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Abstract: This paper deals with the bio-economics of a renewable resource in a
polluted environment. A decline in the revenue due to pollution drives the harvester
to allocate a part of the total effort capacity towards pollutant inflow reduction.
Hence, the interest is to find an optimal allocation of the available effort capacity
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horizon, and it is solved using the standard techniques of optimization. We verify the
applicability of the results by considering some practical examples.
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1 Introduction

The link between renewable resource harvesting and pollution has occupied the attention
of researchers and scientists from various disciplines such as economics, biology, engineer-
ing, and mathematics. Pollution of water bodies (such as rivers and lakes from the dis-
charge of municipal sewage, septage, industrial chemicals, agricultural run off containing
pesticides, etc.) affects the livestock surviving in that environment. Consequently, the
economy dependent on the exploitation of such stock suffers as the presence of pollution
in the environment affects the health, longevity, and reproductivity of biomass.
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Economic damages to livestock (fisheries), caused by the presence of pollution in the
environment have been the main focus in several studies, some of which were undertaken
in response to particular pollution incidents [7,8]. The effect of pollutants on the survival
of biological species is studied by different authors [10,11,16,20]. Dubey and Hussain [11]
studied the survival of species dependent on a resource in a polluted environment. Shukla
et al. [16] investigated the effects of pollutants emitted from external sources as well as
from their precursors on the survival of a resource-dependent species. Hallam [10] studied
the crucial role played by pollutant uptake by the resource. Thomas et al. [20] considered
the control problem in a polluted environment to investigate the effect of environmental
pollution on a single species population.

Considerable investigations have been made to study the connection between renew-
able resource harvesting and environmental pollution [12, 17, 19]. Siebert [17] presented
the dynamic optimization model that combines renewable resource harvesting and pol-
lution. It underlines the effect of pollution on the regeneration of the resource. Tahvo-
nen [19] studied the dynamics of a harvested renewable resource and pollution with the
control strategy, where pollutants are assumed to affect both intrinsic per capita growth
rate and saturation level of the resources. A study presented in [12] underlines the effec-
tiveness of pollution reduction expenditures under the assumption that there are constant
returns to de-pollution efforts. In particular, the pollutant inflow reduction reduces the
pollution of water bodies.

In the literature, we come across studies dealing with optimal exploitation of renew-
able resource and pollution control wherein the rate of emissions (generated from the
production sector) and the harvest rate are considered as controllable variables. These
models mostly consider benefits from both the natural resource sector and the pollution
generating-production sector. In this study, we focus on the optimal allocation problem
in a polluted environment, where there is no benefit from other sectors (such as pollution
generating-production sectors).

Pollution affects both the resource growth rate and the quality of the catch, resulting
in a decline in the revenue. Since environmental pollution is inevitable, the harvester
wishes to allocate a part of the available effort capacity towards pollutant inflow reduction
with a hope that it would improve the productivity of the resource resulting in enhanced
revenues. To address this problem, it is essential to gain an understanding of the interplay
between resource dynamics in the presence of harvesting and the dynamics of pollution
under pollutant inflow reduction. Hence, we formulate a dynamic optimization model on
an infinite horizon, and it is solved using the standard techniques of dynamic optimization
[4, 5, 9, 13,15].

We organize the paper as follows. In Section 2, we consider the resource-pollution
dynamics (with no harvesting and inflow reduction) to investigate the effect of pollutants
on the survival of the resource. In Section 3, we investigate the influence of investing in
pollutant inflow reduction on the harvest. Here, we evaluate the optimal effort allocation
that maximizes the sustainable yield. By including the stock benefit as another source
of revenue, we present an optimal harvest problem on an infinite horizon in Section
4. Practical examples that demonstrate the main results and the concluding remarks,
respectively, are given in Sections 5 and 6.
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2 Resource Dynamics in a Polluted Environment

Consider a renewable resource (fish) that is surviving in a polluted lake environment. Let
x(t) and P (t) represent the resource stock and the stock of pollution in the environment
at each time t, respectively. Given the inflow rate of pollutants v at each time t, the
dynamics of a renewable resource and pollution (in the environment) can be given by
(ref. [10, 20])

dx

dt
= r(P )x

(
1− x

K(P )

)
, x(0) = x0 > 0, (1a)

dP

dt
= v − γPx− ηP, P (0) = P0 > 0. (1b)

The resource x in Eqn.(1a) grows as per Logistic equation where the intrinsic per capita
growth rate (r(P )) and environmental carrying capacity (r(P )) are pollution dependent.
These parameters are given by r(P ) = a − φP > 0 and K(P ) = a−φP

b > 0, which
are both decreasing functions of P . a and a

b represent the intrinsic per capita growth
rate and the environmental carrying capacity, respectively, in the absence of pollution.
The expressions γPx and ηP in Eqn.(1b) stand for pollutant uptake by the resource
and decay of pollution, respectively. Next, we study the steady-state equilibria and its
stability for the system (1).

We know that the resource and pollution stocks are nonnegative, and hence the dis-
cussion to come is meaningful only if both the components are nonnegative. Throughout
the paper, we use the terms ”axial and interior equilibria” to represent the steady-state
solutions of (1) that belong to the boundary and interior regions, respectively, of the
positive quadrant of xP -space. It can be easily seen that the system (1) admits an
axial equilibrium

(
0, vη

)
and the interior equilibrium (x, P ) (provided it exists), whose

components are given by

x =
1

b
(a− φP ), (2a)

P =
v

γx+ η
. (2b)

To express the components (x and P ) explicitly, the following equations can be used
(which are derived from (2)):

γbx2 − (aγ − bη)x+ φv − aη = 0, (3a)

γφP
2 − (aγ + bη)P + bv = 0. (3b)

Clearly, the existence of interior equilibria for the system (1) depends on the coefficients
of a quadratic polynomial in (3a) (or (3b)). It can be easily verified that the given system
admits a unique interior equilibrium whenever

v <
aη

φ
, (4)

two interior equilibria whenever

aη

φ
< v <

(aγ + bη)2

4bγφ
, (5)
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and the interior equilibrium does not exist whenever

v > max{aη
φ
,

(aγ + bη)2

4bγφ
}. (6)

The two interior equilibria of the system are given by(
aγ − bη +

√
(aγ − bη)2 − 4bγ(vφ− aη)

2bγ
,
aγ + bη −

√
(aγ + bη)2 − 4φγ(bv)

2φγ

)
(7a)

&

(
aγ − bη −

√
(aγ − bη)2 − 4bγ(vφ− aη)

2bγ
,
aγ + bη +

√
(aγ + bη)2 − 4φγ(bv)

2φγ

)
. (7b)

The unique interior equilibrium of the system (if it exists) is the one given in (7a).

From Eqn.(2a) and Eqn.(2b) we observe that the resource stock decreases as the
stock of pollution increases. Further, the survival of the resource depends on the stock
of pollution, and the existence of pollution (in the environment) mainly depends on the
inflow rate and the rate of natural degradation. Hence, it is noteworthy to give more
attention to a crucial role played by the vital parameters v, η for the existence of an
interior equilibrium for the system (1). This is shown in Figure 1, wherein the ηv-
parameter space is divided into three regions I, II, and III. The figure provides a base for
not only highlighting the dependence of the existence of interior equilibrium on the vital
parameters η, v but also to study the qualitative behavior associated with the system
under consideration.

To investigate the stability behavior of the equilibria, the Jacobian matrix associated
with the system under study is given by

J(x, P ) =

(
a− 2bx− φP −φx
−γP −η − γx

)
. (8)

Evaluating the Jacobian matrix at the axial equilibrium
(
0, vη

)
gives

J(0,
v

η
) =

(
aη−φv
η 0

−γvη −η

)
. (9)

From the eigen values of the Jacobian matrix in (9) (which are aη−φv
η and −η) we observe

that the axial equilibrium is locally stable whenever

v >
aη

φ
, (10)

and a saddle otherwise. The Jacobian matrix at the interior equilibrium (x, P ) gives

J(x, P ) =

(
−bx −φx
−γP − v

P

)
,

and its characteristic equation is

r2 + (bx+
v

P
)r + bx(

v

P
)− γφPx = 0. (11)
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Figure 1: This figure highlights the influence of vital parameters η and v on the existence
of interior equilibrium for the system (1). The positive quadrant of the ηv-parameter space is
divided into three regions I, II and III (based on the values of (η, v) for which the system (1)
admits two interior equilibria, a unique interior equilibrium and no interior equilibrium). For
each (η, v) in region I, the relation v < aη

φ
holds, and hence the system under study admits a

unique interior equilibrium (by (4)). For (η, v) in region III, the relation aη
φ
< v < (aγ+bη)2

4bγφ

holds and hence the system admits two interior equilibria (by (5)). Finally, for each (η, v)

in region II, the relation v > max{aη
φ
, (aγ+bη)2

4bγφ
} is satisfied, and hence the system admits no

interior equilibrium (by (6)). The structure of isoclines for the system in question whenever
(η, v) belongs to the regions I-III, is presented in the frames A-C, respectively, which are located
on the right-hand side of the main figure.

The interior equilibrium (x, P ) is locally stable or unstable depending on the roots of
a quadratic polynomial in (11). In fact, it is locally stable whenever

P
2 ≤ bv

γφ
, (12)

and a saddle otherwise. We have the following theorems pertaining to the system (1)
which can be easily established.

Theorem 2.1 The system (1) admits an axial equilibrium and at most two interior
equilibria. The axial equilibrium is globally asymptotically stable in the absence of the
interior equilibrium, a saddle in the presence of a unique interior equilibrium and locally
stable in the presence of two interior equilibria. The unique interior equilibrium is locally
stable, and the stability nature in the case of two interior equilibria depends on their
proximity to the axial equilibrium interms of their x-component. The closer one is a
saddle and the farther one is locally stable.

Theorem 2.2 If the associated parameters satisfy the relation a
φ >

v
η , the system (1)

admits a unique interior equilibrium which is globally asymptotically stable.

Now we shall make use of Figure 1 to bring forward various bifurcations that take
place in the system under consideration due to variations in the vital parameters v and

η. Observe that the two curves v = aη
φ and v = (aγ+bη)2

4bγφ given in the figure represent two
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bifurcation curves; the former one represents a transcritical bifurcation curve between
the axial equilibrium and an interior equilibrium, while the latter one represents a saddle-
node bifurcation curve of the interior equilibrium. Below we briefly present an overview
of the occurrence of various bifurcations in the system (1) as the parameters (η, v) move
from one region to another in the figure.

As parameters (η, v) move from region I into II crossing the line v = aη
φ , the unique

asymptotically stable interior equilibrium and the unstable (saddle) axial equilibrium
get closer as the parameters approach the line v = aη

φ , collide with each other on the
line causing exchange of stability between them due to the occurrence of transcritical
bifurcation.

As parameters (η, v) move from region II into III crossing the line v = (aγ+bη)2

4bγφ ,
the system experiences a saddle-node bifurcation. Hence there is the emergence of two
interior equilibria for the system, where one of them is a saddle, and the other is locally
stable. The nature of the axial equilibrium continues to be locally stable. Here, the
stable manifold of the saddle interior equilibrium divides the positive quadrant of the
xP -space into two invariant regions, each being the region of attraction of the stable
equilibrium that it contains.

As parameters (η, v) move from region III into I crossing the line v = aη
φ , the saddle

interior equilibrium that exists (when the parameters are in region III) moves closer to the
locally stable axial equilibrium and collide with each other on the line v = aη

φ causing a
transcritical bifurcation between them resulting in the axial equilibrium becoming saddle
and retention of only one interior equilibrium when the parameters are in region I.

We have the following observations on the system (1). If the inflow rate of pollutants
v is sufficiently low such that v < aη

φ is satisfied, then we are assured of the stable

coexistence in the system. If the inflow parameter satisfies aη
φ < v < (aγ+bη)2

4bγφ , the

system admits two interior equilibria (one is locally stable and the other is unstable).
In this case, the survival of the resource depends on its initial position. Unless the
initial position is in the region of attraction of the interior equilibrium, the resource is
likely to go extinct. On the other hand, if the inflow rate is sufficiently large so that

v > max{aηφ ,
(aγ+bη)2

4bγφ }, the resource can not survive in such environment.

3 The Influence of Investing in Pollutant Inflow Reduction on the Harvest

In Section 2, we observed that a reduction in the stock of pollution helps to improve the
survival and productivity of the resource, and preventing the inflow of pollutants is a
feasible alternative to reduce pollution. Hence, it seems to be reasonable to allocate a
part of the total effort capacity towards pollutant inflow reduction to improve the yield.
Thus, we consider a revised version of (1) wherein the available effort capacity is divided
into two parts: harvesting the resource and pollutant inflow reduction. This will enable
us to investigate the influence of investing in inflow reduction on the yield as well as the
stock.

Suppose the sole owner has the total effort capacity of M units (measured in terms
of money) to invest in harvesting and pollutant inflow reduction. Now, the aim is to
find an optimal effort allocation to maximize the sustainable yield. Let E and M − E
be the efforts allocated towards harvesting and inflow reduction. Then, the resource and
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pollution dynamic equations can be given by (ref. [12, 19])

dx

dt
= r(P )x

(
1− x

K(P )

)
− qαEx, x(0) = x0 > 0, (13a)

dP

dt
= v − β(M − E)− γPx− ηP, P (0) = P0 > 0, (13b)

0 ≤ E ≤M. (13c)

The parameters r(P ) and K(P ) (in Eqn.(13a)) are as defined in Section 2 and the
term qαEx stands for the harvest rate, where αE represents the effort in physical terms
(measured in vessel units). In Eqn.(13b) the term β(M − E) (measured in ton per unit
time) stands for the amount of inflow rate reduced by the de-pollution effort M−E, where
the constants α > 0, β > 0 are conversion factors, and q is the catchability coefficient.

For each harvest effort E ∈ [0,M ], the system (13a)-(13b) admits an axial equilibrium
(0, 1η (v−β(M−E)) (provided v−β(M−E) > 0), and the interior equilibrium (xE , PM−E)
whose components are given by

xE =
1

b

(
a− φPM−E − αqE

)
, (14a)

PM−E =
v − β(M − E)

γxE + η
, (14b)

provided that a−φPM−E−αqE > 0, v−β(M −E) > 0. Note that the subscripts E and
M−E for the resource and pollution variables at equilibrium, are meant to indicate that
the equilibrium is a result of allocating the efforts E towards harvesting the resource and
M −E towards inflow reduction, respectively. The following equations are derived from
(14)

γbx2E −
(
(a− αqE)γ − bη

)
xE + φ(v − β(M − E))− (a− αqE)η = 0, (15a)

γφP 2
M−E −

(
(a− αqE)γ + bη

)
PM−E + b(v − β(M − E)) = 0. (15b)

Clearly, the existence of interior equilibrium for the system under consideration depends
on the coefficients of a quadratic polynomial in (15a) (or (15b)). Further, the system
admits at most two interior equilibria as in the case of the system (1), but here the
equilibria are functions of an additional parameter E. To be more specific, for each E in
(13c) the system (13a)-(13b) admits a unique interior equilibrium whenever

v − β(M − E) <
1

φ
(a− αqE)η, (16)

it admits two interior equilibria whenever

1

φ
(a− αqE)η < v − β(M − E) <

((a− αqE)γ + bη)2

4bγφ
, (17)

and the interior equilibrium does not exist whenever

v − β(M − E) > max

{
1

φ
(a− αqE)η,

((a− αqE)γ + bη)2

4bγφ

}
. (18)

The role of parameter E for the existence of interior equilibrium for the system under
consideration can be understood from Figure 2. Hence, we have the following theorems
pertaining to the system (13a)-(13b) which can be easily established.
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Figure 2: This figure highlights the comparison between systems (1) and (13a)-(13b) based
on the values of parameter E. For a fixed E ∈ [0,M ] (in Frame A) the positive quadrant of
ηv-space is divided into three regions (I, II and III) based on the values of (η, v) for which the
system (13a)-(13b) admits a unique interior equilibrium, no interior equilibrium and two interior
equilibria. The region under a line segment v = aη

φ
(in frames B-D) represents the set of (η, v)

for which the system (1) admits a unique interior equilibrium whereas the regions under the line
segments v = aη

φ
+ βM(in Frame B where E = 0), v = 1

φ
(a − αqE)η + β(M − E) (in Frame

C where 0 < E < M) and v = 1
φ

(a − αqM)η (in Frame D where E = M) represent the set of
(η, v) for which the system (13a)-(13b) admits a unique interior equilibrium. In Frame B, the
region for unique interior equilibrium is increased (when the entire effort is allocated towards
inflow reduction, and no harvesting). In Frame D, the region for unique interior equilibrium is
decreased (when the entire effort is allocated towards harvesting with no inflow reduction). In
Frame C, the region for unique interior equilibrium is increased for η sufficiently small, and it
is reduced for large η.

Theorem 3.1 For each E ∈ [0,M ], the system (13a)-(13b) admits an axial equilib-
rium (provided that v − β(M − E) > 0) and at most two interior equilibria. The axial
equilibrium is globally asymptotically stable in the absence of the interior equilibrium, it
is a saddle in the presence of a unique interior equilibrium, and it is locally stable in the
presence of two interior equilibria. The unique interior equilibrium is locally stable, and
the stability nature in the case of two interior equilibria depends on their proximity to
the axial equilibrium in terms of their x-component. The closer one is a saddle, and the
farther one is locally stable.

Theorem 3.2 For each E ∈ [0,M ], if the associated parameters satisfy the relation

v−β(M −E) < (a−αqE)η
φ , then system (13a)-(13b) admits a unique interior equilibrium

which is globally asymptotically stable.

We observe that it is noteworthy to give more attention to the existence of a unique
interior equilibrium in the system as it assures not only the stable coexistence in the
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system but also the equilibrium with a larger resource level and lower level of pollution.
From (14a)-(14b), it follows that the resource xE decreases and pollution PM−E increases
as the effort E increases. Further, the highest resource level and the lowest level of
pollution occur at the equilibrium (x0, PM ) (where E = 0). Similarly, the lowest resource
level and the highest level of pollution occur at the equilibrium (xM , P0) (where E = M).

Having seen the highest (lowest) possible levels for the resource stock as well as
the stock of pollution, here we are interested in determining the effort allocation that
maximizes the sustainable yield. Observe that increasing the harvest effort may not
improve the catch in general. The reason being, increasing the harvest effort E causes a
decrease in the effort M −E towards the inflow reduction, and this results in a reduction
of the stock level x. Therefore, it is useful to find the proper effort allocation to maximize
the sustainable yield. For the given harvest effort E ∈ [0,M ] and the stock level xE , the
yield expression is

Y (E) = qαExE , (19)

where the stock level xE is a function of E (which is the x-component of a unique interior
equilibrium (xE , PM−E) of the system (13a)-(13b)). Clearly, Y (E) is continuous on the
interval [0,M ], and hence it attains its maximum in [0,M ] giving rise to maximum
sustainable yield YMSY . This yield may occur either at the boundary E = M or in the
interior of [0,M ]. If EMSY ∈ (0,M), then it solves the equation

dY

dE
= 0, (20)

for a concave function Y (E) on [0,M ].

4 Optimal Harvest Problem

Following the dynamics of harvested renewable resource surviving in a polluted environ-
ment, and having seen the influence of allocating a part of the effort capacity towards
inflow reduction on the yield, now we wish to construct an optimal harvesting strategy.
Assume that the sole owner has twofold benefit from the resource: benefits from harvest-
ing and the stock. The latter one represents the benefit of the stock in its natural place
(such as tourism) [18,19]. Therefore, it is crucial to ensure a reasonable level of stock in
the environment to reap the stock benefit in addition to the revenue from harvesting.

The gross harvesting benefit is assumed to increase with an increase in the harvest,
and it decreases with increasing pollution. Further, the marginal (negative) impact
of pollution on the gross harvesting benefit is assumed to increase. Hence the gross
harvesting benefit (which we denote by W (h, P )) may have the following properties
(ref. [19])

Wh > 0,WP < 0,WPP < 0. (21)

Hence, we consider the following explicit form of the function W (h, P )

W (h, P ) = τ(1− εP 2)h, (22)

where h = qαEx is the harvest rate and τ(1 − εP 2) represents the pollution dependent
price per unit harvest (where 0 ≤ 1− εP 2 ≤ 1). Clearly, τ represents the price per unit
catch in the absence of pollution.

The stock benefit is assumed to be affected by the presence of pollution in the envi-
ronment. Naturally, it decreases with increasing pollution (as it may detour the tourists
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from visiting). We also assume that the marginal benefit of the stock decreases, and the
marginal (negative) impact of pollution increases. Thus, the stock benefit (measured in
terms of money) denoted by S(x, P ) may have the following properties:

Sx > 0, Sxx < 0, SP < 0, SPP < 0, for 0 < x ≤ xs, Sx = 0 for x > xs, (23)

where xs denotes the saturation level in the function. Here, we assume the saturation level
xs to be the environmental carrying capacity. The assumption Sx = 0 for each x > xs
is due to the observation that the ”small” deviation from some ”large” stock levels do
not necessarily reduce the human in situ benefits [19]. Thus, we consider the following
explicit form of the function S:

S(x, P ) =

{
ρ(1−εP 2)x

σ+x for, 0 < x ≤ xs,
ρ(1−εP 2)xs

σ+xs
for, x > xs,

(24)

where ρ denotes the maximum achievable benefit from the stock in the absence of pollu-
tion and σ is a half saturation constant.

The instantaneous net revenue, which is the sum of benefits from harvesting and the
stock, is given by

R(x, P,E) = (1− εP 2)
(
τqαEx+

ρx

σ + x

)
−M. (25)

Hence, the present value (denoted by PV ) of the total net revenues on the infinite horizon
is given by

PV =

∫ ∞
0

e−δtR(x, P, h)dt, (26)

where δ is the instantaneous discount rate. Now, the objective is to find an optimal effort
allocation between harvesting and inflow reduction so that the integral in (26) is as large
as possible. Precisely formulated, the problem is as follows:

Maximize PV (27a)

Subject to:
dx

dt
= r(P )x

(
1− x

K(P )

)
− αqEx, x(0) > 0, (27b)

dP

dt
= v − β(M − E)− γPx− ηP, P (0) > 0, (27c)

0 ≤ E ≤M. (27d)

This is an optimal control problem on an infinite horizon with two state variables (the
resource stock x and the stock of pollution P ) and one control variable (the effort E
towards harvesting).

Solving the problem (27) is amounting to finding out the optimal effort E0(t) towards
harvesting (and hence M − E0(t) towards inflow reduction) so that the present value in
(27a) is maximum. Equivalently, we need to find the path traced out by (x0(t), P0(t))
with this optimal effort allocation so that if the resource stock and the stock of pollution
are kept along this path, then we are assured of achieving the objective of the sole owner.

As per the maximum principle [5, 9, 15], the Hamiltonian H(x, P,E, µ1, µ2) is given
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by

H(x, P,E, µ1, µ2) = e−δt[(1− εP 2)(αqτEx+
ρx

σ + x
)−M ]+

µ1

[
r(P )x(1− x

K(P )
)− αqEx

]
+

µ2[v − γPx− ηP − β(M − E)].

(28)

And the associated adjoint variables µ1, µ2 satisfy the differential equations

dµ1

dt
= −e−δt(1− cP 2)[ταqE +

ρσ

(σ + x)2
]− µ1

(
a− 2bx− φP − αqE

)
+ γµ2P,

dµ2

dt
= 2εe−δtP (ταqEx+

ρx

σ + x
) + µ2(η + γx) + µ1φx.

Because of the presence of the term e−δt no steady state is possible for the above system.
Hence, we consider the following transformation:

λi(t) = µi(t)e
δt, i = 1, 2 and H = Heδt, (30)

where H is known as the current value Hamiltonian and λ1,λ2 are the current value
adjoint variables. From the above transformation we can easily obtain the following
adjoint differential equations:

dλ1
dt

= λ1δ − λ1
(
a− 2bx− φP − αqE

)
− (1− cP 2)[ταqE +

ρσ

(σ + x)2
] + γλ2P, (31a)

dλ2
dt

= λ2δ + λ2(η + γx) + λ1xd+ 2εP (ταqEx+
ρx

σ + x
). (31b)

Since the problem under consideration is linear in the control variable, the optimal control
shall be a combination of bang-bang and singular controls. First, we investigate the
singular solution to the problem. Differentiating the current value Hamiltonian with
respect to E gives us HE = τ(1 − εP 2)αqx − λ1αqx + λ2β with the switching function
being

s(t) = τ(1− εP 2)αqx− λ1αqx+ λ2β.

It is known that along the singular solution s(t) = 0, i.e.,

τ(1− εP 2)αqx− λ1αqx+ λ2β = 0. (32)

Now substituting the interior steady state solution (x̃E , P̃M−E , λ̃1, λ̃2) of the four dimen-
sional dynamical systems (27b), (27c), (31a) and (31b) into (32) we obtain the following
equation (which is purely in E):

τ(1− εP̃ 2
M−E)αqx̃E − αqλ̃1x̃E + βλ̃2 = 0. (33)

If the solution Ê of (33) satisfies the condition 0 < Ê < M , then Ê becomes the optimal

singular control and (x̃
Ê
, P̃

M−Ê
) is the associated optimal singular solution [4, 6].

After identifying the optimal singular solution (x̃
Ê
, P̃

M−Ê
), now it remains to reach

this solution optimally starting from the given initial state (x(0), P (0)). Since the prob-
lem under consideration is linear in the control variable, the singular solution (x

Ê
, P

M−Ê
)
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can be reached by a bang-bang control [15]. If we denote this control by E(t), then we
have

E(t) =

{
0, if s(t) < 0,
M, if s(t) > 0,

(34)

where s(t) = τ(1− εP 2)αqx− λ1αqx+ λ2β. Suppose T represents the time required to
reach the singular solution optimally from the given initial state (x(0), P (0)) (by a bang-
bang control E(t)). Then the optimal control E0(t) for the problem under consideration
is given by

E0(t) =

{
E(t), for 0 ≤ t < T ,
Ê, for t ≥ T . (35)

If
(
x(t), P (t)

)
represents the trajectory (corresponding to a bang-bang control E(t)) from

the given initial state (x(0), P (0)) to the singular solution
(
x̃
Ê
, P̃

M−Ê

)
, then the optimal

path, traced out by
(
xo(t), Po(t)

)
, is given by

(
x0(t), P0(t)

)
=

{ (
x(t), P (t)

)
for 0 ≤ t ≤ T ,(

x̃
Ê
, P̃

M−Ê

)
for t ≥ T . (36)

If the singular harvesting effort Ê is employed right from the given initial state
(x(0), P (0)), then by the global asymptotic stability of the singular solution

(
x̃
Ê
, P̃

M−Ê

)
,

the corresponding stock path approaches this solution asymptotically.

5 Applications

This example represents the dynamics of a fish population in a polluted lake environment,
where the considered biological and economic parameters are related to actual values one
might have in a fishery (ref. [2]). The inflow rate of pollutants (in wastewater effluents)
is measured yearly to be 50 tonnes per year. The values assigned to the associated
parameters and constants in the problem are given in Table 1. With the given values in
the table, it can be easily seen that the condition φ(v − β(M − E)) − (a − αqE)η < 0
holds for each E ∈ [0,M ], and hence the system (13a)-(13b) admits a unique interior

equilibrium (x̃E , P̂M−E) which is globally asymptotically stable.

For each effort E ∈ [0,M ] the unique interior equilibrium (x̃E , P̂M−E) for the system
(13a)-(13b) is evaluated and this can be seen in Figure 3. This figure also highlights
the relations among the effort E, the resource x, pollution P and yield Y . The highest
resource stock and the lowest stock of pollution in the system, respectively, are x0 =
3.49 × 104 and PM = 105.9 (in tons) which are obtained for E = 0. Similarly, the
lowest resource stock and the highest stock of pollution in the system, respectively, are
xM = 1.05× 164 and P0 = 432.2 (in tons) which are obtained for E = M .

The sustainable yield Y (E) corresponding to each E ∈ [0,M ] is evaluated using (19)
and this is presented in Figure 3. The maximum sustainable yield is YMSY = 3.02× 103

(in tons) which is obtained at the critical effort level EMSY = 8.62× 105 (in US$). The
resource stock and stock pollution corresponding to the maximum sustainable yield are
given by (xEMSY

, PM−EMSY
) = (1.75× 104, 251.75) (in tons).

The interior steady state solution of the four dimensional dynamical systems (27b),
(27c), (31a) and (31b) is given by (1.63 × 104, 272.65, 5.96 × 103,−6.898 × 103), where

the unique solution Ê of (33) is Ê = 9.21 × 105 (in US$). Observe that the solution
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Table 1: The values of parameters and their units.

Parameters Symbol Values units

Intrinsic growth rate a 0.35 1/year
Intraspecific competition b 1× 10−5 1/ton/year
Death of the resource per unit of pollution φ 1× 10−5 1/ton/year
Uptake of pollutant per unit of the resource γ 1× 10−5 1/ton/year
Inflow rate of pollutants v 50 ton/year
Available effort capacity M 1.2× 106 $/year
Conversion parameter α 1× 10−3 vessel/$/year
Conversion parameter β 1× 10−5 ton/$
Natural degradation rate of pollution η 1× 10−2 1/year
Catchability coefficient q 0.0002 1/vessel/year
Discount rate δ 0.025 1/year
Price per unit catch in absence of pollution τ 6× 103 $/ton
Maximum stock benefit in absence of pollution ρ 8× 104 $/year
Half saturation constant σ 1× 104 ton
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Figure 3: This four-quadrant figure presents the resource and pollution stocks (xE , PM−E),
and the yield (Y (E)) associated with each harvest effort E ∈ [0,M ] (and hence the effort M−E
for inflow reduction). Quadrant I depicts the relationship between the resource xE and the yield
Y , quadrant II represents the relationship between pollution PM−E and the yield Y , quadrant
III represents the relationship between the effort E and pollution PM−E and quadrant IV gives
the relationship between the effort E and the resource xE . For each E ∈ [0,M ], Y can be seen
either in quadrant I (through the point (E, xE)) or in quadrant II (through (E,PM−E)). The
figure also highlights the critical effort level EMSY that gives the maximum sustainable yield
Y (EMSY ).

Ê satisfies the relation 0 < Ê < M , and hence it becomes an optimal singular effort
for harvesting (and hence the effort M − 9.21 × 105 goes for inflow reduction). The
optimal singular solution (x

Ê
, P

M−Ê
) is given by (1.63× 104, 272.65) (in tons), and the

corresponding yield is Y (Ê) = 3.00× 103 (in tons). Note that the yield Y (Ê) associated
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Figure 4: This figure presents the optimal approach path starting from two different initial
states (x(0), P (0)) = (1 × 104, 350) (in tons) and (x(0), P (0)) = (2.5 × 104, 200) (in tons) to
the singular solution (1.63× 104, 272.65). The optimal approach path C1 starts from the initial
state (1× 104, 350) and it takes a time period T = 7.65 (in years) to reach the singular solution
by a bang-bang control E(t) = 0 for 0 ≤ t < 4.05 and E(t) = M for 4.05 ≤ t < 7.65. Similarly,
the optimal approach C2 starts from the initial state (2.5× 104, 200) and it takes a time period
T = 10.45 (in years) to reach the singular solution by a bang bang control E(t) = M for
0 ≤ t < 9.5 and E(t) = 0 for 9.5 ≤ t < 10.45.

with the optimal effort (Ê) is less than the maximum sustainable yield (YMSY ). The
optimal approach path from the given initial position (x(0), P (0)) = (1×104, 350) to the
singular solution (1.63 × 104, 272.65) (in tons) takes the time period t = 7.65 (in years)
under a bang-bang control

E(t) =

{
0 for 0 ≤ t < 4.05,
M for 4.05 ≤ t < 7.65.

Therefore, the optimal control to the given problem is

Eo(t) =

{
E(t) for 0 ≤ t < 7.65,

Ê for t ≥ 7.65.

The corresponding optimal approach path is shown in Figure 4. The figure also presents
the optimal approach path from another initial position (2.5× 104, 200) (in tons) to the
singular solution (1.63× 104, 272.65).

6 Concluding Remarks

In this paper, we have presented the bio-economics of a renewable resource in the pres-
ence of pollution. A decline in the revenue due to pollutants (in the environment) is a
major driving force for investing a part of the effort capacity towards pollution reduc-
tion, and pollutant inflow reduction was considered as a feasible alternative to reduce
environmental pollution.

The presence of pollution is assumed to affect both the resource growth rate and the
quality of the catch. The influence of pollutants on the resource growth and the quality
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of the catch are captured through its regeneration function and the revenue function, re-
spectively. By investigating the resource-pollution dynamics (in the absence of harvesting
and pollutant inflow reduction), we observed that the species goes to extinction whenever
the inflow of pollutants is sufficiently large. Furthermore, a criterion is formulated that
assures the stable coexistence of the species and pollution.

By incorporating resource harvesting and pollutant inflow reduction into the resource
and pollution dynamic equations, respectively, we have investigated the influence of in-
vesting in pollutant inflow reduction on the yield. We observed that, by proper allocation
of the available effort capacity between harvesting and pollutant inflow reduction, it is
possible not only to improve the revenue but also the survival rate of the species. Fur-
ther, we have observed that there is an optimal effort allocation between harvesting and
pollutant inflow reduction that maximizes the yield.

Finally, by considering the pollution dependent revenue obtained from both harvest-
ing and the stock benefit, we have studied an optimal harvest problem. We observed
that variation in the stock benefit affects the optimal harvesting strategy. In particular,
an increase in the stock benefit results in a reduction in the harvest effort (and hence a
rise in pollution reduction effort). Consequently, the resource stock increases, and the
stock of pollution decreases.
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