi), yi+1) < δ, and let φ ∈ C(Y ) satisfy

δ + sup
y∈Y

dY (g(y), φ(y)) ≤ β. (13)

Note that condition (12) is equivalent to the following condition:

dX(h−1(y′), h−1(y′′)) ≤ dY (y′, y′′) ≤ λdX(h−1(y′), h−1(y′′)) for all y′, y′′ ∈ Y. (14)

Now,

dX(f(h−1(yi)), h
−1(yi+1)) = dX(h−1(g(yi)), h

−1(yi+1)) ≤ dY (g(yi), yi+1) < δ.

Hence {xi}∞i=0 = {h−1(yi)}∞i=0 is a δ-pseudo trajectory of f . Let x ∈ X and ψ ∈ C(X),
then using (12) and the conjugacy h, we obtain

dX(f(x), ψ(x)) ≤ dY (h(f(x)), h(ψ(x))) = dY (g(h(x)), φ(h(x))) = dY (g(y), φ(y)),

where y = h(x). This implies that

sup
x∈X

dX(f(x), ψ(x)) ≤ sup
y∈Y

dY (g(y), φ(y)). (15)

From(13) and(15) and for any ψ ∈ C(X), where ψ = h−1 ◦ φ ◦ h, we have δ +
supx∈X dX(f(x), ψ(x)) ≤ β. Since f is (α, β)-bishadowing then there exists a true tra-
jectory {wi}∞i=1 of ψ such that

dX(xi, wi) ≤ α(δ + sup
x∈X

dX(f(x), ψ(x))) ≤ α(δ + sup
y∈Y

dY (g(y), φ(y))).

Thus, using the second part of (12), we obtain

dY (yi, h(wi)) = dY (h(xi), h(wi)) ≤ λα(δ + sup
y∈Y

dY (g(y), φ(y))).

Note that {h(wi)}∞i=0 := {ai}∞i=0 is a true trajectory of φ since

φ(ai) = φ(h(wi)) = h(ψ(wi)) = h(wi+1) = ai+1.

This ends the proof that g is (λα, β)-bishadowing with respect to C(Y ). 2

Proof. b) Let {xi}∞i=1 be a δ-pseudo trajectory of f with 0 ≤ δ ≤ β, which
implies that dX(f(xi), xi+1) < δ, and let φ ∈ C(Y ) satisfy

δ + sup
x∈X

dX(f(x), φ(x)) ≤ β. (16)

Now, dY (g(h(xi)), h(xi+1)) = dY (h(f(xi)), h(xi+1)) ≤ λdX(f(xi), xi+1), hence

dY (g(h(xi)), h(xi+1)) < λδ.

It follows that {yi}∞i=0 = {h(xi)}∞i=0 is a λδ-pseudo trajectory of g. Now let y ∈ Y and
ψ ∈ C(Y ), then using (14) we have

dY (g(y), ϕ(y)) ≤ λdX(h−1(g(y)), h−1(ψ(y)))

= λdX(f(h−1(y)), φ(h−1(y))) = λdX(f(x), φ(x)),



488 O. A. AL-KHATATNEH AND A.A. AL-BADARNEH

where x = h−1(y). Therefore dY (g(y), ψ(y)) ≤ λdX(f(x), φ(x)) for every y ∈ Y and
x = h−1(y), hence

sup
y∈Y

dY (g(y), ψ(y)) ≤ λ sup
x∈X

dX(f(x), φ(x)). (17)

From (16) and (17) we get for any ψ ∈ C(Y ), where ψ = h ◦ φ ◦ h−1, that

λδ + sup
y∈Y

dY (g(y), ψ(y)) ≤ λβ.

Since g has the (α, λβ)-bishadowing, there exists a true trajectory {zi}∞i=1 of ψ such that

dY (yi, zi) ≤ α(λδ + sup
y∈Y

dY (g(y), ψ(y))) ≤ α(λδ + λ sup
x∈X

dX(f(x), φ(x)))

= λα(δ + sup
x∈X

dX(f(x), φ(x))).

Thus, using (13) we obtain

dX(xi, h
−1(zi)) = dX(h−1(yi), h

−1(zi)) ≤ λα(δ + sup
x∈X

dX(f(x), φ(x))),

Note that {h−1(zi)}∞i=0 = {bi}∞i=0 is a true trajectory of φ since

φ(bi) = φ(h−1(zi)) = h−1(ψ(zi)) = h−1(zi+1) = bi+1.

This shows that f is (λα, β)-bishadowing with respect to C(X). 2

Remark 4.1 In the preceding theorem, if λ = 1, then we conclude that the map
f : X → X is (α, β)-bishadowing if and only if g : Y → Y is (α, β)-bishadowing.

5 Conclusion

We have obtained some results regarding the asymptotic behavior in product and conju-
gate dynamical systems using bishadowing properties in Theorems 3.1, 3.2, 3.3, Corollar-
ies 3.1, 3.2 and Theorem 4.3. These results generalize some existing results, for example,
Theorems 4.1 and 4.2. This is due to the fact that the concept of bishadowing relies on
two ways of comparing the trajectories of the system, unlike the case of using the direct
shadowing or the inverse shadowing only.
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Abstract: A metal oxide is a compound containing oxygen and metal. Certain pure
metals can form different oxides, and oxidation of such metals produces a multilayer
oxide scale on the metal. In one of their publications, F. Gesmundo and F. Viani
qualitatively analyzed the parabolic growth of three-layer oxide scales on those metals
which can form three oxides. They obtained a non-linear three-dimensional dynamical
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this dynamical system of Gesmundo and Viani to n-dimensions; we then qualitatively
analyze this n-dimensional dynamical system.
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1 Introduction

A metal oxide is a compound containing oxygen and metal. For instance, common rust
is caused by the oxidation of metal. Certain pure metals can form different oxides, and
oxidation of such metals produces a multilayer oxide scale on the metal, where the oxide
layer containing the highest concentration of metal is in contact with the surface of the
metal, while the oxide layer containing the highest concentration of oxygen is in contact
with the gas or oxygen to which the surface of the metal is exposed. In paper [4], F.
Gesmundo and F. Viani analyzed the parabolic growth of three-layer oxide scales on
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those metals which can form three oxides. They obtained the following non-linear three-
dimensional dynamical system as a model for the growth of such scales:

q̇1 = m1
K1

2q1
− m1 − 1

m1

K2

2q2
, (1)

q̇2 = −m1
K1

2q1
+

(
m1 − 1

m1
+
m2

m1

)
K2

2q2
− m2 − 1

m2

K3

2q3
,

q̇3 = −m2

m1

K2

2q2
+
K3

2q3
.

Here Ki > 0 (i = 1, 2, 3) are rate constants, m1,m2 are parameters, qi > 0 is the weight
of oxygen contained in oxide i per unit area, and q̇i (i = 1, 2, 3) is the derivative of qi
with respect to time, t.

In the present paper we present the following n-dimensional generalization of the
3-dimensional system (1). This n-dimensional dynamical system models the parabolic
growth of n-oxide scales on pure metals

q̇1 = m1
K1

2q1
− m1 − 1

m1

K2

2q2
, (2)

. . .

q̇i = −mi−1

mi−2

Ki−1

2qi−1
+

(
mi−1 − 1

mi−1
+

mi

mi−1

)
Ki

2qi
− mi − 1

mi

Ki+1

2qi+1
, 1 < i < n,

. . .

q̇n = −mn−1

mn−2

Kn−1

2qn−1
+
Kn

2qn
.

Here, for i = 1, ..., n, Ki > 0 are rate constants, mi are parameters (with m0 = 1), and
qi is the weight of oxygen contained in oxide i per unit area.

Theorem 1.1 below is the main result of the present paper; this theorem provides a
qualitative analysis of the n-dimensional system (2).

Theorem 1.1 Assume that in the dynamical system (2), we have n ≥ 3, and mi > 1,
i = 1, ..., n. Then every solution p[ 0, a ] → [ 0, a ] → Rn

++, 0 < a < +∞, of (2) extends
uniquely to a solution p : [ 0,+∞ ) → Rn

++ such that lim
t→+∞

pi(t) = +∞, i = 1, ..., n,

and this solution is eventually monotone strictly increasing on [0 +∞). Moreover, the
system (2) has a unique parabolic solution qi(t) = ci

√
t, ci > 0, i = 1, ..., n, 0 < t < +∞.

Finally, if p : [ 0,+∞ )→ Rn
++ is any other solution of (2), then

lim
t→+∞

‖p(t)− q(t)‖ = 0.

2 Preliminaries

In [1], [2], and [3], the present author (et al.) studied the following n-dimensional non-
linear dynamical system, of which (1) and (2) are special cases:

q̇i = −
n∑

j=1

aij
qj

, qi(t) > 0, i = 1, . . . , n. (3)

In [3], we established the following key result ( [3], Corollary I).
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Theorem 2.1 Assume that the n× n matrix A = (aij) in (3) satisfies the following
four conditions:

(i) det A 6= 0 and aij ≥ 0, for i 6= j;

(ii) A is irreducible;

(iii) for all x = (x1, . . . , xn) ∈ Rn
+, if xi

∑n
j=1 aijxj = 0 for i = 1, . . . , n, then x = 0;

(iv) every real eigenvalue of A is negative.

Then every solution of (3) of the form

q = (q1, . . . , qn) : [0, a]→ Rn
++, 0 < a < +∞,

extends uniquely to a solution

q : [0,+∞)→ Rn
++,

such that
lim

t→+∞
qi(t) =∞, i = 1, . . . , n.

Moreover, if r(t), t ∈ [0,+∞), is any other solution of (3) in Rn
++, then we have

lim
t→+∞

‖ q(t)− r(t) ‖= 0.

Finally, if the matrix A is tridiagonal, then any solution solution, q(t), t ∈ [0,+∞) of
(3) in Rn

++ is eventually monotonically increasing on [0,+∞).

Definition 2.1 Let A = (aij) be the tridiagonal matrix whose entries are defined as
follows, where the index i has range 1 < i < n,

a11 = −m1K1

2
, a12 =

m1 − 1

m1

K2

2
;

ai,i−1 =
mi−1

mi−1

Ki−1

2
, ai,i = −

(
mi−1 − 1

mi−1
+

mi

mi−1

)
Ki

2
, ai,i+1 =

mi − 1

mi

Ki+1

2
;

an,n−1 =
mn−1

mn−2

Kn−1

2
, an,n = −Kn

2
.

Theorem 2.2 Let (x1, x2, · · · , xn) ∈ R+ be arbitrary. Let 1 < j < n, and assume
that the following equations hold:

0 =
m1K1

2
x1 −

m1 − 1

m1

K2

2
x2, (4)

0 = −m1K1

2
x1 +

(
m1 − 1

m1
+
m2

m1

)
K2

2
x2 −

m2 − 1

m2

K3

2
x3,

. . .

0 = −mj−1

mj−2

Kj−1

2
xj +

(
mj−1 − 1

mj−1i
+

mj

mj−1

)
Kj

2
xj −

mj − 1

mj

Kj+1

2
xj+1.

Then we must have

0 =
mj

mj−1

Kj

2
xj −

mj − 1

mj

Kj+1

2
xj+1. (5)
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Note that in terms of the matrix A, the system (4) can be written as follows:

−
n∑

k=1

aikxk = 0, i = 1, · · · , j. (6)

Proof. It is easy to prove this by using mathematical induction on 2 ≤ j ≤ n − 1.
2

Theorem 2.3 Let (x1, x2, · · · , xn) ∈ R+ be arbitrary. Let 1 < i < j < n, and
assume that the following system of equations is satisfied:

0 = −mi−1

mi−1

Ki−1

2
xi−1 +

(
mi−1 − 1

mi−1
+

mi

mi−1

)
Ki

2
xi −

mi − 1

mi

Ki+1

2
xi+1, (7)

. . .

0 = −mj−1

mj−2

Kj−1

2
xj−1 +

(
mj−1 − 1

mj−1
+

mj

mj−1

)
Kj

2
xj −

mj − 1

mj

Kj+1

2
xj+1.

Then we must have

0 = −mi−1

mi−2

Ki−1

2
xi−1 +

mi−1 − 1

mi−1

Ki

2
xi +

mj

mj−1

Kj

2
xj −

mj − 1

mj

Kj+1

2
xj+1. (8)

Note that Equation (7) is equivalent to the following system:

−
n∑

k=1

apkxk = 0, p = i, · · · , j. (9)

Proof. This theorem is easily proved using induction on 3 ≤ j < n. 2

Theorem 2.4 For all (x1, · · · , xn) ∈ Rn
+, if

xi

n∑
j=1

aijxj = 0, for i =, · · · , n,

then xi = 0, for i = 1, · · · , n.

Proof. Assume that

xi

n∑
j=1

aijxj = 0, for i = 1, · · · , n. (10)

One of the following cases must hold.—We will show that only Case 1 does not lead to
a contradiction.
Case 1: In this case, xi = 0, for i = 1, · · · , n.
Case 2: In this case,

xi 6= 0, for i = 1, · · · , n.

Then (10) implies that

−
n∑

j=1

aijxj = 0, for i = 1, · · · , n− 1. (11)
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Hence, by taking j = n− 1 in Theorem 2.2, we see that (9) implies

0 =
mn−1

mn−2

Kn−1

2
xn−1 −

mn−1 − 1

mn−1

Kn

2
xn.

But (10) also implies that

0 =
mn−1

mn−2

Kn−1

2
xn−1 −

Kn

2
xn.

Adding together these last two equations produces

0 = − 1

mn−1

Kn

2
xn.

This contradicts the assumption that xn 6= 0.
Case 3: In this case, for some 1 ≤ j < n, we have

x1, · · · , xj 6= 0; xj+1, · · · , xn = 0.

Hence (10) implies that

−
n∑

k=1

aikxk = 0, i = 1, · · · , j. (12)

If j = 1, then (12) is equivalent to

0 =
m1K1

2
x1 −

m1 − 1

m1

K2

2
x2.

But if j = 1, then x2 = 0, so we get 0 = −m1K1

2 x1, which contradicts x1 6= 0. Hence in
(12) we may assume that 1 < j < n. Then Theorem 2.2 implies that

0 =
mj

mj−1

Kj

2
xj −

mj − 1

mj

Kj+1

2
xj+1.

By assumption, xj+1 = 0, hence we have

0 =
mj

mj−1

Kj

2
xj ,

i.e., xj = 0. This contradiction shows that Case 3 can not hold.
Case 4: In this case, for some 1 < i ≤ n, we have

x1, · · · , xi−1 = 0;xi, · · · , xn 6= 0.

Then (10) implies that

−
n∑

k=1

apkxk = 0, p = i, · · · , n. (13)

First, assume that i = n or i = n− 1. If i = n, then xn−1 = 0, and (13) implies that

0 =
mn−1

mn−2

Kn−1

2
xn−1 −

Kn

2
xn.
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This leads to the contradiction that −Kn

2
xn = 0. If i = n− 1, then (11) implies that

0 = −mn−2

mn−3

Kn−2

2
xn−2 +

(
mn−2 − 1

mn−2
+
mn−1

mn−2

)
Kn−1

2
xn−1 −

mn−1 − 1

mn−1

Kn

2
xn,

0 = −mn−1

mn−2

Kn−1

2
xn−1 +

Kn

2
xn.

Adding together these two equations, and taking into consideration that xn−2 = 0, we
see that

0 =
mn−1

mn−2

Kn−1

2
xn−1 +

1

mn−1

Kn

2
xn.

This contradicts the assumption that xn−1, xn 6= 0.—Thus, we may assume that 1 < i <
n− 1. Then (13) implies

n∑
k=1

apkxk = 0, p = i, · · · , n− 1. (14)

Now, (14) allows us to apply Theorem 2.3 to the case where 1 < i < j = n − 1 < n,
producing

0 = −mi−1

mi−2

Ki−1

2
xi−1 +

mi−1 − 1

mi−1

Ki

2
xi +

mn−1

mn−2

Kn−1

2
xn−1 −

mn−1 − 1

mn−1

Kn

2
xn.

But (14) also implies that

0 = −mn−1

mn−2

Kn−1

2
xn−1 +

Kn

2
xn.

Adding together these last two equations, we obtain

0 =
mi−1 − 1

mi−1

Ki

2
xi +

1

mn−1

Kn

2
xn.

Hence, xi, xn = 0. This contradicts our assumption that xi, · · · , xn 6= 0. Therefore,
Case 4 can not hold.
Case 5: In this case, there exist 1 < i < j < n such that

xi−1 = 0;xi, · · · , xj 6= 0;xj+1 = 0.

Then (10) implies that

−
n∑

k=1

apkxk = 0, p = i, · · · , j. (15)

Because (15) implies (9), we may invoke Theorem 2.3, obtaining

0 = −mi−1

mi−2

Ki−1

2
xi−1 +

mi−1 − 1

mi−1
+

mj

mj−1

Kj

2
xj −

mj − 1

mj

Kj+1

2
xj+1.

Because xi−1 = xj+1, this equation implies that

0 =
mi−1 − 1

mi−1

Ki

2
xi +

mj

mj−1

Kj

2
xj .



496 R. L. BAKER

But then we have the contradiction that xi = xj = 0. This shows that Case 5 can not
hold.
Case 6: In this final case, there exists 1 < i < n such that

xi−1 = 0;xi 6= 0;xi+1 = 0.

It then follows from (10) that

0 = −mi−1

mi−2

Ki−1

2
xi−1 +

(
mi−1 − 1

mi−1
+

mi

mi−1

)
Ki

2
xi +

mi − 1

mi

Ki+1

2
xi+1.

Because xi−1 = xi+1 = 0, we obtain

0 =

(
mi−1 − 1

mi−1
+

mi

mi−1

)
Ki

2
xi.

That is, xi = 0. This contradiction shows that Case 6 can not hold.
Because the above cases are the only possible cases consistent with assumption (10),

we conclude that Case 1 must hold. This completes the proof of the theorem. 2

Definition 2.2 Let B = (bij) be the tridiagonal matrix whose entries are defined as
follows, where the index i has range 1 < i < n,

b11 = −m1, b12 =
m1 − 1

m1
;

bi,i−1 =
mi−1

mi−1
, bi,i = −

(
mi−1 − 1

mi−1
+

mi

mi−1

)
, bi,i+1 =

mi − 1

mi

Ki+1

2
;

bn,n−1 =
mn−1

mn−2
, bn,n = −1.

Note that

A = B diag

(
K1

2
, · · · , Kn

2

)
.

Define P = (pij) to be following matrix:

P =



1
2

m1−1
2m1

(m1−1)(m2−1)
2m1m2

. . . (m1−1)(m2−1)···(mn−1)
2m1m2···mn

m1

2
m1

2
m1(m2−1)

2m2
. . . m1(m2−1)···(mn−1)

2m2m3···mn
m2

2
m2

2
m2

2 . . . m2(m3−1)···(mn−1)
2m3···mn

...
...

...
. . .

...
mn−1

2
mn−1

2
mn−1

2 . . . mn−1(mn−1)
2mn

mn

2
mn

2
mn

2 . . . mn

2


Observe that the entries of P are given by

Pij =

{
mi−1(mi−1)···(mj−1−1)

2mi···mj−1
, if 1 ≤ i < j ≤ n;

mi−1

2 , if 1 ≤ j ≤ i ≤ n.

Theorem 2.5 The matrices B and P satisfy

BP = −I
2
.

Hence B is invertible, with inverse

B−1 = −2P.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 20 (5) (2020) 490–501 497

Proof. We must prove that for all 1 ≤ i ≤ j ≤ n,

(BP )ij = −1

2
δij .

The following cases exhaust all possible cases for the pair 1 ≤ i ≤ j ≤ n.

Case 1: In this case, i = j = 1. We then have

(BP )11 = b11P11 + b12P21

= −m1

2
+
m1 − 1

m1

m1

2

= −1

2
.

Case 2: In this case, i = j = n. Then

(BP )nn = bn,n−1Pn−1,n + bnnPnn

=
mn−1

mn−2

mn−2(mn−1 − 1)

mn−1
− mn−1

2

=
mn−1 − 1

2
− mn−1

2

= −1

2
.

Case 3: In this case, 1 < i = j < n. We then obtain

(BP )ii = bi,i−1Pi−1,i + biiPii + bi,i+1Pi+1,i

=
mi−1

mi−2

mi−2(mi−1 − 1)

2mi−1
−
(
mi−1 − 1

mi−1
+

mi

mi−1

)
mi−1

2
+
mi − 1

mi

mi

2

=
mi−1 − 1

2
− mi−1 − 1 +mi

2
+
mi − 1

2

= −1

2
.

Case 4: In this case, 1 < i+ 1 < j ≤ n. We obtain

(PB)ij = bi,i−1Pi−1,j + biiPi,j + bi,i+1Pi+1,j

=
mi−1

mi−2

mi−2(mi−1 − 1) · · · (mj−1 − 1)

2mi−1 · · ·mj−1
−
(
mi−1 − 1

mi−1
+

mi

mi−1

)
×

× mi−1(mi − 1) · · · (mj−1 − 1)

2mi · · ·mj−1
+
mi(mi+1 − 1) · · · (mj−1 − 1)

2mi+1 · · ·mj−1

=
(mi−1 − 1) · · · (mj−1 − 1)

2mi · · ·mj−1
− ([mi−1 − 1] +mi)

(mi − 1) · · · (mj−1 − 1)

2mi · · ·mj−1
+

+
(mi − 1)(mi+1 − 1) · · · (mj−1 − 1)

2mi+1 · · ·mj−1

= 0.
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Case 5: In this case, 1 < i < j = i+ 1 ≤ n. We then have

(PB)ij = bi,i−1Pi−1,j + biiPij + bi,i+1Pi+1,j

= bi,i−1Pi−1,i+1 + biiPi,i+1 + bi,i+1Pi+1,i+1

=
mi − 1

mi−2

mi−2(mi−1 − 1)(mi − 1)

2mi−1mi
−
(
mi−1 − 1

mi−1
+

mi

mi−1

)
mi−1(mi − 1)

2mi

+
mi − 1

mi

mi

2

=
(mi−1 − 1)(mi − 1)

2mi
− (mi−1 − 1)(mi − 1)

2mi
−mi

(mi − 1)

2mi
+

(mi − 1)

2

= 0.

Case 6: In this case, we have i = 1 < 2 < j ≤ n. We see that

(BP )ij = (BP )1j = b11Pij + b12P2j

= −m1
(m1 − 1) · · · (mj−1 − 1)

m1 · · ·mj−1
+
m1 − 1

m1

m1(m2 − 1) · · · (mj−1 − 1)

m2 · · ·mj−1

= 0.

Case 7: In this case, 1 = i < 2 = j ≤ n. We then obtain

(BP )ij = (BP )12 = b11P12 + b12P22

= −m1
(m1 − 1)

m1
+
m1 − 1

m1

m2

2

= 0.

Case 8: In this case, 1 ≤ j < i < n. We then have

(BP )ij = bi,i−1Pi−1,j + biiPij + bi,i+1Pi+1,j

=
mi−1

mi−2

mi−2

2
−
(
mi−1 − 1

mi−1
+

mi

mi−1

)
mi−1

2
+
mi − 1

mi

mi

2

=
mi−1

2
− (mi−1 − 1 +mi)

2
+
mi − 1

2
= 0.

Case 9: In this final case, 1 ≤ j < i = n. Consequently,

(BP )ij = (BP )nj = bn,n−1Pn−1,j + bnnPnj

=
mn−1

mn−2

mn−2

2
− mn−1

2

= 0.

The proof of the theorem is now complete. 2

Theorem 2.6 Every real eigenvalue of the matrix A is negative.
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Proof. We apply Gershgoin’s Circle Theorem to the transpose of A, concluding
that the eigenvalues of A are contained in the union of the following closed disks in the
complex plane:

D1: center = −m1K1

2
, radius =

m1K1

2
;

Di: center = −
(
mi−1 − 1

mi−i
+

mi

mi−1

)
Ki

2
, radius =

(
mi−1 − 1

mi−i
+

mi

mi−1

)
Ki

2
, 1 < i < n;

Dn: center = −Kn

2
, radius =

mn−1 − 1

mn−1

Kn

2
.

Because mi > 1 for i = 1 · · ·n, these disks are all in the closed left half-plane, hence all
eigenvalues have non-positive real parts. By Theorem 2.5 the matrix B is invertible, and

hence A is invertible, because A = B diag

(
K1

2
, · · · , Kn

2

)
, with Ki > 0, i = 1, · · · , n.

Therefore, all real eigenvalues of A are negative. 2

Theorem 2.7 The matrix A satisfies conditions (i)-(iv) of Theorem 2.1.

Proof. By Theorem 2.5, A is invertible, hence condition (i) of Theorem 2.1 is satisfied.
Because A is tridiagonal and aij 6= 0 whenever |i− j| = 1, condition (ii) of Theorem 2.1
holds. By Theorem 2.4, condition (iii) of Theorem 2.1 is satisfied. Finally, Theorem 2.6
implies that condition (iv) of Theorem 2.1 holds. 2

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. We first prove that under the hypothesis of
Theorem 1.1, there exists a unique parabolic solution of (2). We prove the remainder of
Theorem 1.1 by an application of Theorem 2.1.

The next theorem is a key to proving the existence of a parabolic solution of (2). The
following notation is used. We denote by 4m the standard m-simplex, i.e., the set of all

points x = (x1, · · · , xm+1) ∈ Rm+1
+ such that

m+1∑
i=1

xi = 1; we denote the boundary of

4m by ∂4m. Let e1 = (1, 0, · · · , 0), · · · , em+1 = (0, · · · , 0, 1) be the standard basis for
4m. For 1 ≤ i, j ≤ m+ 1, we let [ei, ej ] be the boundary simplex determined by the pair
ei, ej , that is, [ei, ej ] is the convex hull of the pair ei, ej . Observe that ∂4m is the union
of all the boundaries [ei, ej ], i 6= j, 1 ≤ i, j ≤ m+ 1.

Theorem 3.1 Let f : 4m → 4m be a continuous map which maps each vertex to
itself and each edge into itself. Then f(4m) = 4m.

Proof. Standard theorems in algebraic topology show that any extension to the
simplex, of a continuous map of the boundary of a simplex to itself having nonzero
degree, must map onto the simplex. By looking at each edge it is easy to prove that the
restriction of f to the boundary is a map of the boundary to itself which is homotopic
to the identity; it is well known that this implies degree 1. Therefore f is onto. 2

Theorem 3.2 Define f = (f1, · · · , fn) : 4n−1 →4n−1 by

fi(x) =

xi n∑
j=1

Pijxj

/ n∑
k=1

xk

n∑
j=1

Pkjxj

 , x = (x1, · · · , xn) ∈ 4n−1, i = 1, · · · , n.
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Then f maps 4n−1 onto itself.

Proof. First of all, observe that f sends 4n−1 into itself, because the entries of P are
positive. It is easy to check that f is continuous and maps each vertex of the simplex to
itself and each edge of the simplex into itself. Therefore Theorem 3.1 implies f is onto.
2

Theorem 3.3 There exists a unique parabolic solution of (2).

Proof. Uniqueness: Let q = (q1, · · · , qn) and r = (r1, · · · , rn) be two parabolic
solutions of (2), with qi(t) = ci

√
t, ri(t) = di

√
t, ci > 0, di > 0, i = 1, · · · , n. By Theorem

2.7, the matrix A in (2) satisfies conditions (i)–(iv) of Theorem 2.1, hence by that theorem
we have lim

t→+∞
|qi(t) − ri(t)| = 0, for i = 1, · · · , n. But |qi(t) − ri(t)| =

√
t|ci − di|,

i = 1, · · · , n. We conclude that ci = di, for i = 1, · · · , n. Existence: Let Ki be as in (2)
and define y ∈ 4n−1 by

yi = Ki

/ n∑
j=1

Kj

 , i = 1, · · · , n.

Let f : 4n−1 → 4n−1 be defined as in Theorem 3.2; then by that theorem there exists
a point u ∈ 4n−1, such that y = f(u). Define ζ, η by

ζ =

 n∑
j=1

Kj

 1
2

, η =

 n∑
i=1

ui

n∑
j=1

Pijuj

 1
2

.

Let c = (ζ/η)x. Then y = f(u) implies Ki = ci
n∑

j=1

Pijcj , for i = 1, · · · , n. This last set

of equations is equivalent to:

1

2
ci = −

n∑
j=1

aij

(
1

cj

)
, i = 1, · · · , n.

Define q(t), t ∈ (0,+∞), by qi(t) = ci
√
t, i = 1, · · · , n. The preceding equations imply

that q(t) is a parabolic solution of (2). This proves the theorem. 2

3.1 Proof of Theorem 1.1

To prove Theorem 1.1, let p(t) = (p1(t), · · · , pn(t)), t ∈ [0, a], 0 < a < +∞, be a
solution of (2) in R3

++. By Theorem 2.7, the matrix A in (2) satisfies conditions (i)-
(iv) of Theorem 2.1, hence, by that theorem, there exists a unique extension of p(t),
t ∈ [0, a], to a solution p(t) = (p1(t), · · · , pn(t)), t ∈ [0,+∞), of (2) in R3

++, such that
lim

t→+∞
pi(t) = +∞, i = 1, · · · , n. Moreover, if r(t), t ∈ [0,∞) is any other solution of (2),

then by Theorem 2.1, we have

lim
t→∞

||p(t)− r(t)|| = 0.

Because the matrix A of the system (2) is tridiagonal, Theorem 2.1 implies that the
extended solution p(t) is eventually monotone increasing on [0,+∞). By Theorem 3.3,
there exists a unique parabolic solution q(t) = (c1

√
t, · · · , cn

√
t), (c1, · · · , cn) > 0, t ∈

(0,+∞), of (2). This completes the proof of Theorem 1.1.
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Abstract: The aim of this work is to present the notion of a conform semi-dynamical
system, unlike the concept of a dynamical system, here we can work with the continu-
ous functions. Some examples are presented to illustrate the result of the autonomous
case.
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1 Introduction

Fractional calculus is generalization of ordinary differentiation and integration to arbi-
trary non-integer order. The subject is as old as the differential calculus, starting from
some speculations of G.W. Leibeniz (1967) and L. Euler (1730) and since then, it has
continued to be developed up to nowadays. Integral equations are one of the most use-
ful mathematical tools in both pure and applied analysis. This is particularly true for
problems in mechanical vibrations and the related fields of engineering and mathematical
physics. We can find numerous applications of differential and integral equations of frac-
tional order in finance, hydrology, biophysics, thermodynamics, control theory, statistical
mechanics, astrophysics, cosmology and bioengineering. We recall that the fractional par-
tial derivatives are difficult to handle analytically, especially those describing real world
processes, and the researchers sometimes have to rely on the numerical methods to solve
these equations. One of the well-known fractional derivatives is the Riemann-Liouville
fractional order derivative, which is not always appropriate for modeling real world prob-
lems. The second one is the so-called Caputo derivative, this one is opposite with relation
to displaying physical field complications and has been intensively used for this purpose.
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However, new derivatives should be proposed in order to deal better with the dynam-
ics of the complex systems [9, 11]. In [8] the authors give a new definition of fractional
derivative and fractional integral. The form of the definition shows that it is the most
natural definition, and the most fruitful one. The definition for 0 < α < 1 coincides with
the classical definitions on polynomials (up to a constant). Further, if α = 1, the defi-
nition coincides with the classical definition of the first derivative. They presented some
applications to fractional differential equations. A. Atanagana in [3] investigated in more
detail some new properties of the conform derivative and has proved some useful related
theorems. Dynamical systems as a generalization of solutions of ordinary differential
equations are already a classical subject in the mathematical literature. Its systematic
generalization to systems with nonunique solutions was developed by Barbashin [7]. We
note that this study depends on the nature of derivative, our objective is to give the ana-
logue with the conform derivative, in order to weaken the hypothesis of class C functions
in continuous functions.

The paper is organized as follows. After this introductory section, we will present
and demonstrate some properties concerning the conform derivative in Section 2. The
definitions of α-semi-dynamical system, orbit and omega-set and their properties are
given in Section 3. The last Section 4 contains qualitative studies of autonomous system
in dimension 2.

2 Conform Fractional Derivative

In this section, we will give some definitions and properties concerning the new derivative
important in the following.

Definition 2.1 (see [8]) Let α ∈ (n, n+ 1] and f : [0,∞)→ R be n-differentiable at
t > 0, then the conformable fractional derivative of f of order α is defined by{

f (α)(t) = limε→0
f(n)(t+εtn+1−α)−f(n)(t)

ε , f (α)(0) = limt→0 f
(α)(t).

Remark 2.1 (see [8]) As consequence of the previous definition, one can easily show
that

f (α)(t) = tn+1−αf (n+1)(t),

where α ∈ (n, n+ 1], and f is (n+ 1)-differentiable at t > 0.

In [3] we find the following proposition.

Proposition 2.1 [3] We have the following properties:

1. (af + bg)
(α)

= af (α) + bg(α),

2. (fg)
(α)

= f (α)g + fg(α),

3. (tp)
(α)

= ptp−α,

4.
(
f
g

)(α)
= f(α)g−fg(α)

g2 ,

5. If c ∈ R, c(α) = 0.
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Proposition 2.2 If x is a continuous map, then t→ x(α)(t) is a continuous map.

Proof. Since x is a continuous map, t ∈ R∗+ → x
(
t+ εt1−α

)
is continuous, thus

∀β > 0, ∃α > 0, ∣∣x (t+ εt1−α
)
− x

(
t0 + εt1−α0

)
ε

∣∣ ≤ β,
whenever |t − t0| ≤ α, by passing to the limit ε → 0 we get |x(α)(t) − x(α)(t0)| ≤ β as
desired.

Proposition 2.3 Let f : X → X be a Lipschitziane map, i.e.,
|f(x)− f(y)| ≤ k|x− y|, ∀x, y ∈ X and k ∈]0, 1[. The Cauchy problem{

x(α)(t) = f (x(t)) , t > 0,

x(0) = x0,
(1)

has a unique solution.

Proof. By Proposition 2.2 x is continuous, the sequence xx+1 = f(xn) is a Cauchy
sequence, since R is a complete space, then xn converges to the unique solution of (1).

Definition 2.2 (see [8]) Let α ∈ (1, 2], (Iαf)(t) =
∫ t
0
sα−2f(s)ds.

Theorem 2.1 (see [8]) (Iαf)
(α)

(t) = f(t) for t ≥ 0.

Example 2.1

Iα(sin(t)) =

∞∑
n=0

(−1)nt2n+α

(2n+ α)(2n+ 1)!

where α ∈ (1, 2).

Definition 2.3 (see [6]) Let α > 0. For a Banach space X, a family {T (t)}t≥0 ⊂
L(X,X) is called a fractional α-semigroup if

1. T (0) = I.

2. T
(

(s+ t)
1
α

)
= T

(
s

1
α

)
T
(
t

1
α

)
, for all s, t ∈ [0,∞).

Example 2.2 Let A be a bounded linear operator on X. Define T (t) = e2
√
tA. Then

T (t)t≥0 is a 1
2 semigroup. Indeed,

1. T (0) = e0A = I.

2. ∀s, t ∈ [0,∞), T
(
(s+ t)2

)
= e2(t+s)A = e2tAe2sA = T (s)T (t).

Definition 2.4 (see [6]) An α-semigroup T (t) is called a c0-semigroup if, for each
fixed x ∈ X, T (t)x→ x as t→ 0+.

The conformable α-derivative of T (t) at t = 0 is called the α-infinitesimal generator of

the fractional α-semigroup T (t), with the domain equal to
{
x ∈ X : lim

t→0
T (t)x exists

}
.
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3 Conform Fractional Dynamical Systems

3.1 Definition and examples

In this subsection we will introduce the notion of α-dynamical system.

Definition 3.1 Let X be a complete metric space. An α-semi-dynamical system is
a couple (X,πα), where X state space of the system. Each point of X is a state of the
system, and πα : R+ ×X −→ X satisfies{

πα(0, x) = x, ∀x ∈ X,
πα
(
t, πα(s, x)

)
= πα(t+ s, x), ∀x ∈ X, t, s > 0.

Example 3.1 1. Here X is a Banach space. Let f : X → X, be a Lipschitzian
map, i.e., |f(x)− f(y)| ≤ k|x− y|, ∀x, y ∈ X and k ∈]0, 1[. The Cauchy problem{

x(α)(t) = f (x(t)) , t > 0,

x(0) = x0.

has unique solution. The mapping πα(t, x0) = x
(
t

1
α

)
defines an α-semi-dynamical

system.

2. Here X = C
(
[0, 1],R

)
, X is a Banach space. For all f ∈ X, we define πα(t, f) by

πα(t, f)(s) = f
(

min
(

(t
1
α + s), 1

))
, 0 ≤ s ≤ 1.

We will demonstrate that this corresponds well to the α-semi-dynamical system.

3.2 Orbit of α-semi-dynamical system

The term orbit generally refers to the image (in the state space) of a solution. It is
defined as

O(x) =
{
πα (t, x) , t ≥ 0

}
.

Definition 3.2 A point x ∈ X is said to be a critical point if πα (t, x) = x.

Example 3.2 We take x(α)(t) = x(t)−x2(t), x = 0 and x = 1 are two critical points.

Definition 3.3 A point x ∈ X is said to be a periodic point if there is τ > 0 such
that πα (t+ τ, x) = πα (t, x).

Remark 3.1 x ∈ X is a periodic point if and only if πα (τ, x) = x.

Proposition 3.1 Let x be a periodical point of πα, of period τ . It goes through one
and only one periodic solution, of period τ , defined on R.

Proof. The mapping defined by

u(t) =

{
πα(t, x),∀t ≥ 0,

πα(t+ nτ, x),∀t ∈ [−nτ, (−n+ 1)τ [, n ∈ N,

is a periodic extension of πα(t, x) on R. We get u(t+ s) = πα(s, u(t)), ∀t, s ∈ R.
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3.3 Omega-limit set

We will discuss some properties of the Omega-limit set related to the orbit. We will start
by the following definition.

Definition 3.4 Let x ∈ X. The Omega-limit set, denoted ω(x), is defined as

ω(x) =
{
y = lim

n→∞
πα(tn, x) : tn →∞, such that πα(tn, x)converge

}
.

Remark 3.2 We can write

ω(x) =
⋂
t>0

πα([tn,∞[, X),

where πα([tn,∞[, X) is the closure of πα([tn,∞[, X).

We will etablish several properties of the Omega-limit set.

Lemma 3.1 ω(x) is closed, and satisfies

y ∈ ω(x)⇒ πα(t, y) ∈ ω(x).

Proof. It is closed because there is an intersection of closed parts.
For all s ≥ 0, we have

πα (s, ω(x)) ⊂
⋂
πα

(
s, πα([t,∞[, X)

)
⊂

⋂
πα([t,∞[, X)

⊂ ω(x).

Lemma 3.2 If O(x) is precompact, then ω(x) 6= ∅.

Proof. The sets πα([t,∞[, X) are compacts, whose finite intersection can not be
avoided, thus ω(x) 6= ∅.

Proposition 3.2 If O(x) is precompact, then ω(x) is a compact susbset, connected.

Proof. By Proposition 3.2 then ω(x) is an intersection of compacts, thus it is a
compact. It remains to demonstrate that it is connected.

Theorem 3.1 If O(x) is precompact without double point (i.e., ∀t1 < t2, πα(t1, x) 6=
πα(t2, x)), then ω(x) \ O(x) is dense in ω(x).

Proof. We have the following alternative: O(x) ∩ ω(x) = ∅, in this case the result is
clear, or O(x) ∩ ω(x) 6= ∅, in this case we get πα([τ,∞[, X) ⊂ ω(x), for some τ > 0. On
the other hand we can write

ω(x) \ O(x) =
⋂
n

ω(x) \ πα([0, n], x),

each ω(x) \ πα([0, n], x) is open in ω(x) which is compact, then it is complete. Using the
Baire theorem we conclude that each ω(x) \ πα([0, n], x) is dense for all n ∈ N.
Since for all y ∈ ω(x), and ε > 0, there is t > maxn, τ , such that d (πα(t, x), y) ≤ ε, it
becomes that πα(t, x) ∈ ω(x) \ ′(x), which proves the density of πα([0, n], x) in ω(x).
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4 Fractional Autonomous Differential Systems

The purpose of this section is to study the following system in dimension 2, first we begin
with some notion

x(α)(t) = f (x(t)) , (2)

where f : Ω ⊂ Rn → Rn, Ω is open and f is a Lipschitzian map on Ω and differentiable
at 0.

4.1 Definitions and notations

Definition 4.1 An equilibrium point of (2) is a point x0 such that f(x0) = 0.

Remark 4.1 If x0 is an equilibrum point of (2) then t→ x0 is a solution of (2).

Definition 4.2 Let x0 be an equilibrum point of (2). We say that:

1. x0 is stable if for all ε > 0 there is η > 0 such that, if x is a solution of (2) which
for t0 satisfies |x(t0)− x0| < η, we have

• x is defined for all t ≥ t0,

• |x(t)− x0| < ε for all t ≥ t0.

2. x is not stable if x0 is stable,

3. x is asymptotically stable if

• x0 is stable,

• limt→∞ x(t) = x0.

4.2 Qualitative study of linear systems in dimension 2

In this subsection we consider the following differential system:

x(α)(t) = Ax(t), (3)

where x : R→ R2 and A is a constant matrix in M2(R).

Remark 4.2 x0 = 0 is a stable point of (3).

Before we study the above mentioned system, let us first solve the following equation:

x(α)(t) = ax(t), (4)

where a ∈ R and x : R→ R.
We put φ0(t) = e

a
α t
α

, it is clear that φ0 is a solution of (4).
Let φ be another solution, we get

( φ
φ0

)(α)
(t) =

φ(α)(t)φ0(t)− φ(t)φ
(α)
0 (t)

(φ0(t))
2 =

aφ(t)φ0(t)− aφ(t)φ0(t)

(φ0(t))
2 = 0.

Then φ
φ0

is constant, which implies that φ(t) = ce
a
α t
α

, where c ∈ R. The trajectories of
the system depend on the nature of the eigenvalues of the matrix.
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Case 1. Let v1 and v2 be two eigenvectors of A associated, respectively, with two
eigenvalues λ1 and λ2, note that (v1, v2) is a basis of R2. Let P be the transit matrix
from the canonical basis to (v1, v2) and we put x = Py, where x = (x1, x2), y = (y1, y2),

we get P−1AP =

(
λ1 0
0 λ2

)
. The system (4) is written as

y(α) = Dy,

where D =

(
λ1 0
0 λ2

)
. It becomes

{
y1(t) = y01e

λ1
α t

α

,

y1(t) = y02e
λ2
α t

α

.

Example 4.1

0.5 1 1.5 2

−0.5

0.5

0

Figure 1. λ2 < λ1 < 0. The equilibrium point is asymptotically stable.

0.5 1 1.5 2

−0.5

0.5

0

Figure 2. λ2 > λ1 > 0. The equilibrium point is not stable.
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0.5 1 1.5 2

−0.5

0.5

0

Figure 3. λ2 > 0 > λ1. Saddle point.

The trajectories described in Figures 1,2,3 are the curves given in parametric

coordinates y1(t) = y01e
λ1
α t

α

and y1(t) = y02e
λ2
α t

α

.

Case 2. Let Z = u+ iv be a complex eigenvector of A associated with the eigenvalue
λ = η − iδ. We have Au = ηu+ δv and Av = −δu+ ηv. Thus (u, v) is a basis in which

the matrix is writen as follows:

(
α −δ
δ α

)
. If we denote by P the transit matrix from

the canonical basis to (u, v), and we put x = Py, we get

{
y1(t) = Re

η
α t
α

cos
(
δ
α t
α − ϕ

)
,

y2(t) = Re
η
α t
α

sin
(
δ
α t
α − ϕ

)
.

Example 4.2 In this example we take α = 1
2 , δ = 1

2 , ϕ = 0.

0.5 1 1.5 2

−0.5

0.5

0

Figure 4: η < 0. The equilibrium point is stable.
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0.5 1 1.5 2

−0.5

0.5

0

Figure 5: η > 0. The equilibrium point is not unstable.

Remark 4.3 If η = 0, then y21 + y22 = R2.

5 Conclusion

This study is a basic idea for beginning the study of dynamical system in the conform
frame.
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Abstract: In this paper, we study the existence of almost periodic solutions for a
class of nonlinear Duffing system with time-varying coefficients and Stepanov-almost
periodic forcing terms. Some sufficient conditions for the existence and uniqueness of
an almost periodic solution of the system are established. We provide an example to
illustrate the main result.
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1 Introduction

In recent years, various kinds of dynamic behaviors of nonlinear Duffing equations have
been investigated by many authors due to its applications in many fields such as physics,
mechanics, engineering and other scientific fields, for example, see [4, 5, 14]. In such
applications, the existence of almost periodic solutions for nonlinear Duffing equations
is an important topic. Many authors have studied the existence of periodic and almost
periodic solutions of nonlinear differential equations, for more details we refer, [1–3,6,9–
11,13,15–18] and the references cited therein.

Peng and Wang [13] considered the following model for a nonlinear Duffing equation
with deviating argument

u′′(t) + cu′(t)− au(t) + bum(t− φ(t)) = ψ(t), (1)

∗ Corresponding author: mailto:maqboolkareem@gmail.com
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where φ(t) and ψ(t) are almost periodic functions on R, m > 1 is an integer, and a, b, c
are constants. By considering

v = u′ + ξu−Q1(t), Q2(t) = ψ(t) + (ξ − c)Q1(t)−Q′1(t), (2)

where Q1(t) is a continuous and differentiable function on R and ξ > 1 is a constant,
Peng and Wang [13] transformed (1) into the following system of differential equations{

u′(t) = −ξu(t) + v(t) +Q1(t),

v′(t) = −(c− ξ)v(t) + (a+ ξ(c− ξ))u(t)− bum(t− φ(t)) +Q2(t),
(3)

and then proved the existence of positive almost periodic solutions of (1), and (3). Xu [15]
extended the system (3) to the following nonlinear Duffing system with time-varying
coefficients and delay{

u′(t) = −δ1(t)u(t) + v(t) +Q1(t),

v′(t) = δ2(t)v(t) + [µ(t)− δ22(t)]u(t)− ν(t)um(t− φ(t)) +Q2(t),
(4)

where µ(t), ν(t), φ(t), δ1(t), δ2(t), Q1(t), Q2(t) are all almost periodic functions on R, m
is an integer with m > 1, µ(t) > 0, ν(t) 6= 0, and established some sufficient conditions
for the existence of almost periodic solutions of (4).

In this paper, we extend the systems (3) and (4) to the following Duffing system{
u′(t) = −f1(t)u(t) + v(t) + F1(t),

v′(t) = −f2(t)v(t) + [α(t) + f22 (t)]u(t)− β(t)um(t− φ(t)) + F2(t),
(5)

where f1(t) is a bounded continuous function on R with inft∈R f1(t) > 0; f2(t), α(t),
β(t), φ(t) are almost periodic functions on R; F1(t), F2(t) are Stepanov-almost periodic
continuous functions on R, and inft∈R f2(t) > 0, m > 1 is an integer.

In [15,16,18], the authors considered the following almost periodic system

x′(t) = A(t)x(t) + f(t), t ∈ R, (6)

where f : R → Rn is an almost periodic function and A(t) is an n × n almost periodic
matrix defined on R, to prove the existence of almost periodic solutions for a class of
nonlinear Duffing systems. In this paper, we first study the existence of almost periodic
solutions of (6) when f : R → Rn is a Stepanov-almost periodic continuous function
and A(t) is an n × n bounded continuous matrix defined on R satisfying some suitable
conditions, and using these results we find sufficient conditions for the existence and
uniqueness of almost periodic solution of (5). Finally, we provide an example to illustrate
the results.

2 Preliminaries

In this section we give some basic definitions, notations, and results. In the rest of this
paper R stands for a set of real numbers. We let x = (x1, x2, · · · , xn)T ∈ Rn to denote a
column vector, in which the symbol ()T denotes the transpose of a vector, and if x ∈ Rn,
then we define ‖x‖ = max1≤i≤n |xi|.
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Definition 2.1 A continuous function u : R→ Rn is said to be almost periodic if for
every ε > 0 there exists a positive number l such that every interval of length l contains
a number τ such that

‖u(t+ τ)− u(t)‖ < ε ∀t ∈ R.

Lemma 2.1 If u : R → Rn and g : R → R are almost periodic functions, then
u(· − g(·)) : R→ Rn is also an almost periodic function.

For a detailed proof of the above lemma see [7, Lemma 2.4].
Throughout the rest of the paper we fix p, 1 ≤ p < ∞. Denote by Lploc(R;Rn) the

space of all functions from R into Rn which are locally p-integrable in the Bochner-
Lebesgue sense. We say that a function, f ∈ Lploc(R;Rn) is p-Stepanov bounded (Sp-
bounded) if

‖f‖Sp = sup
t∈R

(∫ t+1

t

‖f(s)‖pds
)1/p

<∞.

We indicate by Lps(R;Rn) the set of all Sp-bounded functions R into Rn.

Definition 2.2 A function f ∈ Lps(R;Rn) is said to be almost periodic in the sense
of Stepanov (Sp-almost periodic) if for every ε > 0 there exists a positive number l such
that every interval of length l contains a number τ such that

sup
t∈R

(∫ t+1

t

‖f(s+ τ)− f(s)‖pds
)1/p

< ε.

Lemma 2.2 ( [12]) Let A(t) = (aij) be an n×n continuous matrix defined on R. If

(i) A(t) is bounded,

(ii) |detA(t)| ≥ κ on R for some κ > 0,

(iii) aii(t) ≤ 0 for i = 1, 2, · · · , n and for all t ∈ R,

(iv) |aii| ≥
n∑

j=1,j 6=i

|aji| for all i = 1, 2, · · · , n and for all t ∈ R,

then there exist positive constants M, γ, and the fundamental solution matrix X(t) of
the linear system

x′(t) = A(t)x(t), t ∈ R, (7)

satisfying

‖X(t)X−1(s)‖ ≤Me−γ(t−s) for t ≥ s. (8)

In the rest of the paper, we assume that A(t) satisfies all conditions given in Lemma
2.2.

Lemma 2.3 ( [8]) Let f : R → Rn be a continuous function. Then the solution
x : R→ Rn of (6) is given by

x(t) = X(t)X−1(a)x(a) +

∫ t

a

X(t)X−1(s)f(s)ds, t ≥ a, a ∈ R. (9)
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Lemma 2.4 If f : R → Rn is an Sp-almost periodic continuous function, then the
function Λ : R→ Rn defined by

Λ(t) =

∫ t

−∞
X(t)X−1(s)f(s)ds, t ∈ R,

is an almost periodic function.

Proof. We consider

Λk(t) :=

∫ t−k+1

t−k
X(t)X−1(s)f(s)ds, k ∈ N, t ∈ R.

Then

‖Λk(t)‖ ≤
∫ t−k+1

t−k
‖X(t)X−1(s)f(s)‖ds

≤
∫ t−k+1

t−k
‖X(t)X−1(s)‖‖f(s)‖ds

≤M
∫ t−k+1

t−k
e−γ(t−s)‖f(s)‖ds

≤M
(∫ t−k+1

t−k
e−qγ(t−s)ds

)1/q(∫ t−k+1

t−k
‖f(s)‖pds

)1/p
= M

e−γk q
√
eγq − 1

q
√
qγ

‖f‖Sp .

Since the series
∞∑
k=1

e−γk is convergent, from the Weierstrass test it follows that the

sequence of functions

n∑
k=1

Λk(t) is uniformly convergent on R. Thus we have

Λ(t) =

∞∑
k=1

Λk(t).

Let ε > 0. Then there exists a number l > 0 such that every interval of length l contains
a number τ such that

sup
t∈R

(∫ t+1

t

‖f(s+ τ)− f(s)‖pds
)1/p

≤ ε1,

where

0 < ε1 <
ε q
√
qγ

M(eγ − 1)( q
√
eqγ − 1)

.



516 MD. MAQBUL

Now, we consider

‖Λk(s+ τ)− Λk(s)‖

=
∥∥∫ s+τ−k+1

s+τ−k
X(s+ τ)X−1(z)f(z)dz −

∫ s−k+1

s−k
X(s)X−1(z)f(z)dz

∥∥
=
∥∥∫ s−k+1

s−k
X(s+ τ)X−1(z + τ)f(z + τ)dz −

∫ s−k+1

s−k
X(s)X−1(z)f(z)dz

∥∥
=
∥∥∫ s−k+1

s−k
X(s)X(τ)X−1(τ)X−1(z)f(z + τ)dz −

∫ s−k+1

s−k
X(s)X−1(z)f(z)dz

∥∥
=
∥∥∫ s−k+1

s−k
X(s)X−1(z)f(z + τ)dz −

∫ s−k+1

s−k
X(s)X−1(z)f(z)dz

∥∥
≤
∫ s−k+1

s−k
‖X(s)X−1(z)‖‖f(τ + z)− f(z)‖dz

≤M
∫ s−k+1

s−k
e−γ(s−z)‖f(τ + z)− f(z)‖dz

≤M
(∫ s−k+1

s−k
e−qγ(s−z)dz

)1/q(∫ s−k+1

s−k
‖f(z + τ)− f(z)‖pdz

)1/p
≤ ε1M

(∫ s−k+1

s−k
e−qγ(s−z)dz

)1/q
=
ε1Me−γk( q

√
eqγ − 1)

q
√
qγ

< ε.

Therefore,

∞∑
k=1

‖Λk(s+ τ)− Λk(s)‖ ≤ ε1M( q
√
eqγ − 1)

q
√
qγ

∞∑
k=1

e−γk < ε.

Hence, Λ(t) is an almost periodic function.

Lemma 2.5 If f : R → Rn is an Sp-almost periodic continuous function, then the
system (6) has an almost periodic solution x : R→ Rn if and only if

x(t) =

∫ t

−∞
X(t)X−1(s)f(s)ds, t ∈ R. (10)

Moreover, the system (6) has a unique almost periodic solution.

Proof. Let x : R→ Rn be an almost periodic solution of (6). Then

x(t) = X(t)X−1(a)x(a) +

∫ t

a

X(t)X−1(s)f(s)ds, t ≥ a, a ∈ R.

For t ≥ a, we have

‖X(t)X−1(a)x(a)‖ ≤Me−γ(t−a)‖x(a)‖
≤Me−γ(t−a) sup

t∈R
‖x(t)‖.

Therefore,
lim

a→−∞
‖X(t)X−1(a)x(a)‖ = 0.
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Hence,

x(t) =

∫ t

−∞
X(t)X−1(s)f(s)ds, t ∈ R.

Conversely, let x : R → Rn be a function satisfying the integral representation (10).
Then, by Lemma 2.4 , x is almost periodic. For t ≥ a, we have

x(t) =

∫ t

−∞
X(t)X−1(s)f(s)ds

=

∫ a

−∞
X(t)X−1(s)f(s)ds+

∫ t

a

X(t)X−1(s)f(s)ds

= X(t)X−1(a)

∫ a

−∞
X(a)X−1(s)f(s)ds+

∫ t

a

X(t)X−1(s)f(s)ds

= X(t)X−1(a)x(a) +

∫ t

a

X(t)X−1(s)f(s)ds.

Hence x is an almost periodic solution of (6). Suppose x and y are two almost periodic
solutions of (6), then u = x− y is an almost periodic solution of (7), hence u = 0. Thus
(6) has a unique almost periodic solution.

3 Main Result

In this section, we prove the existence of almost periodic solution of (5).
Consider the following assumptions:

(H1) m > 1 is an integer, 1 ≤ p <∞ and q is the conjugate index of p.

(H2) f1(t) is a bounded continuous function defined from R into R, and
inft∈R f1(t) > 0.

(H3) f2(t), α(t), β(t), φ(t) are all almost periodic functions defined from R into R, and
inft∈R f2(t) > 0.

(H4) F1(t), F2(t) are Sp-almost periodic continuous functions defined from R into R.

Consider the following notations:

δ1 = inf
t∈R

f1(t), δ2 = inf
t∈R

f2(t), δ = min{δ1, δ2},

θ = max{1

δ
,

supt∈R(|α(t) + f22 (t)|+ |β(t)|)
δ

}, σ = sup
t∈R

(|α(t) + f22 (t)|+m|β(t)|),

λ =
q
√

(eqδ − 1)
q
√
qδ(eδ − 1)

max{‖F1‖Sp , ‖F2‖Sp}.

We indicate by E the set of all functions of the form ϕ(t) = (ϕ1(t), ϕ2(t))T , where
ϕ1(t), ϕ2(t) are almost periodic functions defined from R into R. Then E forms a Banach
space with respect to the norm ‖ · ‖E given by

‖ϕ‖E = max
{

sup
t∈R
|ϕ1(t)|, sup

t∈R
|ϕ2(t)|

}
.
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Theorem 3.1 Suppose the assumptions (H1)-(H4) hold, and the positive constants
λ, θ and σ satisfy

max{1, σ} < δ,
λ

1− θ
< 1, (11)

then there exists a unique almost periodic solution of system (5) in the region

E∗ =
{
ϕ ∈ E : ‖ϕ− ϕ0‖E ≤

θλ

1− θ
}
,

where

ϕ0(t) =

(∫ t

−∞
e−

∫ t
s
f1(z)dzF1(s)ds,

∫ t

−∞
e−

∫ t
s
f2(z)dzF2(s)ds

)T
.

Proof. Since m > 1, we have

sup
t∈R

(|α(t) + f22 (t)|+ |β(t)|) ≤ sup
t∈R

(|α(t) + f22 (t)|+m|β(t)|),

hence θ ≤ max{ 1δ ,
σ
δ } < 1. Clearly, E∗ is a closed convex subset of E. We consider

‖ϕ0‖E = max{sup
t∈R
|
∫ t

−∞
e−

∫ t
s
f1(z)dzF1(s)ds|, sup

t∈R
|
∫ t

−∞
e−

∫ t
s
f2(z)dzF2(s)ds|}

≤ max{sup
t∈R

∫ t

−∞
e−

∫ t
s
f1(z)dz|F1(s)|ds, sup

t∈R

∫ t

−∞
e−

∫ t
s
f2(z)dz|F2(s)|ds}

≤ max{sup
t∈R

∫ t

−∞
e−

∫ t
s
δdz|F1(s)|ds, sup

t∈R

∫ t

−∞
e−

∫ t
s
δdz|F2(s)|ds}

≤ max{sup
t∈R

∫ t

−∞
e−δ(t−s)|F1(s)|ds, sup

t∈R

∫ t

−∞
e−δ(t−s)|F2(s)|ds}

= max{sup
t∈R

∞∑
k=1

∫ t−k+1

t−k
e−δ(t−s)|F1(s)|ds,

sup
t∈R

∞∑
k=1

∫ t−k+1

t−k
e−δ(t−s)|F2(s)|ds}

≤ max{sup
t∈R

∞∑
k=1

(

∫ t−k+1

t−k
e−qδ(t−s)ds)1/q‖F1‖Sp ,

sup
t∈R

∞∑
k=1

∫ t−k+1

t−k
(e−qδ(t−s)ds)1/q‖F2‖Sp}

= max{
q
√

(eqδ − 1)
q
√
qδ(eδ − 1)

‖F1‖Sp ,
q
√

(eqδ − 1)
q
√
qδ(eδ − 1)

‖F2‖Sp}

=
q
√

(eqδ − 1)
q
√
qδ(eδ − 1)

max{‖F1‖Sp , ‖F2‖Sp} = λ.

Therefore, for any ϕ ∈ E∗, we get

‖ϕ‖E ≤ ‖ϕ− ϕ0‖E + ‖ϕ0‖E ≤
θλ

1− θ
+ λ =

λ

1− θ
< 1. (12)
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Now, let ϕ ∈ E, and consider the following nonlinear system(
u′(t)
v′(t)

)
=

(
−f1(t) 0

0 −f2(t)

)(
u(t)
v(t)

)
+

(
ϕ2(t) + F1(t)

ϕ̃1(t)

)
, (13)

where ϕ̃1(t) = (α(t)+f22 (t))ϕ1(t)−β(t)ϕm1 (t−φ(t))+F2(t). By Lemma 2.1, ϕ1(t−φ(t))
is almost periodic, and hence ϕ̃1(t) is a Stepanov-almost periodic function. Since the

matrix

(
−f1(t) 0

0 −f2(t)

)
satisfies all conditions given in Lemma 2.2, by Lemma 2.5

the system (13) has a unique almost periodic solution and is given by

(
uϕ(t)
vϕ(t)

)
=


∫ t

−∞
e−

∫ t
s
f1(z)dz[ϕ2(s) + F1(s)]ds∫ t

−∞
e−

∫ t
s
f2(z)dzϕ̃1(s)ds

 .

Therefore, for each ϕ ∈ E, (13) has a unique almost periodic solution

(
uϕ(t)
vϕ(t)

)
.

Define a map T : E → E by

T (ϕ)(t) =

(
uϕ(t)
vϕ(t)

)
.

To prove T is a self-mapping from E∗ into E∗, we consider, for any ϕ ∈ E∗,
‖Tϕ− ϕ0‖E

= max{sup
t∈R
|
∫ t

−∞
e−

∫ t
s
f1(z)dzϕ2(s)ds|,

sup
t∈R
|
∫ t

−∞
e−

∫ t
s
f2(z)dz(α(s) + f22 (s))ϕ1(s)− β(s)ϕm1 (t− φ(s))ds|}

≤ max{sup
t∈R

∫ t

−∞
e−δ1(t−s)‖ϕ‖Eds,

sup
t∈R

∫ t

−∞
e−δ2(t−s)[(|α(s) + f22 (s)|)‖ϕ‖E + |β(s)|‖ϕ‖mE ]ds}

≤ max{sup
t∈R

∫ t

−∞
e−δ1(t−s)ds, sup

t∈R

∫ t

−∞
e−δ2(t−s)(|α(s) + f22 (s)|+ |β(s)|)ds}‖ϕ‖E

≤ max{ 1

δ1
,

supt∈R(|α(t) + f22 (t)|+ |β(t)|)
δ2

}‖ϕ‖E

≤ max{1

δ
,

supt∈R(|α(t) + f22 (t)|+ |β(t)|)
δ

}‖ϕ‖E

= θ‖ϕ‖E ≤
θλ

1− θ
.

Therefore, T maps E∗ into itself. Next, we prove that T is a contraction mapping from
E∗ into itself. For ϕ,ψ ∈ E∗, we have
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‖T (ϕ)− T (ψ)‖E

= max{sup
t∈R
|
∫ t

−∞
e−

∫ t
s
f1(z)dz[ϕ2(s)− ψ2(s)]ds|, sup

t∈R
|
∫ t

−∞
e−

∫ t
s
f2(z)dz[(α(s)

+ f22 (s))(ϕ1(s)− ψ1(s))− β(s)(ϕm1 (s− φ(s))− ψm1 (s− φ(s)))]ds|}

≤ max{sup
t∈R
|
∫ t

−∞
e−

∫ t
s
δ1dz‖ϕ− ψ‖Eds, sup

t∈R

∫ t

−∞
e−

∫ t
s
δ2dz[|α(s) + f22 (s)|×

|ϕ1(s)− ψ1(s)|+ |β(s)||ϕm1 (s− φ(s))− ψm1 (s− φ(s))|]ds}

≤ max{ 1

δ1
‖ϕ− ψ‖E , sup

t∈R

∫ t

−∞
e−δ2(t−s)[|α(s) + f22 (s)|‖ϕ− ψ‖E + |β(s)|×

(|ϕ1(s− φ(s))− ψ1(s− φ(s))|(|ϕm−11 (s− φ(s))|+ |ϕm−21 (s− φ(s))|×
|ψ1(s− φ(s))|+ · · ·+ |ϕ1(s− φ(s))||ψm−21 (s− φ(s))|+ |ψm−11 (s− φ(s))|))]ds}

≤ max{ 1

δ1
‖ϕ− ψ‖E , sup

t∈R

∫ t

−∞
e−δ2(t−s)[|α(s) + f22 (s)|‖ϕ− ψ‖E + |β(s)|×

‖ϕ− ψ‖E(‖ϕ‖m−1E + ‖ϕ‖m−2E ‖ψ‖E + · · ·+ ‖ϕ‖E‖ψ‖m−2E + ‖ψ‖m−1E )]ds}

≤ max{ 1

δ1
‖ϕ− ψ‖E , sup

t∈R

∫ t

−∞
e−δ2(t−s)[|α(s) + f22 (s)|‖ϕ− ψ‖E

+m|β(s)|‖ϕ− ψ‖E ]ds}

≤ max{ 1

δ1
‖ϕ− ψ‖E ,

1

δ2
sup
t∈R

(|α(t) + f22 (t)|+m|β(t)|)‖ϕ− ψ‖E}

≤ max{1

δ
‖ϕ− ψ‖E ,

1

δ
sup
t∈R

(|α(t) + f22 (t)|+m|β(t)|)‖ϕ− ψ‖E}

≤ max{1

δ
,

1

δ
sup
t∈R

(|α(t) + f22 (t)|+m|β(t)|)}‖ϕ− ψ‖E

= max{1

δ
,
σ

δ
}‖ϕ− ψ‖E .

Since max{ 1δ ,
σ
δ } < 1, T is a contraction map on E∗. Therefore, T has a unique fixed

point ϕ∗(t) = (u∗(t), v∗(t))T ∈ E∗, i.e., Tϕ∗ = ϕ∗. By (13), ϕ∗ satisfies (5), hence ϕ∗ is
an almost periodic solution of the system (5) in E∗.

4 Application

Example 4.1 The following nonlinear Duffing equation with time-varying coeffi-
cients

u′′(t) + (20 + sin t+ sin t2)u′(t) + (100.5 + 10 sin t− sin2 t+ sin t sin t2 + 10 sin t2

+ 2t cos t2)u(t) + 0.5 cos t(u3(t− sin t)− sin t− 10)− 0.5 sin
√

2t = 0 (14)

has at least one almost periodic solution.

Proof. Consider

v(t) = u′(t) + (10 + sin t2)u(t)− 0.5 cos t, (15)
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then we can transform (14) into the following system of differential equations
u′(t) = −(10 + sin t2)u(t) + v(t) + 0.5 cos t,

v′(t) = −(10 + sin t)v(t) + (sin2 t− 0.5)u(t)− 0.5 cos tu3(t− sin t)

+0.5 sin t+ 0.5 sin
√

2t.

(16)

Since f1(t) = 10 + sin t2, f2(t) = 10 + sin t, α(t) = −100.5 − 20 sin t, β(t) = 0.5 cos t,
F1(t) = 0.5 cos t, F2(t) = 0.5 sin t + 0.5 sin

√
2t, φ(t) = sin t, p = 2, m = 3, we have

δ1 = δ2 = δ = 9, q = 2,

θ = max{1

δ
,

supt∈R(|α(t) + f22 (t)|+ |β(t)|)
δ

}

= max{1

9
,

supt∈R(| − 0.5 + sin2 t|+ |0.5 cos t|)
9

}

= max{1

9
,

1

9
} =

1

9
.

Since
0 < ‖F1‖S2 ≤ sup

t∈R
|0.5 cos t| = 0.5 and

0 < ‖F2‖S2 ≤ sup
t∈R

(|0.5 sin t+ 0.5 sin
√

2t|) = 1,

0 < λ =
q
√

(eqδ − 1)
q
√
qδ(eδ − 1)

max{‖F1‖Sp , ‖F2‖Sp}

=

√
(e18 − 1)√

18(e9 − 1)
max{‖F1‖S2 , ‖F2‖S2} ≤

√
(e18 − 1)√

18(e9 − 1)

=⇒ λ2 ≤ (e18 − 1)

18(e9 − 1)2
=

1

18
+

1

9(e9 − 1)
<

3

18

=⇒ λ <

√
3

18
<

8

9
= 1− θ =⇒ λ

1− θ
< 1.

σ = sup
t∈R

(|α(t) + f22 (t)|+m|β(t)|) = sup
t∈R

(| − 0.5 + sin2 t|+ 3|0.5 cos t|) = 2 < 9 = δ.

Therefore, all the assumptions given in Theorem 3.1 are satisfied, hence (16) has at least
one almost periodic solution. Thus, the nonlinear Duffing equation (14) has at least one
almost periodic solution.

Remark 4.1 Notice that the function f1(t) = 10 + sin t2 is not almost periodic
and the coefficient of u(t) in (14) is unbounded. Thus, the results of this paper are
substantially extended and improved the main results of [13,15,16,18].

5 Conclusion

In this paper, we considered a class of nonlinear Duffing system (5) with time-varying
coefficients and Stepanov-almost periodic forcing terms. We first considered the almost
periodic system (6) with a Stepanov-almost periodic continuous forcing function and
then studied the existence of almost periodic solutions of (6). Using these results, we
established some sufficient conditions for the existence and uniqueness of an almost pe-
riodic solution of the system (5). Finally, we provided an example to illustrate the main
result.
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Abstract: Practical implementation of synchronization schemes is important for
secure communication. With many systems available, simple systems with varying
differences will prove pertinent in user identification and inter-operability of commu-
nicating units. The implementation of Chua’s circuit with different memristors is a
potential candidate for the realization of such units. In this paper, a general con-
trol function for the synchronization of two Chua’s circuits with similar or dissimilar
memristors was developed. Three different memristor circuits were considered in this
paper. Numerical simulation of the proposed control function was carried out and
the performance of different memristors in the similar and dissimilar configuration
was considered.

Keywords: memristor; active control; Chua’s circuit; synchronization.
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1 Introduction

The application of chaotic systems in secure communications has led to the development
of several synchronization schemes. Initially, synchronization of chaotic systems was be-
tween two identical systems [1] before it was extended from two different chaotic systems
to the increased and reduced order synchronization between two systems [2], increased
and reduced order between three or more systems [3, 4], synchronization of fractional
order systems [5], delay differential equations, discrete chaotic systems, and electronic
realization [6].

∗ Corresponding author: mailto:stogunjo@futa.edu.ng

© 2020 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua523

mailto: stogunjo@futa.edu.ng
http://e-ndst.kiev.ua


524 S. T. OGUNJO AND A.O. ADELAKUN AND I. A. FUWAPE

Different types of synchronization such as complete synchronization, lag synchroniza-
tion, generalized synchronization, projective synchronization, and function projective
synchronization have been developed. There exist several synchronization techniques
including the active control, backstepping, Open-Plus-Closed-Loop (OPCL), recursive
active control. Studies have shown that the active control method has better perfor-
mance for integer order [7] and fractional order systems [5].

Implementation of synchronization is required for real time applications in secure
communication. Electronic circuit design and implementation of chaotic systems are im-
portant in the understanding of dynamic systems and practical implementation. The
discovery of chaos in electronic circuits by Chua [8] initiated a new line of research [9].
Chua’s chaotic circuit has been extensively studied with several modifications. Combina-
tion synchronization of memristive circuit was realized through the diffusive and negative
feedback coupling [6], time delayed sliding mode synchronization in a novel chaotic mem-
capacitor [10], design of low dimensional fractional order nonautonomous system based
on the Chua system [11], experimental realization of synchronization in a network using
Chua’s circuit [12].

The main goal of this paper is to investigate the behaviour of different memristors
under synchronization using an active control method. The performance of different
memristors is important in real life implementation of synchronization for secure com-
munication. Hence, the speed of synchronization and fluctuations before synchronization
are considered in this paper. In Section 2, the system and different memristors to be
considered are discovered while the synchronization of the systems is discussed in Section
3. Results are presented in Section 4 and conclusions are given in Section 5.

2 System Description

Chua’s circuit is given by the expression [13]

ẋ = α(y − f(x)),

ẏ = x− y + z,

ż = −βy,
(1)

where x, y, z are state space of the system, and the piecewise linear function f(x) is
defined as

f(x) =

 α(y − bx− (b− a), if x < −1;
α(y − ax), if −1 ≤ x ≤ 1;
α(y − bx− (a− b)), if x > 1,

a, b, c are constants.
By replacing Chua’s diode with a flux controlled memristor, Itoh and Chua [14]

transformed the canonical Chua circuit into a 4 D system of the form

ẏ1 =
1

C1R
(y2 − y1)− 1

C1
y1Wi,

ẏ2 =
1

C2R
(y1 − y2)− y3,

ẏ3 =
1

L
y2 −

r

L
y3,

ẏ4 = y1,

(2)
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where C1, C2, L are the circuit elements and Wi is the memductance. In this paper, the
synchronization of system (2) will be investigated under three different flux controlled
memristors.
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Figure 1: Phase space realization of Chua’s circuit with a memristor of the form Wi = −a+b|y4|,
where the values of a and b are taken as 0.6667× 10−3 and 1.4828, respectively.

2.1 Memristor of type I

By replacing Chua’s diode in Chua’s chaotic circuit with an active flux memristor, a new
memristor based chaotic circuit was obtained by [15] as

ẋ = α(y − x−W (w)x),

ẏ = x− y + z,

ż = −βy − γz,
ẇ = x,

(3)
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where W (w) = −a + b|w|. The system was found chaotic for a wide range of values of
|w|. The circuit form was given and implemented by [16] as

dv1
dt

=
1

C1

(
v2 − v1
R

−W (φ)v1

)
,

dv2
dt

=
1

C2

(
v1 − v2
R

− i3
)
,

di3
dt

=
1

L
(v2 − v1),

dφ

dt
= v1.

(4)

The phase space representation of this system is shown in Figure 1.

2.2 Memristor of type II

A memductance function of the form

W (φ) =
dq(φ(t)

dφ(t)
= −a+ 3bφ2(t) (5)

was introduced to extend 4D chaotic Chua’s circuit proposed in [17] to a 5D system
by [18]. The proposed systems thus became

dx1(t)

dt
=

1

C1
(x3(t)−W (x5(t))x1(t),

dx2(t)

dt
=

1

C2
(−x3(t) + x4(t)),

dx3(t)

dt
=

1

L
(x2(t)− x1(t)−Rx3(t)),

dx4(t)

dt
=
−x2(t)

L2
,

dx5(t)

dt
= x1(t).

(6)

The system was reported to exhibit chaos for certain system parameters. The phase space
and dynamics of equation (2) with memristor of the form (5) is presented in Figure 2.

2.3 Memristor of type III

A dimensionless flux controlled memristor model with fifth order flux polynomial was
proposed by [19] as

ẋ = α(y + x−W (w)x),

ẏ = βx+ γy − z,
ż = δy − z,
ẇ = x,

(7)

where the memductance W (φ) is defined as

W (φ) = aφ4 − bφ2 − c, (8)
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The phase space and dynamics of equation (2) with memristor of the form (8) is presented
in Figure 3.

3 Synchronization

Theorem 1 If the drive and response systems of the form (2) have the memristive el-
ements given by W j

i and W k
i , respectively (where i = 1, 2, 3 are the different types of

memristors being considered), complete synchronization will be achieved by the method
of active control if the control function is chosen as

u1(t) =
1

C1
y1W

j
i −

1

C1
x1W

k
i +

(
λ1 +

1

C1R

)
e1 −

1

C1R
e2,

u2(t) =
1

C2R
e1 +

(
λ2 +

1

C2R

)
e2 +

1

C2
e3,

u3(t) = − 1

L
e2 +

(
λ3 +

r

L

)
e3,

u4(t) = e1 + λ4e4,

(9)

where λi are chosen to be negative and ei = yi−xi, then the drive system (2) will achieve
multi-switching synchronization with the response system.

Proof. Take equation (2) as the drive system and the following ones as the response
system

ẋ1 =
1

C1R
(x2 − x1)− 1

C1
x1Wi + u1(t),

ẋ2 =
1

C2R
(x1 − x2)− x3 + u2(t),

ẋ3 =
1

L
x2 −

r

L
x3 + u3(t),

ẋ4 = x1 + u4(t),

(10)

where ui are the controllers to be determined. Substituting equations (2) and (10) into
the error dynamics ei = yi − xi, where i = 1, 2, 3, we obtain

ė1 =
1

C1R
(e2 − e1)− 1

C1
y1W

j
i +

1

C1
x1W

k
i + u1(t),

ė2 =
1

C2R
(e1 − e2)− e3 + u2(t),

ė3 =
1

L
e2 −

r

L
e3 + u3,

ė4 = e1 + u4,

(11)

To achieve asymptotic stability of system (11), the terms, which are nonlinear in ei, are
eliminated as follows:

u1 =
1

C1
y1W

j
i −

1

C1
x1W

k
i + v1(t),

u2 = v2(t),

u3 = v3,

u4 = v4,

(12)
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Figure 2: Phase space realization of Chua’s circuit with the memristor of the form Wi =
−a + 3by2

4 , where the values of a and b are taken as 0.6667× 10−3 and 1.4828, respectively.

substituting (12) into (11) gives

ė1 =
1

C1R
(e2 − e1) + v1(t),

ė2 =
1

C2R
(e1 − e2)− e3 + v2(t),

ė3 =
1

L
e2 −

r

L
e3 + v3,

ė4 = e1 + v4.

(13)

Using the active control method, a constant matrix D is chosen which will control the
error dynamics (13) such that the feedback matrix is Vi = Dei. There are various choices
of the feedback D which can be chosen to control the error dynamics [20]. We chose D
to be of the form

D =


(
λ1 + 1

C1R

)
− 1

C1R
0 0

1
C2R

(
λ2 + 1

C2R

)
1 0

0 − 1
L

(
λ3 + r

L

)
0

1 0 0 λ4

 . (14)

If the eigenvalues λi are chosen to be negative, a stable synchronization between the
drive and response system will be achieved.
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Figure 3: Phase space realization of Chua’s circuit with memristor of the form Wi = ay4
4 −

by2
4 − c, where the values of a b and c are taken as 1000, 1.087 and 0.33e−3, respectively.
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Figure 4: The synchronization error functions for two systems with the memristor of type I
using control functions as described in Corollary 3.1.
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Figure 5: The synchronization error functions for two systems with the memristor of type II
using control functions as described in Corollary 3.2.

Corollary 3.1 If W 1
1 = −a11+b11|y4| and W 2

1 = −a21+b21|x4|, then the control function
(14) can be written as

u1(t) =
1

C1
y1W

j
i −

1

C1
x1W

k
i +

(
λ1 +

1

C1R

)
e1 −

1

C1R
e2,

u2(t) =
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1
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)
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1

C2
e3,

u3(t) = − 1

L
e2 +

(
λ3 +

r

L

)
e3,

u4(t) = e1 + λ4e4.

(15)

Corollary 3.2 If W 1
2 = −a12+3b12y

2
4 and W 2

2 = −a22+3b22x
2
4, then the control function

(14) can be written as

u1(t) =
1

C1
y1W

j
i −

1

C1
x1W

k
i +

(
λ1 +

1

C1R

)
e1 −

1

C1R
e2,

u2(t) =
1

C2R
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(
λ2 +

1

C2R

)
e2 +

1

C2
e3,

u3(t) = − 1

L
e2 +

(
λ3 +

r

L

)
e3,

u4(t) = e1 + λ4e4.

(16)

Corollary 3.3 If W 1
1 = a13y

4
4−b13y24−c13 and W 2

1 = a23y
4
4−b23y24−c23, then the control
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Figure 6: The synchronization error functions for two systems with the memristor of type III
using control functions as described in Corollary 3.3.
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Figure 7: Error functions of different memristors when synchronized with the memristor Wii

(where i = 1, 2, 3).
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Figure 8: Comparison of the synchronization error for Wij(i 6= j).

function (14) can be written as

u1(t) =
1

C1
y1W

j
i −

1

C1
x1W

k
i +

(
λ1 +

1

C1R

)
e1 −

1

C1R
e2,

u2(t) =
1

C2R
e1 +

(
λ2 +

1

C2R

)
e2 +

1

C2
e3,

u3(t) = − 1

L
e2 +

(
λ3 +

r

L

)
e3,

u4(t) = e1 + λ4e4.

(17)

4 Results

In order to verify the effectiveness of the proposed controllers, numerical simulations were
carried out. The system of equations with the proposed controllers was solved using the
fourth-order Runge-Kutta method with step size of 0.0001. Using the initial conditions
(y1, y2, y3, y4) = (10 × 10−3, 0.02, 0.01, 1 × 10−3) and (x1, x2, x3, x4) = (9 × 10−3, 10 ×
10−30.0011 × 10−3), the controllers described in Corollary 3.1 were implemented. The
results are shown in Figure 4. The synchronization errors between the two systems when
W1 = −a1 +b2|y4| and W2 = −a2 +b2|x4| were simulated. Similarly, the synchronization
error between system (2) and (10) when W1 = −a1 + 3b2y

2
4 and W2 = −a2 + b32x

2
4 using

the initial conditions (y1, y2, y3, y4) = (10× 10−3, 0.02, 0.01, 1× 10−3) and (x1, x2, x3, x4)
= (9× 10−3, 10× 10−30.0011× 10−3) are simulated and the results are shown in Figure
5. In the same vein, the control functions as described in Corollary 3.3 were simulated
using two memristor of type III. The result is shown in Figure 6. The performance of
each memristor, when synchronized in the form Wii, can be investigated from Figure
7. The memristor of type II showed the worst performance while the memristor of
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type III exhibited the best performance. The error fluctuation were the greatest for
the memristor of type II and the lowest for the memristor of type III. In Figure 8, the
performance of synchronization of the system under two different memristors Wij(i 6= j)
is reported using only the first error component e1. The combination of W1W3 has the
lowest fluctuations before synchronization and the fastest synchronization of the three
different combinations. The worst performance was the combination W2W3 which has
the highest fluctuations amongst the three and the slowest convergence.

5 Conclusion

In this paper, we have investigated the synchronization of different memristors in the
same circuit with identical and non-identical memristors. Suitable controllers were de-
signed using the method of active control. Numerical simulation results showed that
the controllers were effective. The performance of the three memristors was investigated
using fluctuations before synchronization and time to synchronization. In the synchro-
nization between two similar memristors, the memristor of type III was found to have
the best performance. However, the synchronization of memristors of type I and III ex-
hibited the fastest synchronization and least fluctuation, making it the best performing.
This scheme will find application in a multiuser secure communication environment. Fur-
ther investigation may be carried out on the multi-switching, time delayed and practical
implementation of this scheme.
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Abstract: In this paper, global stability of recurrent neural networks with time-
varying delays is considered. The uncertainity is considered in all the parameters
of the concerned neural networks. A novel LMI-based stability criterion is obtained
by using the Lyapunov functional theory to guarantee the asymptotic stability of
recurrent neural networks with time-varying delays. Finally, a numerical example is
given to demonstrate the correctness of the theoretical results.
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1 Introduction

A recurrent neural network naturally involves dynamic elements in the form of feedback
connections used as internal memories. Unlike the feedforward neural network whose
output is a function of its current inputs only and is limited to static mapping, the
recurrent neural network performs dynamic mapping. Recurrent networks are needed
for the problems where there exists at least one system state variable which cannot be
observed. Most of the existing recurrent neural networks are obtained by adding trainable
temporal elements to the feedforward neural networks (such as multilayer perceptron
networks [5] and radial basis function networks [2]) to make the output history sensitive.
Like feedforward neural networks, this network function as block boxes and the meaning

∗ Corresponding author: mailto:syedgru@gmail.com

© 2020 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua535

mailto: syedgru@gmail.com
http://e-ndst.kiev.ua


536 BANDANA PRIYA, GANESH KUMAR THAKUR, SUDESH KUMAR GARG AND M. SYED ALI

of each weight in these nodes is not known. They play an important role in applications
such as classification of patterns, associate memories and optimization etc. ( see [2], [5]
and the references therein). Thus, research on the properties of an especial stability
problem and relaxed stability problem of recurrent neural networks, has become a very
active area in the past few years ( see for example [3], [8], [9]).

It is well known that time delays are inevitably encountered in neural networks which
are usually a main source of oscillation and instability, which brings to the neural net-
work divergence and instability and needs much attention to be payed. According to
the finite switching speed of amplifiers in electronic networks, time delay is either con-
stant or time-varying. The stability criteria of neural networks with time-varying delays
are classified into two categories, i.e., delay-independent [11] and delay-dependent [14].
The delay-independent stability conditions are usually more conservative than delay-
dependent conditions due to the fact that they include less information concerning the
time delays, especially for the time delays which are relatively small. Recently, many
important results on the delay-dependent stability analysis have been reported for neural
networks with time-varying delays [10], [12], [13].

In this paper, we study stability of recurrent neural networks with time-varying delays.
By using the Lyapunov functional technique, global robust stability conditions for the
recurrent neural networks are given in terms of LMIs, which can be easily calculated by
MATLAB LMI toolbox [4]. The main advantage of the LMI based approaches is that
the LMI stability conditions can be solved numerically using the effective interior-point
algorithms [1]. Numerical examples are provided to demonstrate the effectiveness and
applicability of the proposed stability results.

Notations: Throughout the manuscript we will use the notation A > 0 (or A < 0)
to denote that the matrix A is a symmetric and positive definite (or negative definite)
matrix. The shorthand diag {· · · } denotes the block diagonal matrix. ‖ · ‖ stands for
the Euclidean norm. Moreover, the notation * always denotes the symmetric block in
one symmetric matrix. Let r(t), t ≥ 0 be a right-continuous Markov chain on a complete
probability space (Υ,F,P) taking values in a finite space S = 1, 2, ...N with operator

Λ = Πij(n× n) given by P{r(t+ ∆(t)) = j|r(t) = i} =

{
Πij∆(t) + o(∆(t)), i 6= j,
1 + Πij∆(t) + o(∆(t)), i = j,

where ∆(t) > 0 and lim∆(t)→0
o(∆(t))

∆(t) = 0, Πij ≥ 0 is the transition rate from i to j if

i 6= j, while Πii=−
∑N
j=1,j 6=1 Πij ., i, j ∈ S.

2 System Description and Preliminaries

Consider the following uncertain recurrent neural network with time-varying delays de-
scribed by

v̇i(t) = −ai(r(t))vi(t) +

n∑
j=1

bij(r(t)) +Gj(vj(t)) +

n∑
j=1

cij(r(t))Gj(vj(t− τj(t))) + Ii, (1)

in which vi(t) is the activation of the ith neuron. Positive constant ai denotes the
rates with which the cell i resets their potential to the resting state when isolated
from the other cells and inputs. bij and cij are the connection weights at the
time t, Ii denotes the external input and Gj(·) is the neuron activation function
of jth neuron. τj(t) is the bounded time varying delay in the state and satisfies
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0 ≤ τj(t) ≤ τ̄ , 0 ≤ τ̇j(t) ≤ d < 1, i, j = 1, 2, .., n.

The following assumption is made on the activation function.
(A) The neuron activation function Gj(·) in (1) is bounded and satisfies the following

Lipschitz condition:

|Gj(x)−Gj(y)| ≤ |Lj(x− y)|

for all x, y ∈ R, i, j = 1, 2, ..., n, where Lj ∈ Rn×n are known constant matrices.

Assume that v∗ = (v∗1 , v
∗
2 , ..., v

∗
n)T is the equilibrium point of the system, then we shift

the equilibrium points to the origin by the transformation xi(t) = vi(t)− v∗i , fj(xj(t)) =
Gj(uj(t))−Gj(u∗j ). Then the transformed system is given by

ẋi(t) = −ai(r(t))xi(t) +

n∑
j=1

wij(r(t))fj(xj(t)) +

n∑
j=1

hij(r(t))fj(xj(t− τj(t))). (2)

Conveniently, we can write (2) in the form

ẋ(t) = −A(r(t))x(t) +B(r(t))f(x(t)) + C(r(t))f(x(t− τ(t))),

where x(t) = (x1(t), x2(t), . . . , xn(t))T , A = diag{a1, a2, . . . , an}, B =
[(bij)n×n]T , C = [(cij)n×n]T , f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T and
τ(t) = (τ1(t), τ2(t), . . . , τn(t))T .

Then we have

fT (x(t))f(x(t)) ≤ xT (t)LTLx(t),

where L = diag{L1, L2, . . . , Ln}. For convinience we denote, r(t) = i.

Lemma 2.1 (Schur complement [1]). Let M,P,Q be given matrices such that Q > 0,
then [

P MT

M −Q

]
< 0 ⇐⇒ P +MTQ−1M < 0.

The following Lemmas will be essential for the proofs in the next section.

Lemma 2.2 Let x ∈ Rn, y ∈ Rn and ε > 0. Then we have xT y + yTx ≤ εxTx +
ε−1yT y .

Proof. The proof follows immediately from the inequality (ε1/2x− ε−1/2y)T (ε1/2x−
ε−1/2y) ≥ 0.

Lemma 2.3 [6] For any constant matrix M ∈ Rn×n,M = MT > 0, scalar η > 0,
vector function Γ : [0, η] → Rn such that the integrations are well defined, the following
inequality holds: [∫ η

0

Γ(s)ds

]T
M

[∫ η

0

Γ(s)ds

]
≤ η

∫ η

0

ΓT (s)MΓ(s)ds.
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3 Stability Results

In this section, some sufficient conditions of stability for system (2) are obtained.

Theorem 3.1 Under the assumption (A) the system (2) is robustly asymptotically
stable in the mean square if there exist symmetric positive definite matrices Pi > 0, Q >
0, R > 0, S > 0, positive scalars γj , (j = 0, 1, 2, 3, 4) and positive diagonal matrix
M = diag{m1,m2, . . . ,mn} > 0 such that feasible solutions exist for

Ψ =



Σ 0 γ2PiBi γ4PiCi LTCi γ3L
TM γ4L

TM γ5L
TM

∗ LTCi 0 0 0 0 0 0
∗ ∗ −γ5I 0 0 0 0 0
∗ ∗ ∗ −γ1I 0 0 0 0
∗ ∗ ∗ ∗ −γ4I 0 0 0
∗ ∗ ∗ ∗ ∗ −γ3I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ4I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ5I

 < 0, (3)

where

Σ =

 Σ1 0 0

∗ Σ2 0

∗ ∗ −τ̄−1S

 ,
Σ1 = −ATi Pi − PTi Ai + LTRL+ τ̄LTSL+ γ−1

1 LTL+Q+ γ−1
3 ATi Ai +

∑N
j=1 ΠijPj ,

Σ2 = −(1− d)Q− (1− d)LTRL+ γ−1
2 LTL.

Proof: We consider the following Lyapunov functional to derive the stability result:

V (t, x(t)) = V1(t, x(t)) + V2(t, x(t)) + V3(t, x(t)) + V4(t, x(t)),

where

V1(t, x(t)) = xT (t) Pi x(t),

V2(t, x(t)) = 2

n∑
i=1

mi

∫ xi

0

fi(s)ds,

V3(t, x(t)) =

∫ t

t−τ(t)

[xT (s)Qx(s)ds+ fT (x(s))Rf(x(s))]ds,

V4(t, x(t)) =

∫ t

t−τ̄
(s− t+ τ̄)fT (x(θ))Sf(x(θ))dθds.

We can calculate the derivative of V along the trajectories of the system (2), then we
have

V̇ (t, x(t)) = V̇1(t, x(t)) + V̇2(t, x(t)) + V̇3(t, x(t)) + V̇4(t, x(t)),

where

V̇1(t, x(t)) = 2xT (t)Pẋ(t) = 2xT (t)Pi[−Aix(t) +Bif(x(t)) + Cif(x(t− τ(t)))]

+
∑N
j=1 Πijx

T (t)Pjx(t),

V̇2(t, x(t)) = 2
∑n
i=1mifi(xi(t))ẋi(t)
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= fT (x(t))[−2MAix(t) + 2fT (x(t))MBif(x(t)) + 2fT (x(t))MCif(x(t− τ(t))),

V̇3(t, x(t)) = xT (t)Qx(t)− (1− d)xT (t− τ(t))Qx(t− τ(t)) + fT (x(t))Rf(x(t))

− (1− d)fT (x(t− τ(t)))Rf(x(t− τ(t))),

and using Lemma 2.3, we have

V̇4(t, x(t)) = τ̄ fT (x(t))Sf(x(t))−
∫ t
t−τ̄ f(x(s))Sf(x(s))ds

≤ τ̄ fT (x(t))Sf(x(t))−
( ∫ t

t−τ̄ f(x(s))ds
)T

τ̄−1S
( ∫ t

t−τ̄ f(x(s))ds
)
.

It follows from Lemma 2.2 that

2xT (t)PiBf(x(t)) ≤ γ1x
T (t)PiBiB

T
i Pix(t) + γ−1

1 xT (t)LTLx(t),

2xT (t)PiCif(x(t− τ(t))) ≤ γ2x
T (t)PiCiC

T
i Pix(t) + γ−1

2 xT (t− τ(t))LTLx(t− τ(t)),

−2fT (x(t))MAix(t) ≤ γ3x
T (t)LTMMTLx(t) + γ−1

3 xT (t)ATi Aix(t),

2fT (x(t))MWif(x(t)) ≤ γ4x
T (t)LTMMTLx(t) + γ−1

4 xT (t)LTBiB
T
i Lx(t),

2fT(x(t))MCif(x(t−τ(t))) ≤ γ5x
T (t)LTMMTLx(t)+γ−1

5 xT (t−τ(t))LTCiC
T
i Lx(t−τ(t)).

We obtain

V̇ ≤ xT (t)
[
−ATi Pi − PiAi + γ1PiBiB

T
i Pi + γ−1

1 LTL+ γ−1
3 ATi Ai + γ−1

4 LTBiB
T
i L (4)

+ γ4PiCiC
T
i Pi + (γ3 + γ4 + γ5)LTMMTL+Q+ LTRL+ τ̄LTSL

]
x(t)

−
( ∫ t

t−τ̄
f(x(s))ds

)T
τ̄−1S

( ∫ t

t−τ̄
f(x(s))ds

)
+ xT (t− τ(t))[γ−1

2 LTL

+ γ−1
5 LTCiC

T
i L− (1− d)Q− (1− d)LTRL]x(t− τ(t))

}
≤ ξT (t)Γξ(t), (5)

Γ =

 Γ11 0 0
∗ Γ22 0
∗ ∗ −τ̄−1S

 , Γ11 = −ATi Pi − PiAi + γ1PiBiB
T
i Pi

+γ−1
1 LTL+γ−1

3 ATi Ai+γ
−1
4 LTBiB

T
i L+γ2PiCiC

T
i Pi+(γ3+γ4+γ5)LTMMTL+Q+LTRL

+ τ̄LTSL+
∑N
j=1 ΠijPj ,Γ22 = γ−1

2 LTLL− (1− d)Q− (1− d)LTRL+ γ−1
5 LTCiC

T
i L,

ξT (t) = [xT (t) xT (t− τ(t))
( ∫ t

t−τ̄
f(x(s))ds

)T
]T .

By using the Schur complement (Lemma 2.1), Σ can be written as Ω < 0. We get

V̇ (t, x(t)) ≤ [ξT (t)Ψξ(t)],

which indicates, from the Lyapunov stability theory [7], that the dynamics of the neural
network (2) is asymptotically stable, which completes the proof.

4 Numerical Example

Consider the recurrent neural network (2) with (s=2) of the following form:

ẋ(t) = −Ai x(t) +Bif(x(t)) + Ci f(x(t− τ(t))),
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where f(x) = tanh(x) = ex−e−x

ex+e−x . Obviously, tanh(·) satisfies tanh(x) < 1 for every
x ∈ R, further

|tanh(x)− tanh(y)| =
∣∣∣d(tanh(z))

dt

∣∣∣
z=ζ
|x− y| =

∣∣∣ 4

(eζ + e−ζ)2

∣∣∣|x− y| ≤ |x− y|,
for every x, y ∈ R, and ζ ∈ (x, y) or ζ ∈ (y, x). Thus, L = diag(1, 1). The membership
functions for Rule 1 and Rule 2 are η1 = 1

e−2u1(t) , η
2 = 1− η1,

A1 =

[
3.5 0

0 3.2

]
, A2 =

[
3.5 0

0 3.2

]
, B1 =

[
0.01 −0.02

−0.10 0.01

]
,

B2 =

[
0.01 −0.02

−0.10 0.01

]
, C1 =

[
0.2 0.1

0.4 0.02

]
, C2 =

[
0.2 0.1

0.4 0.02

]
.

By using the Matlab LMI toolbox [4], we solve the LMI (3) for γi > 0, (i = 1, 2, ..., 11),
τ̄ = 0.5 and d = 0.5, the feasible solutions are

P1 =

[
3.8210 −0.3112

−0.1312 0.6531

]
, P2 =

[
3.8210 −0.3112

−0.1312 0.6531

]
,

Q = R = 103

[
1.7364 0.0024

0.0024 1.7364

]
,

M = 103

[
1.3264 0

0 3.3264

]
, S = 103

[
2.0110 −0.0002

−0.0002 2.0110

]
.

Therefore, the concerned neural network with time-varying delays is asymptotically
stable.

5 Conclusion

In this paper, we have performed the robust stability analysis for a class of uncertain
recurrent neural networks with time varying delays and uncertainties. Some new stability
criteria have been presented to guarantee the recurrent neural network to be robustly
asymptotically stable. The linear matrix inequality (LMI) approach has been used to
solve the underlying problem. The applicability of the derived results has been demon-
strated through the numerical examples for the effectiveness of less conservative numerical
solutions.
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Abstract: In this paper, we have investigated the problem of reduced order mul-
tiswitching synchronization using the active control method. Reduced order multi-
switching synchronization can be considered as a combination of multi-switching with
reduced order synchronization. Apt controllers have been constructed to establish
the asymptotically stable synchronized state by using different laws of switching and
Lyapunov stability theory. To analyze the proposed methodology, a six-dimensional
Lorenz model and four-dimensional hyper-chaotic coupled dynamos system have been
considered as a drive and response system, respectively. Theoretical results are vali-
dated by numerical simulations performed in MATLAB.

Keywords: multiswitching synchronization; reduced order synchronization;
Lyapunov stability theory; Lorenz model; dynamos system.
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1 Introduction

Nonlinear dynamical systems manifest extreme sensitive dependence on initial conditions
[1]. Different aspects of nonlinear dynamical systems such as chaos, stability, bifurcation,
Poincare surface and synchronization have many useful applications in the modelling of
brain activity [8], secure communication [11], information processing [10], medicine[8, 9],
signal processing [10] and chemical networks. This has led to the discovery of various
kinds of synchronization such as projective synchronization [6], reduced order synchro-
nization [3], generalized synchronization, lag synchronization [5], phase synchronization
[4], complete synchronization [7], anticipated synchronization and increased order syn-
chronization [2].
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Ucar et al. [12] first introduced the concept of multiswitching synchronization. It is an
important and interesting extension of the existing synchronization schemes because in
this scheme, a greater number of synchronization directions exist as the different states of
the drive system are synchronized with the desired states of the response system. Various
synchronization schemes have been investigated to achieve multiswitching synchroniza-
tion such as multiswitching combination synchronization (MSCS), multiswitching com-
bination combination synchronization (MSCCS) and a dual combination multiswitching
scheme. Most of the work in multiswitching synchronization, till now, has been restricted
to the multiswitching synchronization between the drive system and the response system
of same order, here the order means the number of state variables. The multiswitching
synchronization problem between chaotic systems of different order is still a relatively
unexplored area of research. In recent years, problems related to the reduced-order syn-
chronization of chaotic systems have fascinated researchers because of its occcurence in
biological and social sciences. The main feature of the reduced-order synchronization
is the synchronization of state variables of the response system with the projections of
state variables of the drive system where the order of the response system is less than the
order of the drive system. Here all states of the response system will be synchronized dur-
ing synchronization. This kind of synchronization is required between heart and lungs or
between neurons and in ecological systems as these dynamical systems are of different or-
ders thus it makes them a very relevant topic to be investigated. Motivated by the above
discussion, in this paper, we have made an effort to study the multiswitching reduced or-
der synchronization between chaotic systems. We have designed appropriate controllers
to achieve the reduced-order multi-switching synchronization between a six-dimensional
Lorenz model and a four-dimensional hyper-chaotic coupled dynamos system.

2 Problem Formulation

In this section, we explain the reduced order multiswitching synchronization between
chaotic systems via the active control method. Consider the hyperchaotic system (the
drive system) described as

ξ̇(t) = f(ξ(t)), (1)

where ξ = (ξ1, ξ2, .....ξm) ∈ <m denotes the state variable of the master system and
f(ξ(t)) ∈ <m represents the nonlinear functional vector. Now we consider the following
chaotic system as our response system:

ζ̇(t) = g(ζ(t)) + U(t), (2)

where ζ = (ζ1, ζ2, .....ζn) ∈ <n denotes the state variable of the slave system and g(ζ(t)) ∈
<n represents the nonlinear functional vector and U(t) = (u1, u2, .....un) ∈ <n is the
control input to be evaluated which will synchronize the state of the drive and the
response system.

Since the order of response system is less than the order of drive system, we have
n < m, and thus we may select any n variables out of m variables of drive system for the
projection because the reduced order synchronization is the problem of synchronizing a
response system with the projection of the drive system. Thus, we can divide the drive
system into two parts, the projection part and the remaining part, given by

ξ̇p(t) = fp(ξ(t)), (3)
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where ξp = (ξp1, ξp2, ....., ξpn) ∈ <n and fp : <m → <n, and

ξ̇r(t) = fr(ξ(t)), (4)

where ξr = (ξp(n+1),ξp(n+2),....,ξpm) ∈ <m−n and fr : <m → <m−n. Clearly, ξpi’s are the
rearrangement of ξi’s.

To obtain the multiswitching reduced order synchronization between the projection
of master system (2) and slave system (3) we need to calculate the controller U =
(u1, u2, ....., un) such that

lim
t→∞

eij = lim
t→∞

||ζj − ξpi|| = 0. (5)

3 System Description

Recently, Carolini C. Felicio and Paulo C. Rech [14] generalized the Lorentz model of 3rd
order to 6th order by adding three more state variables to it. The 6th order hyperchaotic
Lorentz model (the drive system) is given by

ξ̇1 = a1(ξ2 − ξ1),

ξ̇2 = a2ξ1 − ξ2 − ξ1ξ3 + ξ3ξ4 − 2ξ4ξ6,

ξ̇3 = ξ1ξ2 − a3ξ3 − ξ1ξ5 − ξ2ξ6,

ξ̇4 = −(1 + 2a3)a1ξ4 +
a1

(1 + 2a3)
ξ5,

ξ̇5 = ξ1ξ3 − 2ξ1ξ6 + a2ξ4 − (1 + 2a3)ξ5,

ξ̇6 = 2ξ1ξ5 + 2ξ2ξ4 − 4a3ξ6,



, (6)

where a1, a2 and a3 are constant parameters.

Figures below show the chaotic attractor of drive system for particular values of
parameters given by a1 = 10, a2 = 100 and a3 = 8

3 .
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Fig.1: Chaotic behavior of system
(6) in ξ1, ξ2, ξ3 plane.

Fig.2: Chaotic behavior of system
(6)in ξ3, ξ4, ξ5 plane.

Fig.3: Chaotic behavior of system
(6) in ξ4, ξ5, ξ6 plane.

Fig.4: Chaotic behavior of system
(6)in ξ1, ξ3, ξ5 plane.

Yanyun Xie and Wenliang Cai[15], in 2017, modified 3rd order coupled dynamos
system to a new 4th order hyperchaotic coupled dynamos (response) system given by
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ζ̇1 = −2ζ1 + ζ2(ζ3 + 3) + ζ4 + u1,

ζ̇2 = −2ζ2 + ζ1(ζ3 − 3) + u2,

ζ̇3 = ζ3 − ζ1ζ2 + u3,

ζ̇4 = −mζ2 + u4,


, (7)

where m is a constant parameter. Figures below show the chaotic attractor of response
system for m = 100

Fig.5: Chaotic behavior of system
(7) in ζ1, ζ2, ζ3 plane.

Fig.6: Chaotic behavior of system
(7)in ζ2, ζ3, ζ4 plane.

Fig.7: Chaotic behavior of system
(8) in ζ1, ζ3, ζ4 plane.

Fig.8: Chaotic behavior of system
(9)in ζ1, ζ2, ζ4 plane.
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4 Illustration

In this section, we present all the possible ways of projection of state variables in the
drive system with respect to the order of the response system that is

(
6
4

)
ways. Thus,

we have 15 cases for the reduced order multiswitching synchronization and 24 ways
of multiswitching for each case. Likewise, we can take a projection to the hyperplane
occupied by ξ1− ξ2− ξ3− ξ4, ξ2− ξ3− ξ4− ξ5, ξ3− ξ4− ξ5− ξ6 and so on, which implies
we can synchronize these two systems of different order in 360 ways.

First we arbitrarily considered the case of projection of system variables to the hy-
perplane occupied by ξ1 − ξ3 − ξ4 − ξ6. Again, for this projection we have 24 possible
switches given by Switching 1.

The errors are given by

e11 = ζ1(t)− ξ1(t),

e12 = ζ2(t)− ξ3(t),

e13 = ζ3(t)− ξ4(t),

e14 = ζ4(t)− ξ6(t),


(8)

Switching 2

e21 = ζ1(t)− ξ1(t),

e22 = ζ2(t)− ξ3(t),

e23 = ζ3(t)− ξ6(t),

e24 = ζ4(t)− ξ4(t),


(9)

Switching 3

e31 = ζ1(t)− ξ1(t),

e32 = ζ2(t)− ξ4(t),

e33 = ζ3(t)− ξ3(t),

e34 = ζ4(t)− ξ6(t),


(10)

and so on. We now calculate suitable controllers for Switching 1 to achieve the reduced
order multiswitching synchronization. Let us define the error dynamics between the drive
system (6) and the response system (7) as

ė11 = −(1 + a1)e11 + a1ζ3 + 2ζ3 − ζ1ζ2 + a1ξ2 + u3,

ė12 = −(2 + a3)e12 + ζ2ζ3 + 3ζ2 + ζ4 − ξ1ξ2 + ξ1ξ5
+ξ2ξ4 − 2ξ3 + a3ζ1 + u1,

ė13 = −(
a1

1 + 2a3
+ a2)e13 −mζ2 − (

a1
1 + 2a3

)ξ5 + a2ζ4

−a2ξ4 + ( a1
1+2a3

)ζ4 + u4,

ė14 = −(2 + a2)e14 + ζ1ζ3 − 3ζ1 − 2ξ1ξ5 − 2ξ2ξ4 + 4a3ξ6
−2ξ6 + a2ζ2 − a2ξ6 + u2.


(11)
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Next, we give the following proposition for the control parameters based on the error
dynamic system (11)

Proposition 4.1 Considering the error dynamics (8) the reduced order multiswitch-
ing synchronization between the drive system (6) and the response system (7) will be
achieved if the control functions u11, u12, u13 and u14 are chosen as

u11 = ξ1ξ2 + 2ξ3 − ξ1ξ5 − ξ2ξ4 − a3ζ1 − ζ2ζ3 − 3ζ2 − ζ4 +A1,

u12 = 2ξ1ξ5 + 3ζ1 + 2ξ2ξ4 + 2ξ6 + a2ξ6 − ζ1ζ3 − 4a3ξ6 − a2ζ2 +A2,

u13 = −a1ζ3 − 2ζ3 + ζ1ζ2 − a1ξ2 +A3,
u14 = ( a1

1+2a3
)ξ5 +mζ2 + a2ξ4 − ( a1

1+2a3
)ζ4 − a2ζ4 +A4,

 (12)

where A1, A2, A3 and A4 are the functions of e11, e12, e13 and e14.

Proof: The error dynamics (11), after using the controllers given by (12), can be written
as

ė11 = −e11(1 + a1) +A3,

ė12 = −e12(2 + a3) +A1,

ė13 = −e13(
a1

1 + 2a3
+ a2) +A4,

ė14 = −e14(2 + a2) +A2.


(13)

We select A1, A2, A3 and A4 in such a way that the error dynamical system given
by (13) gets stabilized, that means the errors will asymptotically tend to zero. Let us
consider 

A1

A2

A3

A4

 = P


e11
e12
e13
e14

 , (14)

where P is a 4× 4 matrix whose enteries are selected such that the values of A1, A2, A3

and A4 will make (13) stable. Let us consider

P =


0 a3 0 0
0 0 0 a2
a1 0 0 0
0 0 a1

1+2a3
0

 . (15)

Therefore, 
A1

A2

A3

A4

 =


a3e12
a2e14
a1e11
a1

1+2a3
e13

 . (16)
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The error dynamical system (13), after using the values of A1, A2, A3 and A4, reduced
to

ė11 = −e11,

ė12 = −2e12,

ė13 = −a2e13,

ė14 = −2e14.


(17)

Now, we choose the following Lyapunov function:

V1 = e211 + e212 + e213 + e214. (18)

Clearly, V1 is positive definite in R4. After differentiating V1 with respect to time, we get

dV1
dt

= 2e11ė11 + 2e12ė12 + 2e13ė13 + 2e14ė14. (19)

Using (17), we get
dV1
dt

= −2e211 − 4e212 − 2a2e
2
13 − 4e214. (20)

Since V1 is a positive definite function and dV1

dt is a negative definite function, the Lya-
punov stability theory proves that the state of the drive and response systems synchronize
asymptotically. Hence the result.
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Fig.9: Multiswitching
synchronization state between ξ1, ζ1.

5 10 15 20
t

-0.5

0.5

1.0

x4

Fig.10: Multiswitching
synchronization state between ξ3, ζ2.
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Fig.11: Multiswitching
synchronization state between ξ4, ζ3.
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Fig.12: Multiswitching
synchronization state between ξ6, ζ4.
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5 Numerical Simulations

This section presents the synchronization of numerical simulations of the sixth order hy-
perchaotic Lorentz system and the fourth order hyperchaotic coupled dynamos system.
The reduced order multiswitching synchronization is used as an approach to synchronize
the systems. The simulations are done in MATLAB. We set the initial values and the
parameters as follows: ξ1(0) = −1, ξ2(0) = −5, ξ3(0) = 20, ξ4(0) = 5, ξ5(0) = 3, ξ6(0) =
10, ζ1(0) = −1, ζ2(0) = −5, ζ3(0) = 20, ζ4 = 5, a1 = 10, a2 = 8

3 , a3 = 100 and m = 100.
These figures represent the simulation errors e1, e2, e3, e4 converging to zero asymptoti-
cally, which prove that the hyperchaotic system is synchronized.
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Fig.13: Convergence of error-e1.
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Fig.14: Convergence of error-e2.
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Fig.15: Convergence of error-e3.
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Fig.16: Convergence of error-e4.

6 Conclusion

In this paper, we have studied the reduced order multiswitching synchronization for two
hyperchaotic systems with different order. We have proposed controllers and updating
laws based on active control theories. Thus we achieved the error system asymptotically
stable. Further, the simulation the results demonstrate the effectiveness and feasibility
of results which are performed in MATLAB.
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1 Introduction

The link between renewable resource harvesting and pollution has occupied the attention
of researchers and scientists from various disciplines such as economics, biology, engineer-
ing, and mathematics. Pollution of water bodies (such as rivers and lakes from the dis-
charge of municipal sewage, septage, industrial chemicals, agricultural run off containing
pesticides, etc.) affects the livestock surviving in that environment. Consequently, the
economy dependent on the exploitation of such stock suffers as the presence of pollution
in the environment affects the health, longevity, and reproductivity of biomass.
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Economic damages to livestock (fisheries), caused by the presence of pollution in the
environment have been the main focus in several studies, some of which were undertaken
in response to particular pollution incidents [7,8]. The effect of pollutants on the survival
of biological species is studied by different authors [10,11,16,20]. Dubey and Hussain [11]
studied the survival of species dependent on a resource in a polluted environment. Shukla
et al. [16] investigated the effects of pollutants emitted from external sources as well as
from their precursors on the survival of a resource-dependent species. Hallam [10] studied
the crucial role played by pollutant uptake by the resource. Thomas et al. [20] considered
the control problem in a polluted environment to investigate the effect of environmental
pollution on a single species population.

Considerable investigations have been made to study the connection between renew-
able resource harvesting and environmental pollution [12, 17, 19]. Siebert [17] presented
the dynamic optimization model that combines renewable resource harvesting and pol-
lution. It underlines the effect of pollution on the regeneration of the resource. Tahvo-
nen [19] studied the dynamics of a harvested renewable resource and pollution with the
control strategy, where pollutants are assumed to affect both intrinsic per capita growth
rate and saturation level of the resources. A study presented in [12] underlines the effec-
tiveness of pollution reduction expenditures under the assumption that there are constant
returns to de-pollution efforts. In particular, the pollutant inflow reduction reduces the
pollution of water bodies.

In the literature, we come across studies dealing with optimal exploitation of renew-
able resource and pollution control wherein the rate of emissions (generated from the
production sector) and the harvest rate are considered as controllable variables. These
models mostly consider benefits from both the natural resource sector and the pollution
generating-production sector. In this study, we focus on the optimal allocation problem
in a polluted environment, where there is no benefit from other sectors (such as pollution
generating-production sectors).

Pollution affects both the resource growth rate and the quality of the catch, resulting
in a decline in the revenue. Since environmental pollution is inevitable, the harvester
wishes to allocate a part of the available effort capacity towards pollutant inflow reduction
with a hope that it would improve the productivity of the resource resulting in enhanced
revenues. To address this problem, it is essential to gain an understanding of the interplay
between resource dynamics in the presence of harvesting and the dynamics of pollution
under pollutant inflow reduction. Hence, we formulate a dynamic optimization model on
an infinite horizon, and it is solved using the standard techniques of dynamic optimization
[4, 5, 9, 13,15].

We organize the paper as follows. In Section 2, we consider the resource-pollution
dynamics (with no harvesting and inflow reduction) to investigate the effect of pollutants
on the survival of the resource. In Section 3, we investigate the influence of investing in
pollutant inflow reduction on the harvest. Here, we evaluate the optimal effort allocation
that maximizes the sustainable yield. By including the stock benefit as another source
of revenue, we present an optimal harvest problem on an infinite horizon in Section
4. Practical examples that demonstrate the main results and the concluding remarks,
respectively, are given in Sections 5 and 6.
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2 Resource Dynamics in a Polluted Environment

Consider a renewable resource (fish) that is surviving in a polluted lake environment. Let
x(t) and P (t) represent the resource stock and the stock of pollution in the environment
at each time t, respectively. Given the inflow rate of pollutants v at each time t, the
dynamics of a renewable resource and pollution (in the environment) can be given by
(ref. [10, 20])

dx

dt
= r(P )x

(
1− x

K(P )

)
, x(0) = x0 > 0, (1a)

dP

dt
= v − γPx− ηP, P (0) = P0 > 0. (1b)

The resource x in Eqn.(1a) grows as per Logistic equation where the intrinsic per capita
growth rate (r(P )) and environmental carrying capacity (r(P )) are pollution dependent.
These parameters are given by r(P ) = a − φP > 0 and K(P ) = a−φP

b > 0, which
are both decreasing functions of P . a and a

b represent the intrinsic per capita growth
rate and the environmental carrying capacity, respectively, in the absence of pollution.
The expressions γPx and ηP in Eqn.(1b) stand for pollutant uptake by the resource
and decay of pollution, respectively. Next, we study the steady-state equilibria and its
stability for the system (1).

We know that the resource and pollution stocks are nonnegative, and hence the dis-
cussion to come is meaningful only if both the components are nonnegative. Throughout
the paper, we use the terms ”axial and interior equilibria” to represent the steady-state
solutions of (1) that belong to the boundary and interior regions, respectively, of the
positive quadrant of xP -space. It can be easily seen that the system (1) admits an
axial equilibrium

(
0, vη

)
and the interior equilibrium (x, P ) (provided it exists), whose

components are given by

x =
1

b
(a− φP ), (2a)

P =
v

γx+ η
. (2b)

To express the components (x and P ) explicitly, the following equations can be used
(which are derived from (2)):

γbx2 − (aγ − bη)x+ φv − aη = 0, (3a)

γφP
2 − (aγ + bη)P + bv = 0. (3b)

Clearly, the existence of interior equilibria for the system (1) depends on the coefficients
of a quadratic polynomial in (3a) (or (3b)). It can be easily verified that the given system
admits a unique interior equilibrium whenever

v <
aη

φ
, (4)

two interior equilibria whenever

aη

φ
< v <

(aγ + bη)2

4bγφ
, (5)
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and the interior equilibrium does not exist whenever

v > max{aη
φ
,

(aγ + bη)2

4bγφ
}. (6)

The two interior equilibria of the system are given by(
aγ − bη +

√
(aγ − bη)2 − 4bγ(vφ− aη)

2bγ
,
aγ + bη −

√
(aγ + bη)2 − 4φγ(bv)

2φγ

)
(7a)

&

(
aγ − bη −

√
(aγ − bη)2 − 4bγ(vφ− aη)

2bγ
,
aγ + bη +

√
(aγ + bη)2 − 4φγ(bv)

2φγ

)
. (7b)

The unique interior equilibrium of the system (if it exists) is the one given in (7a).

From Eqn.(2a) and Eqn.(2b) we observe that the resource stock decreases as the
stock of pollution increases. Further, the survival of the resource depends on the stock
of pollution, and the existence of pollution (in the environment) mainly depends on the
inflow rate and the rate of natural degradation. Hence, it is noteworthy to give more
attention to a crucial role played by the vital parameters v, η for the existence of an
interior equilibrium for the system (1). This is shown in Figure 1, wherein the ηv-
parameter space is divided into three regions I, II, and III. The figure provides a base for
not only highlighting the dependence of the existence of interior equilibrium on the vital
parameters η, v but also to study the qualitative behavior associated with the system
under consideration.

To investigate the stability behavior of the equilibria, the Jacobian matrix associated
with the system under study is given by

J(x, P ) =

(
a− 2bx− φP −φx
−γP −η − γx

)
. (8)

Evaluating the Jacobian matrix at the axial equilibrium
(
0, vη

)
gives

J(0,
v

η
) =

(
aη−φv
η 0

−γvη −η

)
. (9)

From the eigen values of the Jacobian matrix in (9) (which are aη−φv
η and −η) we observe

that the axial equilibrium is locally stable whenever

v >
aη

φ
, (10)

and a saddle otherwise. The Jacobian matrix at the interior equilibrium (x, P ) gives

J(x, P ) =

(
−bx −φx
−γP − v

P

)
,

and its characteristic equation is

r2 + (bx+
v

P
)r + bx(

v

P
)− γφPx = 0. (11)
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Figure 1: This figure highlights the influence of vital parameters η and v on the existence
of interior equilibrium for the system (1). The positive quadrant of the ηv-parameter space is
divided into three regions I, II and III (based on the values of (η, v) for which the system (1)
admits two interior equilibria, a unique interior equilibrium and no interior equilibrium). For
each (η, v) in region I, the relation v < aη

φ
holds, and hence the system under study admits a

unique interior equilibrium (by (4)). For (η, v) in region III, the relation aη
φ
< v < (aγ+bη)2

4bγφ

holds and hence the system admits two interior equilibria (by (5)). Finally, for each (η, v)

in region II, the relation v > max{aη
φ
, (aγ+bη)2

4bγφ
} is satisfied, and hence the system admits no

interior equilibrium (by (6)). The structure of isoclines for the system in question whenever
(η, v) belongs to the regions I-III, is presented in the frames A-C, respectively, which are located
on the right-hand side of the main figure.

The interior equilibrium (x, P ) is locally stable or unstable depending on the roots of
a quadratic polynomial in (11). In fact, it is locally stable whenever

P
2 ≤ bv

γφ
, (12)

and a saddle otherwise. We have the following theorems pertaining to the system (1)
which can be easily established.

Theorem 2.1 The system (1) admits an axial equilibrium and at most two interior
equilibria. The axial equilibrium is globally asymptotically stable in the absence of the
interior equilibrium, a saddle in the presence of a unique interior equilibrium and locally
stable in the presence of two interior equilibria. The unique interior equilibrium is locally
stable, and the stability nature in the case of two interior equilibria depends on their
proximity to the axial equilibrium interms of their x-component. The closer one is a
saddle and the farther one is locally stable.

Theorem 2.2 If the associated parameters satisfy the relation a
φ >

v
η , the system (1)

admits a unique interior equilibrium which is globally asymptotically stable.

Now we shall make use of Figure 1 to bring forward various bifurcations that take
place in the system under consideration due to variations in the vital parameters v and

η. Observe that the two curves v = aη
φ and v = (aγ+bη)2

4bγφ given in the figure represent two
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bifurcation curves; the former one represents a transcritical bifurcation curve between
the axial equilibrium and an interior equilibrium, while the latter one represents a saddle-
node bifurcation curve of the interior equilibrium. Below we briefly present an overview
of the occurrence of various bifurcations in the system (1) as the parameters (η, v) move
from one region to another in the figure.

As parameters (η, v) move from region I into II crossing the line v = aη
φ , the unique

asymptotically stable interior equilibrium and the unstable (saddle) axial equilibrium
get closer as the parameters approach the line v = aη

φ , collide with each other on the
line causing exchange of stability between them due to the occurrence of transcritical
bifurcation.

As parameters (η, v) move from region II into III crossing the line v = (aγ+bη)2

4bγφ ,
the system experiences a saddle-node bifurcation. Hence there is the emergence of two
interior equilibria for the system, where one of them is a saddle, and the other is locally
stable. The nature of the axial equilibrium continues to be locally stable. Here, the
stable manifold of the saddle interior equilibrium divides the positive quadrant of the
xP -space into two invariant regions, each being the region of attraction of the stable
equilibrium that it contains.

As parameters (η, v) move from region III into I crossing the line v = aη
φ , the saddle

interior equilibrium that exists (when the parameters are in region III) moves closer to the
locally stable axial equilibrium and collide with each other on the line v = aη

φ causing a
transcritical bifurcation between them resulting in the axial equilibrium becoming saddle
and retention of only one interior equilibrium when the parameters are in region I.

We have the following observations on the system (1). If the inflow rate of pollutants
v is sufficiently low such that v < aη

φ is satisfied, then we are assured of the stable

coexistence in the system. If the inflow parameter satisfies aη
φ < v < (aγ+bη)2

4bγφ , the

system admits two interior equilibria (one is locally stable and the other is unstable).
In this case, the survival of the resource depends on its initial position. Unless the
initial position is in the region of attraction of the interior equilibrium, the resource is
likely to go extinct. On the other hand, if the inflow rate is sufficiently large so that

v > max{aηφ ,
(aγ+bη)2

4bγφ }, the resource can not survive in such environment.

3 The Influence of Investing in Pollutant Inflow Reduction on the Harvest

In Section 2, we observed that a reduction in the stock of pollution helps to improve the
survival and productivity of the resource, and preventing the inflow of pollutants is a
feasible alternative to reduce pollution. Hence, it seems to be reasonable to allocate a
part of the total effort capacity towards pollutant inflow reduction to improve the yield.
Thus, we consider a revised version of (1) wherein the available effort capacity is divided
into two parts: harvesting the resource and pollutant inflow reduction. This will enable
us to investigate the influence of investing in inflow reduction on the yield as well as the
stock.

Suppose the sole owner has the total effort capacity of M units (measured in terms
of money) to invest in harvesting and pollutant inflow reduction. Now, the aim is to
find an optimal effort allocation to maximize the sustainable yield. Let E and M − E
be the efforts allocated towards harvesting and inflow reduction. Then, the resource and
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pollution dynamic equations can be given by (ref. [12, 19])

dx

dt
= r(P )x

(
1− x

K(P )

)
− qαEx, x(0) = x0 > 0, (13a)

dP

dt
= v − β(M − E)− γPx− ηP, P (0) = P0 > 0, (13b)

0 ≤ E ≤M. (13c)

The parameters r(P ) and K(P ) (in Eqn.(13a)) are as defined in Section 2 and the
term qαEx stands for the harvest rate, where αE represents the effort in physical terms
(measured in vessel units). In Eqn.(13b) the term β(M − E) (measured in ton per unit
time) stands for the amount of inflow rate reduced by the de-pollution effort M−E, where
the constants α > 0, β > 0 are conversion factors, and q is the catchability coefficient.

For each harvest effort E ∈ [0,M ], the system (13a)-(13b) admits an axial equilibrium
(0, 1η (v−β(M−E)) (provided v−β(M−E) > 0), and the interior equilibrium (xE , PM−E)
whose components are given by

xE =
1

b

(
a− φPM−E − αqE

)
, (14a)

PM−E =
v − β(M − E)

γxE + η
, (14b)

provided that a−φPM−E−αqE > 0, v−β(M −E) > 0. Note that the subscripts E and
M−E for the resource and pollution variables at equilibrium, are meant to indicate that
the equilibrium is a result of allocating the efforts E towards harvesting the resource and
M −E towards inflow reduction, respectively. The following equations are derived from
(14)

γbx2E −
(
(a− αqE)γ − bη

)
xE + φ(v − β(M − E))− (a− αqE)η = 0, (15a)

γφP 2
M−E −

(
(a− αqE)γ + bη

)
PM−E + b(v − β(M − E)) = 0. (15b)

Clearly, the existence of interior equilibrium for the system under consideration depends
on the coefficients of a quadratic polynomial in (15a) (or (15b)). Further, the system
admits at most two interior equilibria as in the case of the system (1), but here the
equilibria are functions of an additional parameter E. To be more specific, for each E in
(13c) the system (13a)-(13b) admits a unique interior equilibrium whenever

v − β(M − E) <
1

φ
(a− αqE)η, (16)

it admits two interior equilibria whenever

1

φ
(a− αqE)η < v − β(M − E) <

((a− αqE)γ + bη)2

4bγφ
, (17)

and the interior equilibrium does not exist whenever

v − β(M − E) > max

{
1

φ
(a− αqE)η,

((a− αqE)γ + bη)2

4bγφ

}
. (18)

The role of parameter E for the existence of interior equilibrium for the system under
consideration can be understood from Figure 2. Hence, we have the following theorems
pertaining to the system (13a)-(13b) which can be easily established.
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Figure 2: This figure highlights the comparison between systems (1) and (13a)-(13b) based
on the values of parameter E. For a fixed E ∈ [0,M ] (in Frame A) the positive quadrant of
ηv-space is divided into three regions (I, II and III) based on the values of (η, v) for which the
system (13a)-(13b) admits a unique interior equilibrium, no interior equilibrium and two interior
equilibria. The region under a line segment v = aη

φ
(in frames B-D) represents the set of (η, v)

for which the system (1) admits a unique interior equilibrium whereas the regions under the line
segments v = aη

φ
+ βM(in Frame B where E = 0), v = 1

φ
(a − αqE)η + β(M − E) (in Frame

C where 0 < E < M) and v = 1
φ

(a − αqM)η (in Frame D where E = M) represent the set of
(η, v) for which the system (13a)-(13b) admits a unique interior equilibrium. In Frame B, the
region for unique interior equilibrium is increased (when the entire effort is allocated towards
inflow reduction, and no harvesting). In Frame D, the region for unique interior equilibrium is
decreased (when the entire effort is allocated towards harvesting with no inflow reduction). In
Frame C, the region for unique interior equilibrium is increased for η sufficiently small, and it
is reduced for large η.

Theorem 3.1 For each E ∈ [0,M ], the system (13a)-(13b) admits an axial equilib-
rium (provided that v − β(M − E) > 0) and at most two interior equilibria. The axial
equilibrium is globally asymptotically stable in the absence of the interior equilibrium, it
is a saddle in the presence of a unique interior equilibrium, and it is locally stable in the
presence of two interior equilibria. The unique interior equilibrium is locally stable, and
the stability nature in the case of two interior equilibria depends on their proximity to
the axial equilibrium in terms of their x-component. The closer one is a saddle, and the
farther one is locally stable.

Theorem 3.2 For each E ∈ [0,M ], if the associated parameters satisfy the relation

v−β(M −E) < (a−αqE)η
φ , then system (13a)-(13b) admits a unique interior equilibrium

which is globally asymptotically stable.

We observe that it is noteworthy to give more attention to the existence of a unique
interior equilibrium in the system as it assures not only the stable coexistence in the
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system but also the equilibrium with a larger resource level and lower level of pollution.
From (14a)-(14b), it follows that the resource xE decreases and pollution PM−E increases
as the effort E increases. Further, the highest resource level and the lowest level of
pollution occur at the equilibrium (x0, PM ) (where E = 0). Similarly, the lowest resource
level and the highest level of pollution occur at the equilibrium (xM , P0) (where E = M).

Having seen the highest (lowest) possible levels for the resource stock as well as
the stock of pollution, here we are interested in determining the effort allocation that
maximizes the sustainable yield. Observe that increasing the harvest effort may not
improve the catch in general. The reason being, increasing the harvest effort E causes a
decrease in the effort M −E towards the inflow reduction, and this results in a reduction
of the stock level x. Therefore, it is useful to find the proper effort allocation to maximize
the sustainable yield. For the given harvest effort E ∈ [0,M ] and the stock level xE , the
yield expression is

Y (E) = qαExE , (19)

where the stock level xE is a function of E (which is the x-component of a unique interior
equilibrium (xE , PM−E) of the system (13a)-(13b)). Clearly, Y (E) is continuous on the
interval [0,M ], and hence it attains its maximum in [0,M ] giving rise to maximum
sustainable yield YMSY . This yield may occur either at the boundary E = M or in the
interior of [0,M ]. If EMSY ∈ (0,M), then it solves the equation

dY

dE
= 0, (20)

for a concave function Y (E) on [0,M ].

4 Optimal Harvest Problem

Following the dynamics of harvested renewable resource surviving in a polluted environ-
ment, and having seen the influence of allocating a part of the effort capacity towards
inflow reduction on the yield, now we wish to construct an optimal harvesting strategy.
Assume that the sole owner has twofold benefit from the resource: benefits from harvest-
ing and the stock. The latter one represents the benefit of the stock in its natural place
(such as tourism) [18,19]. Therefore, it is crucial to ensure a reasonable level of stock in
the environment to reap the stock benefit in addition to the revenue from harvesting.

The gross harvesting benefit is assumed to increase with an increase in the harvest,
and it decreases with increasing pollution. Further, the marginal (negative) impact
of pollution on the gross harvesting benefit is assumed to increase. Hence the gross
harvesting benefit (which we denote by W (h, P )) may have the following properties
(ref. [19])

Wh > 0,WP < 0,WPP < 0. (21)

Hence, we consider the following explicit form of the function W (h, P )

W (h, P ) = τ(1− εP 2)h, (22)

where h = qαEx is the harvest rate and τ(1 − εP 2) represents the pollution dependent
price per unit harvest (where 0 ≤ 1− εP 2 ≤ 1). Clearly, τ represents the price per unit
catch in the absence of pollution.

The stock benefit is assumed to be affected by the presence of pollution in the envi-
ronment. Naturally, it decreases with increasing pollution (as it may detour the tourists
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from visiting). We also assume that the marginal benefit of the stock decreases, and the
marginal (negative) impact of pollution increases. Thus, the stock benefit (measured in
terms of money) denoted by S(x, P ) may have the following properties:

Sx > 0, Sxx < 0, SP < 0, SPP < 0, for 0 < x ≤ xs, Sx = 0 for x > xs, (23)

where xs denotes the saturation level in the function. Here, we assume the saturation level
xs to be the environmental carrying capacity. The assumption Sx = 0 for each x > xs
is due to the observation that the ”small” deviation from some ”large” stock levels do
not necessarily reduce the human in situ benefits [19]. Thus, we consider the following
explicit form of the function S:

S(x, P ) =

{
ρ(1−εP 2)x

σ+x for, 0 < x ≤ xs,
ρ(1−εP 2)xs

σ+xs
for, x > xs,

(24)

where ρ denotes the maximum achievable benefit from the stock in the absence of pollu-
tion and σ is a half saturation constant.

The instantaneous net revenue, which is the sum of benefits from harvesting and the
stock, is given by

R(x, P,E) = (1− εP 2)
(
τqαEx+

ρx

σ + x

)
−M. (25)

Hence, the present value (denoted by PV ) of the total net revenues on the infinite horizon
is given by

PV =

∫ ∞
0

e−δtR(x, P, h)dt, (26)

where δ is the instantaneous discount rate. Now, the objective is to find an optimal effort
allocation between harvesting and inflow reduction so that the integral in (26) is as large
as possible. Precisely formulated, the problem is as follows:

Maximize PV (27a)

Subject to:
dx

dt
= r(P )x

(
1− x

K(P )

)
− αqEx, x(0) > 0, (27b)

dP

dt
= v − β(M − E)− γPx− ηP, P (0) > 0, (27c)

0 ≤ E ≤M. (27d)

This is an optimal control problem on an infinite horizon with two state variables (the
resource stock x and the stock of pollution P ) and one control variable (the effort E
towards harvesting).

Solving the problem (27) is amounting to finding out the optimal effort E0(t) towards
harvesting (and hence M − E0(t) towards inflow reduction) so that the present value in
(27a) is maximum. Equivalently, we need to find the path traced out by (x0(t), P0(t))
with this optimal effort allocation so that if the resource stock and the stock of pollution
are kept along this path, then we are assured of achieving the objective of the sole owner.

As per the maximum principle [5, 9, 15], the Hamiltonian H(x, P,E, µ1, µ2) is given
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by

H(x, P,E, µ1, µ2) = e−δt[(1− εP 2)(αqτEx+
ρx

σ + x
)−M ]+

µ1

[
r(P )x(1− x

K(P )
)− αqEx

]
+

µ2[v − γPx− ηP − β(M − E)].

(28)

And the associated adjoint variables µ1, µ2 satisfy the differential equations

dµ1

dt
= −e−δt(1− cP 2)[ταqE +

ρσ

(σ + x)2
]− µ1

(
a− 2bx− φP − αqE

)
+ γµ2P,

dµ2

dt
= 2εe−δtP (ταqEx+

ρx

σ + x
) + µ2(η + γx) + µ1φx.

Because of the presence of the term e−δt no steady state is possible for the above system.
Hence, we consider the following transformation:

λi(t) = µi(t)e
δt, i = 1, 2 and H = Heδt, (30)

where H is known as the current value Hamiltonian and λ1,λ2 are the current value
adjoint variables. From the above transformation we can easily obtain the following
adjoint differential equations:

dλ1
dt

= λ1δ − λ1
(
a− 2bx− φP − αqE

)
− (1− cP 2)[ταqE +

ρσ

(σ + x)2
] + γλ2P, (31a)

dλ2
dt

= λ2δ + λ2(η + γx) + λ1xd+ 2εP (ταqEx+
ρx

σ + x
). (31b)

Since the problem under consideration is linear in the control variable, the optimal control
shall be a combination of bang-bang and singular controls. First, we investigate the
singular solution to the problem. Differentiating the current value Hamiltonian with
respect to E gives us HE = τ(1 − εP 2)αqx − λ1αqx + λ2β with the switching function
being

s(t) = τ(1− εP 2)αqx− λ1αqx+ λ2β.

It is known that along the singular solution s(t) = 0, i.e.,

τ(1− εP 2)αqx− λ1αqx+ λ2β = 0. (32)

Now substituting the interior steady state solution (x̃E , P̃M−E , λ̃1, λ̃2) of the four dimen-
sional dynamical systems (27b), (27c), (31a) and (31b) into (32) we obtain the following
equation (which is purely in E):

τ(1− εP̃ 2
M−E)αqx̃E − αqλ̃1x̃E + βλ̃2 = 0. (33)

If the solution Ê of (33) satisfies the condition 0 < Ê < M , then Ê becomes the optimal

singular control and (x̃
Ê
, P̃

M−Ê
) is the associated optimal singular solution [4, 6].

After identifying the optimal singular solution (x̃
Ê
, P̃

M−Ê
), now it remains to reach

this solution optimally starting from the given initial state (x(0), P (0)). Since the prob-
lem under consideration is linear in the control variable, the singular solution (x

Ê
, P

M−Ê
)
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can be reached by a bang-bang control [15]. If we denote this control by E(t), then we
have

E(t) =

{
0, if s(t) < 0,
M, if s(t) > 0,

(34)

where s(t) = τ(1− εP 2)αqx− λ1αqx+ λ2β. Suppose T represents the time required to
reach the singular solution optimally from the given initial state (x(0), P (0)) (by a bang-
bang control E(t)). Then the optimal control E0(t) for the problem under consideration
is given by

E0(t) =

{
E(t), for 0 ≤ t < T ,
Ê, for t ≥ T . (35)

If
(
x(t), P (t)

)
represents the trajectory (corresponding to a bang-bang control E(t)) from

the given initial state (x(0), P (0)) to the singular solution
(
x̃
Ê
, P̃

M−Ê

)
, then the optimal

path, traced out by
(
xo(t), Po(t)

)
, is given by

(
x0(t), P0(t)

)
=

{ (
x(t), P (t)

)
for 0 ≤ t ≤ T ,(

x̃
Ê
, P̃

M−Ê

)
for t ≥ T . (36)

If the singular harvesting effort Ê is employed right from the given initial state
(x(0), P (0)), then by the global asymptotic stability of the singular solution

(
x̃
Ê
, P̃

M−Ê

)
,

the corresponding stock path approaches this solution asymptotically.

5 Applications

This example represents the dynamics of a fish population in a polluted lake environment,
where the considered biological and economic parameters are related to actual values one
might have in a fishery (ref. [2]). The inflow rate of pollutants (in wastewater effluents)
is measured yearly to be 50 tonnes per year. The values assigned to the associated
parameters and constants in the problem are given in Table 1. With the given values in
the table, it can be easily seen that the condition φ(v − β(M − E)) − (a − αqE)η < 0
holds for each E ∈ [0,M ], and hence the system (13a)-(13b) admits a unique interior

equilibrium (x̃E , P̂M−E) which is globally asymptotically stable.

For each effort E ∈ [0,M ] the unique interior equilibrium (x̃E , P̂M−E) for the system
(13a)-(13b) is evaluated and this can be seen in Figure 3. This figure also highlights
the relations among the effort E, the resource x, pollution P and yield Y . The highest
resource stock and the lowest stock of pollution in the system, respectively, are x0 =
3.49 × 104 and PM = 105.9 (in tons) which are obtained for E = 0. Similarly, the
lowest resource stock and the highest stock of pollution in the system, respectively, are
xM = 1.05× 164 and P0 = 432.2 (in tons) which are obtained for E = M .

The sustainable yield Y (E) corresponding to each E ∈ [0,M ] is evaluated using (19)
and this is presented in Figure 3. The maximum sustainable yield is YMSY = 3.02× 103

(in tons) which is obtained at the critical effort level EMSY = 8.62× 105 (in US$). The
resource stock and stock pollution corresponding to the maximum sustainable yield are
given by (xEMSY

, PM−EMSY
) = (1.75× 104, 251.75) (in tons).

The interior steady state solution of the four dimensional dynamical systems (27b),
(27c), (31a) and (31b) is given by (1.63 × 104, 272.65, 5.96 × 103,−6.898 × 103), where

the unique solution Ê of (33) is Ê = 9.21 × 105 (in US$). Observe that the solution



564 P.D.N. SRINIVASU AND SIMON D. ZAWKA

Table 1: The values of parameters and their units.

Parameters Symbol Values units

Intrinsic growth rate a 0.35 1/year
Intraspecific competition b 1× 10−5 1/ton/year
Death of the resource per unit of pollution φ 1× 10−5 1/ton/year
Uptake of pollutant per unit of the resource γ 1× 10−5 1/ton/year
Inflow rate of pollutants v 50 ton/year
Available effort capacity M 1.2× 106 $/year
Conversion parameter α 1× 10−3 vessel/$/year
Conversion parameter β 1× 10−5 ton/$
Natural degradation rate of pollution η 1× 10−2 1/year
Catchability coefficient q 0.0002 1/vessel/year
Discount rate δ 0.025 1/year
Price per unit catch in absence of pollution τ 6× 103 $/ton
Maximum stock benefit in absence of pollution ρ 8× 104 $/year
Half saturation constant σ 1× 104 ton

E
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1.2 × 106
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Figure 3: This four-quadrant figure presents the resource and pollution stocks (xE , PM−E),
and the yield (Y (E)) associated with each harvest effort E ∈ [0,M ] (and hence the effort M−E
for inflow reduction). Quadrant I depicts the relationship between the resource xE and the yield
Y , quadrant II represents the relationship between pollution PM−E and the yield Y , quadrant
III represents the relationship between the effort E and pollution PM−E and quadrant IV gives
the relationship between the effort E and the resource xE . For each E ∈ [0,M ], Y can be seen
either in quadrant I (through the point (E, xE)) or in quadrant II (through (E,PM−E)). The
figure also highlights the critical effort level EMSY that gives the maximum sustainable yield
Y (EMSY ).

Ê satisfies the relation 0 < Ê < M , and hence it becomes an optimal singular effort
for harvesting (and hence the effort M − 9.21 × 105 goes for inflow reduction). The
optimal singular solution (x

Ê
, P

M−Ê
) is given by (1.63× 104, 272.65) (in tons), and the

corresponding yield is Y (Ê) = 3.00× 103 (in tons). Note that the yield Y (Ê) associated
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Figure 4: This figure presents the optimal approach path starting from two different initial
states (x(0), P (0)) = (1 × 104, 350) (in tons) and (x(0), P (0)) = (2.5 × 104, 200) (in tons) to
the singular solution (1.63× 104, 272.65). The optimal approach path C1 starts from the initial
state (1× 104, 350) and it takes a time period T = 7.65 (in years) to reach the singular solution
by a bang-bang control E(t) = 0 for 0 ≤ t < 4.05 and E(t) = M for 4.05 ≤ t < 7.65. Similarly,
the optimal approach C2 starts from the initial state (2.5× 104, 200) and it takes a time period
T = 10.45 (in years) to reach the singular solution by a bang bang control E(t) = M for
0 ≤ t < 9.5 and E(t) = 0 for 9.5 ≤ t < 10.45.

with the optimal effort (Ê) is less than the maximum sustainable yield (YMSY ). The
optimal approach path from the given initial position (x(0), P (0)) = (1×104, 350) to the
singular solution (1.63 × 104, 272.65) (in tons) takes the time period t = 7.65 (in years)
under a bang-bang control

E(t) =

{
0 for 0 ≤ t < 4.05,
M for 4.05 ≤ t < 7.65.

Therefore, the optimal control to the given problem is

Eo(t) =

{
E(t) for 0 ≤ t < 7.65,

Ê for t ≥ 7.65.

The corresponding optimal approach path is shown in Figure 4. The figure also presents
the optimal approach path from another initial position (2.5× 104, 200) (in tons) to the
singular solution (1.63× 104, 272.65).

6 Concluding Remarks

In this paper, we have presented the bio-economics of a renewable resource in the pres-
ence of pollution. A decline in the revenue due to pollutants (in the environment) is a
major driving force for investing a part of the effort capacity towards pollution reduc-
tion, and pollutant inflow reduction was considered as a feasible alternative to reduce
environmental pollution.

The presence of pollution is assumed to affect both the resource growth rate and the
quality of the catch. The influence of pollutants on the resource growth and the quality
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of the catch are captured through its regeneration function and the revenue function, re-
spectively. By investigating the resource-pollution dynamics (in the absence of harvesting
and pollutant inflow reduction), we observed that the species goes to extinction whenever
the inflow of pollutants is sufficiently large. Furthermore, a criterion is formulated that
assures the stable coexistence of the species and pollution.

By incorporating resource harvesting and pollutant inflow reduction into the resource
and pollution dynamic equations, respectively, we have investigated the influence of in-
vesting in pollutant inflow reduction on the yield. We observed that, by proper allocation
of the available effort capacity between harvesting and pollutant inflow reduction, it is
possible not only to improve the revenue but also the survival rate of the species. Fur-
ther, we have observed that there is an optimal effort allocation between harvesting and
pollutant inflow reduction that maximizes the yield.

Finally, by considering the pollution dependent revenue obtained from both harvest-
ing and the stock benefit, we have studied an optimal harvest problem. We observed
that variation in the stock benefit affects the optimal harvesting strategy. In particular,
an increase in the stock benefit results in a reduction in the harvest effort (and hence a
rise in pollution reduction effort). Consequently, the resource stock increases, and the
stock of pollution decreases.
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Abstract: In this paper, the strongly nonlinear fractional undamped Duffing equa-
tion for undamped oscillators is studied. The physical and the mathematical model
of nonlinear fractional Duffing equation for undamped oscillators is presented. The
modified fractional power series (MFPS) method is employed to compute an ap-
proximation to the solution of this problem. The validity of the MFPS method is
ascertained by comparing our results with numerical results and other methods in
the literature. The results reveal that the proposed analytical method can achieve
excellent results in predicting the solutions of such problems. The existence of the
solution is proved. In addition, the convergence of the proposed method is investi-
gated.
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1 Introduction

In 1918, George Duffing presented the Duffing equation in his publication entitled
“Erzwungene Schwingungen bei veranderlicher Eigenfrequenz und ihre technische Be-
deuting”. Duffing simplified the mathematical model of

x′′(t) + a2x(t)− βx2(t)− γx3(t) = k sinωt (1)
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and calculated the first term H sinωt of the periodic solution. Duffing considered the
simplified version of equation (1) for describing the motion of the symmetrical pendulum
of the form

x′′(t) + α x(t)− γx3(t) = 0 (2)

and the unsymmetrical pendulum of the form

x′′(t) + α x(t)− γx2(t) = 0. (3)

From that time, the differential equation with polynomial type of nonlinearity is called
the Duffing equation. The nonlinear differential equation for the cubic free undamped
Duffing oscillator of the form

x′′(t) + α x(t) + βx3(t) = 0 (4)

is subject to

x(0) = A, x′(0) = 0. (5)

Many researchers discussed this problem numerically. He [3] used the homotopy
perturbation method to solve the Duffing equation, while Belendez et al. [1] used the
modified homotopy perturbation method. Ramos, Syam, Chhetri, Wazwaz used the
variational iteration method to solve this problem [7, 9–13], while Ghosh et al. [2] used
the Adomian decomposition method. In addition, Ramos [8] and Sabeg [14] used the
artificial parameter decomposition and He’s parameter expanding method, respectively.

Several analytical solutions for the Duffing problem were developed. For the small
non-linearity, many analytical approaches were used to solve this problem, namely, the
monotone method, the Krylov-Bogolubov method, the straightforward expansion, and
the generalized Taylor power series method. For the case of strong cubic non-linearity,
see [4, 5].

In this paper, we study the generalization of the problem (4)-(5) of the form

D2αx(t) + βx(t) + γx3(t) = 0,
1

2
< α ≤ 1, 0 < t < T (6)

subject to
x(0) = A,Dαx(0) = 0. (7)

The derivative in Eq. (6) is in the Caputo derivative sense. We write the definition
and some preliminary results of the Caputo fractional derivatives, as well as the definition
of the fractional power series and one of its properties.

Definition 1.1 A real function f(t), t > 0,is said to be in the space Cµ, µ ∈ R if
there exists a real number p > µ such that f(t) = tpf1(t), where f1(t) ∈ C[0,∞), and it
is said to be in the space Cmµ if f (m) ∈ Cµ, m ∈ N.

Definition 1.2 For δ > 0, m − 1 < δ < m, m ∈ N, t > 0, and f ∈ Cm−1 , the left
Caputo fractional derivative is defined by

Dδf(t) =

{
1

Γ(m−δ)
∫ t

0
(t− s)m−1−δf (m)(s)ds, δ > 0,

f ′(t), δ = 0,
(8)

where Γ is the well-known Gamma function.
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The Caputo fractional derivative satisfies the following properties for α > 0, see [15].

1. Dαc = 0, where c is constant,

2. Dαtγ =

{
0, γ < α, γ ∈ {0, 1, 2, ...}

Γ(γ+1)
Γ(γ−α+1) t

γ−α, otherwise

}
.

Next, we write the definition and one of the properties of the fractional power series
which are used in this paper. More details can be found in [16].

Definition 1.3 A power series expansion of the form

∞∑
m=0

cm(t− t0)mα = c0 + c1(t− t0)α + c2(t− t0)2α + ...

is called a fractional power series FPS about t = t0 .

Suppose that f has a fractional FPS representation at t = t0 of the form

g(t) =

∞∑
m=0

cm(t− t0)mα, t0 ≤ t < t0 + β.

If Dmαg(t), m = 0, 1, 2, .. are continuous on R, then cm = Dmαg(t0)
Γ(1+mα) .

We organize this paper as follows. In Section 2, we present a numerical technique for
solving the second order nonlinear fractional boundary value problem using the MFPS
method. Convergence of the presented method is given in this section. Some numerical
results are presented in Section 3 to illustrate the efficiency of the presented method.
Finally, we conclude with some comments and conclusions in Section 4.

2 MFPS Method for Solving Fractional Undamped Duffing Equation with
Cubic Nonlinearity

In this section, we discuss how to solve the following class of second-order fractional
undamped Duffing equations with cubic nonlinearity using the MFPS method:

D2αx(t) + βx(t) + γx3(t) = 0,
1

2
< α ≤ 1, 0 < t < T (9)

subject to
x(0) = A,Dαx(0) = 0. (10)

The MFPS method proposes the solution of the problem in the form of fractional power
series as

x(t) =

∞∑
n=0

fn
tnα

Γ(1 + nα)
. (11)

To obtain the approximate values of the above series (11), we consider its k-th truncated
series xk(t) which has the form

xk(t) =

k∑
n=0

fn
tnα

Γ(1 + nα)
. (12)
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Since x(0) = f0 = A and Dαx(0) = f1 = 0, we rewrite Eq. (12) as

xk(t) = A+

k∑
n=2

fn
tnα

Γ(1 + nα)
, k = 2, 3, ..., (13)

where x1(t) = f0 +f1
tα

Γ(1+α) = A is considered to be the 1st RPS approximate solution of

x(t). To find the values of the RPS-coefficients fn, n = 2, 3, 4, ..., we solve the fractional
differential equation

D(n−2)αResn(0) = 0, n = 2, 3, 4, ...,

where Resk(t) is the k-th residual function and is defined by

Resk(t) = D2αxk(t) + βxk(t) + γx3
k(t). (14)

To determine the coefficient f2 in the expansion (12), we substitute the 2nd RPS approx-
imate solution

x2(t) = A+ f2
t2α

Γ(1 + 2α)

into Eq.(14) to get

Res2(t) = D2αx2(t) + βx2(t) + γx3
2(t)

= f2+β

(
A+ f2

t2α

Γ(1 + 2α)

)
+ γ

(
A+ f2

t2α

Γ(1 + 2α)

)3

. (15)

Then, we solve Res2(0) = 0 to get

f2+βA+ γA3 = 0 (16)

or
f2 = −

(
βA+ γA3

)
. (17)

To find f3, we substitute the 3rd RPS approximate solution

x3(t) = A+ f2
t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)

into the 3rd residual function Res3(t) such that

Res3(t) = D2αx3(t) + βx3(t) + γx3
3(t)

= f2 + f3
tα

Γ(1 + α)
+ β

(
A+ f2

t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)

)
(18)

+γ

(
A+ f2

t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)

)3

. (19)

Then, we solve DαRes3(0) = 0 to get

f3 = 0. (20)

To find f4, we substitute the 4th RPS approximate solution

x4(t) = A+ f2
t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)
+ f4

t4α

Γ(1 + 4α)
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into the 4th residual function Res4(t) such that

Res4(t) = D2αx4(t) + βx4(t) + γx3
4(t)

= f3
tα

Γ(1 + α)
+ f4

t2α

Γ(1 + 2α)

+β

(
A+ f2

t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)
+ f4

t4α

Γ(1 + 4α)

)
+γ

(
A+ f2

t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)
+ f4

t4α

Γ(1 + 4α)

)3

.

Then, we solve D2αRes4(0) = 0 to get

f4 + βf2 + 3A2γf2 = 0 (21)

or

f4 =
(
β + 3A2γ

) (
βA+ γA3

)
(22)

= β2A+γβA3 + 3A3γβ + 3A5γ2. (23)

To find f5, we substitute the 5th RPS approximate solution

x5(t) = A+ f2
t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)
+ f4

t4α

Γ(1 + 4α)
+ f5

t5α

Γ(1 + 5α)

into the 5th residual function Res5(t) such that

Res5(t) = D2αx4(t) + βx5(t) + γx3
5(t)

= f3
tα

Γ(1 + α)
+ f4

t2α

Γ(1 + 2α)
+ f5

t3α

Γ(1 + 3α)

+β

(
A+ f2

t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)
+ f4

t4α

Γ(1 + 4α)
+ f5

t5α

Γ(1 + 5α)

)
+γ

(
A+ f2

t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)
+ f4

t4α

Γ(1 + 4α)
+ f5

t5α

Γ(1 + 5α)

)3

.

Then, we solve D3αRes5(0) = 0 to get

f5 = 0. (24)

To find f6 , we substitute the 6th RPS approximate solution

x6(t) = A+

6∑
n=2

fn
tnα

Γ(1 + nα)

into the 6th residual function Res6(t) such that

Res6(t) = D2αx6(t) + βx6(t) + γx3
6(t)

= f3
tα

Γ(1 + α)
+ f4

t2α

Γ(1 + 2α)
+ f5

t3α

Γ(1 + 3α)
+ f6

t4α

Γ(1 + 4α)

+β

(
A+

6∑
n=2

fn
tnα

Γ(1 + nα)

)
+ γ

(
A+

6∑
n=2

fn
tnα

Γ(1 + nα)

)3

.
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Then, we solve D4αRes6(0) = 0 to get

f6 + βf4 + γ

(
3Af2

2

Γ(1 + 4α)

(Γ(1 + 2α))
3 + 3A2f4

)
= 0 (25)

or

f6 = −
(
β + 3A2

)
f4 − 3A

Γ(1 + 4α)

(Γ(1 + 2α))
3 f

2
2 (26)

= −
(
β + 3A2

) (
β2A+γβA3 + 3A3γβ + 3A5γ2

)
(27)

−3A
Γ(1 + 4α)

(Γ(1 + 2α))
3

(
βA+ γA3

)2
. (28)

Using similar argument, we generate f7, f8, f9, .... Thus, the approximate solution is given
by

xk(t) = A+

k∑
n=2

fn
tnα

Γ(1 + nα)
, k = 2, 3, .... (29)

In the next theorem, we study the convergence of the series (2) to the solution of
problem (9)-(10).

Theorem 2.1. Let x(t) =
∞∑
n=0

fn
tnα

Γ(1 + nα)
and 0 < α ≤ 1. Then, the sequence

{xk(t)} converges to the solution of problem (9)–(10).

Proof: First, we want to prove that
∞∑
n=2

fn
t(n−2)α

Γ(1 + (n− 2)α)
converges to D2αx(t)

when t > 0. For any t > 0,

D2αx(t) =
1

Γ(2− 2α)

∫ t

0

(t− s)1−2αx′′(s)ds

=
1

Γ(2− 2α)

∫ t

0

(t− s)1−2α

( ∞∑
n=0

fn
snα

Γ(1 + nα)

)′′
ds

=

∞∑
n=0

fn
Γ(1 + nα)

1

Γ(2− 2α)

∫ t

0

(t− s)1−2α (snα)
′′
ds

=

∞∑
n=0

fn
Γ(1 + nα)

D2α(tnα) =

∞∑
n=2

fn
Γ(1 + (n− 2)α)

t(n−2)α.

Thus,
∑∞
n=2 fn

t(n−2)α

Γ(1+(n−2)α) converges to D2αx(t) when t > 0.

Next, we want to prove the sequence {xk(t)} converges to the solution of problem
(9)-(10). Let

D2α

(
A+

∞∑
n=2

fn
tnα

Γ(1 + nα)

)
+ β

(
A+

∞∑
n=2

fn
tnα

Γ(1 + nα)

)

+γ

(
A+

∞∑
n=2

fn
tnα

Γ(1 + nα)

)
=

∞∑
n=0

ξnt
nα
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or
∞∑
n=2

fn
Γ(1 + (n− 2)α)

t(n−2)α + β

(
A+

∞∑
n=2

fn
tnα

Γ(1 + nα)

)

+γ

(
A+

∞∑
n=2

fn
tnα

Γ(1 + nα)

)
=

∞∑
n=0

ξnt
nα.

Since D2αx(t) =
∑∞
n=2 fn

t(n−2)α

Γ(1+(n−2)α) and x(t) =
∑∞
n=0 fn

tnα

Γ(1+nα) , we have

∞∑
n=2

ξnt
nα = 0.

Let

Sk =

∞∑
n=k

ξnt
nα.

Then, the sequence {Sk} converges to zero. From Eq. (14), we see that

Resk(t) = Sk.

Thus,
lim
k→∞

Resk(t) = lim
k→∞

Sk = 0.

Hence, the sequence {xk(t)} converges to the solution of problem (10)-(11)

3 Results and Discussion

First, we study problem (10)-(11) when α = 1. The exact solution of problem (10)-
(11) is not known. Therefore, the numerical solutions have been determined by built-
in file of MATHEMATICA based on the fully explicit Runge-Kutta method and this
solution is used as the standard or reference for comparison. In Tables 1 and 2, we
compare our results with the HPM, MHPM, SHPM [6], and the numerical solution for
A = 1, α = 1, β = 1, and γ = 1 and for A = 0.75, α = 1, β = 1.5, and γ = 1.5,
respectively.

t HPM MHPM SHPM Present results Numerical results
0.5 0.762476 0.768902 0.768766 0.768802 0.768802
1.0 0.176929 0.233741 0.233680 0.233692 0.233692
2.0 −1.055110 −0.891260 −0.859323 −0.859349 −0.859349
3.5 −0.461650 −0.079433 −0.093034 −0.093013 −0.093013
5.0 2.049041 0.996472 0.947107 0.947130 0.947130
Table 1: The approximate solution for A = 1, α = 1, β = 1, and γ = 1.

t HPM MHPM SHPM Present results Numerical results
1 0.056288 0.080176 0.080519 0.0805269 0.080527
2 −0.808192 −0.739174 −0.729000 −0.729018 −0.729018
3 −0.339208 −0.239413 −0.238620 −0.2386259 −0.238626
4 0.891267 0.706827 0.667953 0.6680221 0.668022
5 0.893003 0.395315 0.387550 0.3875509 0.387551
Table 2: The approximate solution for A = 0.75, α = 1, β = 1.5, and γ = 1.5.
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Figure 1 shows the comparison between the current method and numerical solutions
for A = 1, α = 1, β = 0.5, and γ = 2 while Figure 2 shows the comparison between the
current method and numerical solutions for A = 1.5, α = 1, β = 1, and γ = 0.5.

0 1 2 3 4 5
-1.0

-0.5

0.0

0.5

1.0

t

F
Ht
L

Figure 1. The proposed solution and the numerical solution for A = 1, α = 1, β = 0.5,
and γ = 2.

4 Conclusion

In this paper, the nonlinear differential equation of the cubic free undamped Duffing
oscillator of the form

D2αx(t) + β x(t) + γx3(t) = 0,
1

2
< α ≤ 1, 0 < t < T, (30)

subject to

x(0) = A,Dαx(0) = 0 (31)

is presented. We compare our results with the HPM, MHPM, SHPM [6], and the nu-
merical solution for A = 1, α = 1, and β = γ = 1 in Table 1. In Table 2, we compare our
results with the HPM, MHPM, SHPM [6], and the numerical solution for A = 0.75, α = 1,
and β = γ = 1.5. Figure 1 shows the comparison between the current method and numer-
ical solutions for A = 1, α = 1, β = 0.5 and γ = 2 while Figure 2 shows the comparison
between the current method and numerical solutions for A = 1.5, α = 1, β = 1, and
γ = 0.5. From the previous section, we can conclude the following:

• From Tables 1 and 2, we see that our results agree exceptionally well with the
numerical results and are more accurate than those by the HPM, MHPM, SHPM [6].
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Figure 2. The proposed solution and the numerical solution for A = 1.5, α = 1,
β = 1, and γ = 0.5.

• Figure 2 shows the comparison between the current method and numerical solutions
for A = 1, α = 0.5, and β = 2.We see that there is agreement between the numerical
results and our results.

• The MFPS method is an excellent tool due to the rapid convergent.

• The results in this paper confirm that the MFPS method is a powerful and efficient
method for solving nonlinear differential equations in different fields of sciences and
engineering.
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