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Abstract: Solvability of Dirichlet’s problem for the subcritical fractional Burgers
equation is discussed here in the base spaces D((−∆)

s
2 ), s ≥ 0 fixed. A unique

solution in the critical case (α = 1
2
) for small data is obtained next as a limit of the

X
1
2α solutions to the subcritical equations, when the exponent α of (−∆)α tends to

1
2

+
.
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1 Introduction

We consider the Dirichlet boundary value problem for the fractional Burgers equation in
a bounded interval I ⊂ R

ut +
1

2
∇u2 + (−∆)αu = 0, x ∈ I ⊂ R, t > 0,

u = 0 on ∂I,

u(0, x) = u0(x),

(1)

where α ∈ [ 1
2 , 1] is a fractional exponent.

In our work we use the following Balakrishnan’s definition of the fractional Laplacian
(see [14]):

(−∆)βg =
sin(βπ)

π

∫ ∞
0

sβ−1(sI −∆)−1(−∆)g ds, g ∈ D(−∆), β ∈ (0, 1).
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Equivalence between the semigroup definition, Balakrishnan’s formula and Bochner’s
formula is a general result, see [14]. The above definition can be used to study problems
both in the case of a bounded and unbounded domain.

Over the last three decades a number of papers devoted to the Burgers equation
with fractional dissipation in R have been published (see [2, 3, 11, 12, 15]). In paper
[12], Kiselev, Nazarov and Shterenberg have conducted an extensive study for the 1-
dimensional Burgers equation in the periodic setting, which concerned the subcritical
cases 1

2 < α < 1, the critical case α = 1
2 , as well as the supercritical cases 0 < α <

1
2 . Karch, Miao and Xu investigated the asymptotics for the subcritical case in [11]
whereas Alibaud, Imbert and Karch studied the asymptotics for the critical as well as
supercritical case in [2]. In paper [15], the authors made use of the modulus of the
continuity method and Fourier localization technique to prove the global well-posedness

of the critical Burgers equation in critical Besov spaces Ḃ
1
p

p,1(R) with p ∈ [1,∞).
The global in time solvability of one-dimensional subcritical Burgers equation in

bounded domain was studied recently in [10] in two base spaces L2(I) and D((−∆)
s
2 )

with s > 1
2 . Moreover, it was shown there that the solutions to subcritical problems (1)

converge to the solution (not necessarily unique) of the critical problem when α→ 1
2

+
.

1.1 Description of the results

This paper is devoted to the global in time solvability and properties of solutions to
problem (1) for α ∈ [ 1

2 , 1] in a bounded domain I. Our aim is to include, in the subcritical
case of exponent α ∈ ( 1

2 , 1], the problem of interest in the framework of semilinear
parabolic equations with a sectorial positive operator (see [5, 9]). This offers a simple
but formalized proof of local solvability as well as the regularity of solutions. There are
different possible choices of the phase spaces for this problem. We choose D((−∆)

s
2 )

with s > 0 as the base spaces (in which the equation is fulfilled). The second section of
the paper is devoted to the local and then the global in time solvability of the subcritical
Burgers equation. Moreover, for small data we obtain a uniform in α ∈ ( 1

2 , 1] estimate

of the solutions uα in L∞(0, T ;D((−∆)
1
2 )) and L2(0, T ;D((−∆)

3
4 )), where T > 0 is

fixed but arbitrarily large. In Section 3, we show that for the small data the solutions
to subcritical problems (1) converge to the unique solution of the critical problem when

α→ 1
2

+
. It is a consequence of the well known compactness theorems. In this study, we

use a technique proposed in our recent publications [6–8,10].
Notation. Standard notation for Sobolev spaces is used. We indicate the dependence

of solution u of (1) on α ∈ ( 1
2 , 1], calling it uα. Let r− denote a number strictly less than

r but arbitrarily close to it.

2 Solvability of Subcritical Problem (1), α ∈ ( 1
2 , 1]

Formulation of the problem and its local solvability. Our first task is the local in
time solvability of the subcritical problem (1) for α ∈ ( 1

2 , 1]. We will use the standard
approach proposed by Dan Henry [9] for semilinear ’parabolic’ equations. We start from
recalling some usefull facts concerning Henry’s approach. So, when we have the abstract
Cauchy problem {

ut +Au = F (u), t > 0,
u(0) = u0,

(2)
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where

1. X is a Banach space. The space X is called the base space, that is, the space in
which the equation is fulfilled,

2. A : D(A)→ X is a sectorial positive operator in X,

3. F : Xγ → X is Lipschitz continuous on the bounded subset of Xγ for some non-
negative γ ∈ [0, 1),

4. u(0) = u0 ∈ Xγ ,

then by local Xγ solution of this problem we understood the function u, which satisfies
the following conditions.

Definition 2.1 The function u is called a local Xγ solution of (2) if, for some real
τ > 0, it satisfies

• u(0) = u0,

• u ∈ C([0, τ);Xγ),

• u ∈ C1((0, τ);X),

• u(t) belongs to D(A) for each t ∈ (0, τ),

• the equation ut +Au = F (u) holds in X for all t ∈ (0, τ).

The following theorem concerns the local Xγ solution of the abstract problem (2).

Theorem 2.1 Let X be a Banach space, A : D(A) → X be a sectorial positive op-
erator in X and F : Xα → X be Lipschitz continuous on the bounded subset of Xγ for
some non-negative γ ∈ [0, 1). Then for each u(0) = u0 ∈ Xγ , there exists a unique local
Xγ solution u = u(t, u0) of (2) defined on its maximal interval of existence [0, τu0

).

Now we use Henry’s approach to our problem. There are different possible choices
of the base space. We choose X = D((−∆)

s
2 ) ⊂ Hs(I), where s ≥ 0 is fixed, as the

base space. The operator Aα := (−∆)α acting in the Banach space X is equipped with

the domain D(Aα) ⊂ Hs+2α(I). The resulting phase space is X
1
2α = [X,D(Aα)] 1

2α
=

D((−∆)
s+1
2 ) ⊂ Hs+1(I) (since (Aα)

1
2α = (−∆)

1
2 ). Moreover, when Ω is a domain in

RN , then Wm,r(Ω) is the Banach algebra provided mr > N (see [1, p. 115]. Note that
in our case, Hs+1(I) is a Banach algebra.

Working with the sectorial positive operator Aα : D(Aα)→ X , α ∈ ( 1
2 , 1], in I with

the zero boundary condition (e.g. [5, 9]), we rewrite equation (1) in an abstract form:

(uα)t +Aαuα = F (uα), t > 0,

uα(0, x) = u0(x),
(3)

where

F (uα) = −1

2
∇u2

α (4)

is the Nemytskii operator corresponding to a nonlinear term − 1
2∇u

2
α. The following local

existence result holds.
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Theorem 2.2 Let s ≥ 0 be fixed and α ∈ ( 1
2 , 1]. Then for arbitrary u0 ∈ X

1
2α =

D((−∆)
s+1
2 ), there exists a unique local in time X

1
2α solution uα(t) to the subcritical

problem (3) defined on its maximal interval of existence [0, τu0
). Moreover,

uα ∈ C((0, τu0);X1) ∩ C([0, τu0);X
1
2α ), (uα)t ∈ C((0, τu0);Xγ),

with arbitrary γ < 1, (X1 = D(Aα) ⊂ Hs+2α(I)).

Proof. To guarantee the local solvability we need to check if the nonlinearity (4) is

Lipschitz continuous on bounded sets as a map from X
1
2α into X (see Theorem 2.1; [5],

p. 55 for more details ), that is, for any r > 0 there exists L(r) > 0 such that

‖F (v)− F (w)‖X ≤ L(r)‖v − w‖
X

1
2α

for all v, w ∈ B(r), where B(r) denotes an open ball in X
1
2α centered at zero of radius r.

Since Hs+1(I) is the Banach algebra, for v, w ∈ B(r), we get

‖F (v)− F (w)‖Hs(I) =
1

2
‖∇(v2 − w2)‖Hs(I) ≤ c‖v2 − w2‖Hs+1(I)

≤ ‖v + w‖Hs+1(I)‖v − w‖Hs+1(I).

Consequently, we obtain

‖F (v)− F (w)‖Hs(I) ≤ c′(‖v‖Hs+1(I), ‖w‖Hs+1(I))‖v − w‖Hs+1(I),

which proves the local solvability of (1) in the phase space X
1
2α .

Remark 2.1 The local solution constructed above fulfills Cauchy’s integral formula
(see [5, Lemma 2.2.1]):

uα(t) = e−Aαtu0 +

∫ t

0

e−Aα(t−s)F (uα(s))ds, t ∈ [0, τu0
),

where e−Aαt denotes the linear semigroup corresponding to the operator Aα := (−∆)α

in D((−∆)
s
2 ) and F (uα) = − 1

2∇u
2
α.

Remark 2.2 Note that since the function F is Lipschitz continuous on bounded
subsets of X

1
2α , as a consequence of the embeddings between the fractional power space,

it possesses this property as a map from Xβ to X for each β ∈ [ 1
2α , 1). Consequently,

for each β ∈ [ 1
2α , 1) and u0 ∈ Xβ , there exists a unique local in time Xβ solution to the

subcritical problem (3) defined on its maximal interval of existence.

Remark 2.3 Let ε = 2α − 1 > 0 and t0 > 0 be chosen arbitrarily close to 0. From
Theorem 2.2, we know that uα(t0, ·) ∈ D((−∆)

s
2 +α) ⊂ Hs+2α(I). Since ∂I is regular,

considering the equation (3) in the base space D((−∆)
s+ε
2 ) with a new initial condition

uα(t0, x) = (uα)t0(x), we obtain that uα(t, ·) varies continuously in D((−∆)
s+ε
2 +α) for

t > t0. Next, repeating this procedure n times with tn =
∑n
i=0

t0
2i and the base space

D((−∆)
s+(n+1)ε

2 ), we get additional regularity of the solution of (3), that is, uα(t, ·) ∈
D((−∆)

s+(n+1)ε
2 +α) ⊂ Hs+(n+1)ε+2α(I) for t > tn = t0(2 − 1

2n ). This phenomenon is
known in the literature as bootstrapping.
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Global solvability. Having obtained the local in time solution of (1), to guarantee
its global extensibility we need suitable a priori estimates. We start from the Maximum
Principle.

Lemma 2.1 Let k ∈ N. Then, for a sufficiently regular solution uα of (1), the
following estimates hold:

‖uα(t, ·)‖L2k (I) ≤ ‖u0‖L2k (I), (5)

‖uα(t, ·)‖
L2k (I)

≤ ‖u0‖L2k (I)
e−21−kλα1 t, (6)

where λ1 is the Poincaré constant (see [7])

λα1 ‖φ‖2L2(I) ≤ ‖(−∆)
α
2 φ‖2L2(I). (7)

Proof. Multiplying (1) by u2k−1
α , k = 1, 2 . . ., we get

1

2k
d

dt

∫
I

u2k

α dx+

∫
I

(−∆)αuα|uα|2
k−1sgnuα dx+

∫
I

(uα)xu
2k dx = 0.

Using the Kato-Beurling-Deny inequality in the bounded domain [7, Corollary 3.2] with
q = 2k, we have

2k − 1

22k−2

∫
I

[
(−∆)

α
2 (|uα|2

k−1

)
]2
dx 6

∫
I

[(−∆)αuα] |uα|2
k−1sgnuα dx. (8)

Since ∫
I

(uα)xu
2k

α dx =
1

2k + 1

∫
I

(u2k+1
α )x dx = 0,

and 2 ≤ 2k−1
2k−2 , thanks to (8) and (7), we obtain

d

dt

∫
I

u2k

α dx ≤ d

dt

∫
I

u2k

α dx+ 2λα1

∫
I

|uα|2
k

dx ≤ 0,

which leads to estimates (5) and (6).

Remark 2.4 Let q ∈ N. Since uα(t) ∈ L∞(I), the following convergence holds:

lim
q→∞

‖uα(t, ·)‖Lq(I) = ‖uα(t, ·)‖L∞(I)

(see [1, Theorem 2.8]). Consequently, letting k → +∞ in estimate (5), we obtain

‖uα(t, ·)‖L∞(I) ≤ ‖u0‖L∞(I). (9)

Remark 2.5 The constant λ
α− 1

2
1 can be estimated independently of α ∈ ( 1

2 , 1]. We
have

µb := min{1, λ
1
2
1 } ≤ λ

α− 1
2

1 ≤ max{1, λ
1
2
1 } =: µa. (10)

Remark 2.6 Multiplying (1) by uα, due to (7) and Remark 2.5, we obtain a differ-
ential inequality of the form

0 =
d

dt
‖uα‖2L2(I) + 2‖(−∆)

α− 1
2

2 (−∆)
1
4uα‖2L2(I) ≥

d

dt
‖uα‖2L2(I) + 2µb‖(−∆)

1
4uα‖2L2(I).

(11)
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Integrating (11) over (0, T ), we get∫ T

0

‖(−∆)
1
4uα‖2L2(I)ds =

1

2µb

(
‖u0‖2L2(I) − ‖uα(T )‖2L2(I)

)
≤ 1

2µb
‖u0‖2L2(I).

This implies a uniform in α ∈ ( 1
2 , 1] estimate of uα in L2(0, T ;D((−∆)

1
4 )), where T > 0

is fixed but arbitrarily large.

The Lp(I) a priori estimates obtained in Lemma 2.1 and Remark 2.4 are, unfortu-

nately, too weak to guarantee the global in time solvability of (3) in X
1
2α . For this

purpose, we need to estimate higher Sobolev norms of the solutions to (3). We will show
that ‖uα‖Hs+1(I) is bounded on the solutions. Consequently, we will obtain Lipschitz

continuity and boundedness of the nonlinear term F as a map from X
1
2α to X.

We will start from the H1(I) a priori estimate.

Lemma 2.2 For a sufficiently regular solution uα of (1), the following estimate
holds:

‖uα‖H1(I) ≤ c(‖u0‖H1(I), α). (12)

Proof. Multiplying (1) by −(uα)xx, we get

1

2

d

dt

∫
I

((uα)x)2 dx+

∫
I

[(−∆)
1+α
2 uα]2 dx−

∫
I

uα(uα)x(uα)xx dx = 0.

Since

−
∫
I

uα(uα)x(uα)xx dx =
1

2

∫
I

((uα)x)3 dx,

we have
d

dt

∫
I

((uα)x)2 dx+ 2

∫
I

[(−∆)
1+α
2 uα]2 dx+

∫
I

((uα)x)3 dx = 0. (13)

Note that (see [10, p. 63])

‖uα‖3W 1,3(I) ≤ c(α)‖uα‖3θH1+α(I)‖uα‖
3(1−θ)
L∞(I) (14)

with 4
3(2α+1) ≤ θ <

2
3 . Consequently, using the Young inequality, we get

d

dt

∫
I

((uα)x)2 dx+ c

∫
I

((uα)x)2 dx ≤ d

dt

∫
I

((uα)x)2 dx+

∫
I

[(−∆)
1+α
2 uα]2 dx

≤ c(‖uα‖L∞(I), α),

where an equivalent norm in H1+α(I) is used.

Lemma 2.3 For a sufficiently regular solution uα of (1), which satisfies the smallest
data condition (17), the following uniform in α ∈ ( 1

2 , 1] estimate

‖(uα)x(t)‖L2(I) ≤ ‖u0‖H1(I)e
−(2µb−C3‖u0‖L∞(I))t (15)

holds.
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Proof. Note that, when the Nirenberg-Gagliardo inequality (and an equivalent norm

in H
3
2 (I))

‖uα‖W 1,3(I) ≤ c‖uα‖
1
3

L∞(I)‖uα‖
2
3

H
3
2 (I)
≤ C‖uα‖

1
3

L∞(I)‖(−∆)
3
4uα‖

2
3

L2(I)

is used instead of (14), thanks to the Poincaré inequality (7) and (9), due to Remark 2.5,
the estimate (13) extends to

d

dt

∫
I

((uα)x)2 dx+ (2µb − C3‖u0‖L∞(I))

∫
I

[(−∆)
3
4uα]2 dx ≤ 0. (16)

Consequently, when the data are small

‖u0‖L∞(I) <
2µb
C3

(17)

we obtain the thesis.

Remark 2.7 Under the assumption (17) the estimate (16) implies a uniform in α ∈
( 1

2 , 1] estimate of uα in L∞(0, T ;H1
0 (I)) and L2(0, T ;D((−∆)

3
4 )). So, we have

‖uα‖L∞(0,T ;H1
0 (I)) + ‖uα‖

L2(0,T ;D((−∆)
3
4 ))
≤ const, (18)

where T > 0 is fixed but arbitrarily large and the constant on the right-hand side is
independent of α.

Lemma 2.4 For a sufficiently regular solution uα of (1), the following estimate
holds:

‖∆uα‖L2(I) ≤ c(‖u0‖H2(I), α). (19)

Proof. Multiplying (1) by (−∆)2uα, we get

d

dt
‖∆uα‖2L2(I) + 2‖(−∆)

2+α
2 uα‖2L2(I) + 3

∫
I

(∆uα)
2∇uα dx = 0.

Using the Nirenberg-Gagliardo inequality

‖u‖2W 2,4(I) ≤ c‖u‖
5
3

H
5
2 (I)
‖u‖

1
3

H1(I) (20)

and the Young inequality, we can estimate the nonlinear term as follows:∫
I

| (∆uα)
2∇uα| dx ≤ ‖∆uα‖2L4(I)‖∇uα‖L2(I) ≤

µb
3
‖uα‖2

H
5
2 (I)

+ c‖uα‖8H1(I).

Consequently, thanks to the Poincaré inequality (7), we get

d

dt
‖∆uα‖2L2(I) + µb‖(−∆)

5
4uα‖2L2(I) ≤ c‖u0‖8H1(I). (21)
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Remark 2.8 Since for the small data we have uniform in α estimate of solution uα
in H1(I), we get a uniform in α ∈ ( 1

2 , 1] estimate

‖uα‖L∞(0,T ;H2(I)) + ‖uα‖
L2(0,T ;H

5
2 (I))

≤ const,

where T > 0 is fixed but arbitrarily large.

Further we get the H l(I) estimate of solutions by recurrence.

Lemma 2.5 Let l = k
2 , k ≥ 5. Then, for a sufficiently regular solution of (1), the

following estimate holds:

‖uα‖Hl(I) ≤ c(‖u0‖Hl−α(I), α). (22)

Proof. Note first that by (12) we have ‖uα‖H1(I) ≤ c(‖u0‖H1(I), α). Multiplying (1)

by (−∆)luα we obtain

1

2

d

dt

∫
I

[(−∆)
l
2uα]2dx+

∫
I

[(−∆)
l+α
2 uα]2dx =

∫
I

(−∆)
l−α
2 (uα(uα)x)(−∆)

l+α
2 uαdx. (23)

Since H l−α(I) is a Banach algebra for l − α > 1
2 , the nonlinear term can be estimated

as follows:∣∣∣∣∫
I

(−∆)
l−α
2 (uα(uα)x)(−∆)

l+α
2 uαdx

∣∣∣∣ ≤ c‖uα(uα)x‖Hl−α(I)‖uα‖Hl+α(I)

≤ c‖uα‖Hl−α(I)‖uα‖Hl+1−α(I)‖uα‖Hl+α(I).

By the Nirenberg-Gagliardo inequality, we get

‖uα‖Hl+1−α(I) ≤ c‖uα‖
1
2α

Hl+α(I)
‖uα‖

1− 1
2α

Hl−α(I)
,

hence ∣∣∣∣∫
I

(−∆)
l−α
2 (uα(uα)x)(−∆)

l+α
2 uαdx

∣∣∣∣ ≤ c‖uα‖1+ 1
2α

Hl+α(I)
‖uα‖

2− 1
2α

Hl−α(I)
.

Consequently, using the Young inequality, we obtain from (23) a differential inequality

d

dt

∫
I

[(−∆)
l
2uα]2dx+

∫
I

[(−∆)
l+α
2 uα]2dx ≤ c(‖uα‖Hl−α(I), α).

The following global existence result holds.

Theorem 2.3 The local solution uα of (3) constructed in Theorem 2.2 exists globally
in time.

Lemma 2.6 Let α ∈ ( 1
2 ,

3
4 ]. For solution uα of (3) satisfying the smallest data

restriction (17) we have a uniform with respect to α estimate

‖(uα)t‖L2(0,T ;L2(I)) ≤ C(T ), (24)

where T > 0 is fixed but arbitrarily large.
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Proof. Since H1(I) is a Banach algebra from equation (1), thanks to the Poincaré
inequality (7), we obtain for α ∈ ( 1

2 ,
3
4 ]

‖(uα)t‖2L2(I) ≤ 2λ
4α−3

2
1 ‖(−∆)

3
4uα‖2L2(I)+c‖u

2
α‖2H1(I) ≤ 2µ−1

b ‖(−∆)
3
4uα‖2L2(I)+c‖uα‖

4
H1(I).

Integrating the result over (0,T), due to (18), we get∫ T

0

‖(uα)t‖2L2(I) dt ≤ c(T ; ‖u0‖H1(I)), (25)

with a positive constant c independent of α.

3 Critical Problem (1) with α = 1
2 for Small Data

Passing to the limit in equation (1). Using the Lions-Aubin compactness lemma we
will show now that for the small data (the condition (17)) the solutions of subcritical

problems (1) converge, as α → 1
2

+
, to the unique solution of the critical problem. The

below lemma will be useful in the limiting procedure.

Lemma 3.1 For any sequence αn → 1
2 such that {αn : n ∈ N} ⊂ ( 1

2 ,
3
4 ] there are a

subsequence (denoted in the same way) αn → 1
2 and a function u such that for any T > 0

1. uαn → u weakly in L2(0, T ;D((−∆)
3
4 )) and weakly-* in L∞(0, T ;D((−∆)

1
2 )),

2. uαn → u in L2(0, T ;D((−∆)
3
4
−

)),

3. (uαn)t → ut weakly in L2(0, T ;L2(I)).

Proof. Part (1). Note that uniform in α estimate (18) means that any sequence

{uαn} is bounded in L2(0, T ;D((−∆)
3
4 )). Consequently (see [4, Theorem 3.18]), there

exist a subsequence (denoted in the same way) and u ∈ L2(0, T ;D((−∆)
3
4 )) such that

{uαn} converges to u weakly when αn → 1
2 .

Part (2). Let

U =

{
uα; α ∈

(
1

2
,

3

4

]}
and

∂U

∂t
= {(uα)t : uα ∈ U} . (26)

Since the set U is bounded in L2(0, T ;D((−∆)
3
4 )) and ∂U

∂t is bounded in L2(0, T ;L2(I))
(see (18) and (24)), using the Lions-Aubin compactness lemma (see [13], [16, Corollary

4]) we claim that the set U is relatively compact in the space L2(0, T ;D((−∆)
3
4
−

)).
Consequently, for any sequence {uαn} there exist a subsequence (denoted in the same

way) and u ∈ L2(0, T ;D((−∆)
3
4
−

)) such that {uαn} converges to u strongly.
Part(3) is a consequence of estimate (24) (see [4, Theorem 3.18]).

Remark 3.1 Since the set U is bounded in L∞(0, T ;D((−∆)
1
2 )) and ∂U

∂t is bounded
in L2(0, T ;L2(I)) (see (18) and (24)), using the Corollary 4 from [16] we claim that the

set U is also relatively compact in the space C(0, T ;D((−∆)
1
2
−

)).

Theorem 3.1 Let {αn : n ∈ N} ⊂ ( 1
2 ,

3
4 ] and let uα be the solution of the subcriti-

cal problem (1) (constructed in Theorem 2.3 in D((−∆)
s
2 )) corresponding to the initial
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condition u0 ∈ D((−∆)
s+1
2 ) satisfying the smallest data restriction (17). Then, passing

over a subsequence (denoted in the same way), with αn to 1
2 in equation (1), we get a

weak solution u (not necessarily unique) to the critical problem (α = 1
2) satisfying a.e.

in each time interval [0, T ] the equality

d

dt
< u, φ > +

1

2
< ∇u2, φ > + < (−∆)

1
2u, φ >= 0,

for every function φ ∈ H1
0 (I), where < ·.· > is a scalar product in L2(I) and d

dt stands
for the distributional derivative.

Proof. Multiplying equation (1) by a ’test function’ φ ∈ H1
0 (I) (note, H1

0 (I) ⊂
L∞(I), N = 1), we obtain∫

I

(uα)t φdx+

∫
I

(−∆)αuαφdx = −1

2

∫
I

∇u2
αφdx.

Next for each smooth scalar test function η ∈ D((0, T )), we get∫ T

0

∫
I

(uα)t φdx η dt+

∫ T

0

∫
I

(−∆)αuαφdx η dt = −1

2

∫ T

0

∫
I

∇u2
αφdx η dt.

We will discuss now the convergence of components in the above equality one by one. In
the term containing the time derivative (uα)t, thanks to [18, Lemma 1.1, Chapt.III], we
have ∫ T

0

< (uα)t, φ > η dt =

∫ T

0

d

dt
< uα, φ > η dt = −

∫ T

0

< uα, φ > η′ dt

for all φ ∈ H1
0 (I). Since∫ T

0

∫
I

|uα − u||φ| |η′| dx dt ≤
∫ T

0

‖uα − u‖L2(I)‖φ‖L2(I)|η′| dt

≤ ‖uα − u‖L2(0,T ;L2(I))‖φ‖L2(I)‖η′‖L2(0,T ),

using part (2) of Lemma 3.1, we obtain∫ T

0

< uα, φ > η′ dt→
∫ T

0

< u, φ > η′ dt.

For the linear term∫ T

0

∫
I

(−∆)αuαφdx η dt =

∫ T

0

∫
I

(−∆)
1
2uα(−∆)α−

1
2φdx η dt (27)

we get ∣∣∣∣∣
∫ T

0

∫
I

(−∆)
1
2uα(−∆)α−

1
2φdx η dt−

∫ T

0

∫
I

(−∆)
1
2uφ dx η dt

∣∣∣∣∣
≤
∫ T

0

∫
I

∣∣∣(−∆)
1
2uα

∣∣∣ ∣∣∣((−∆)α−
1
2 − I

)
φ
∣∣∣ dx |η| dt

+

∫ T

0

∫
I

|φ|
∣∣∣(−∆)

1
2 (uα − u)

∣∣∣ dx |η| dt
≤ ‖uα‖

L2(0,T ;D((−∆)
1
2 )
‖
(

(−∆)α−
1
2 − I

)
φ‖L2(I)‖η‖L2(0,T )

+ ‖φ‖L2(I)‖η‖L2(0,T )‖uα − u‖L2(0,T ;D((−∆)
1
2 ))
.

(28)
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Passing to the limit, by [14, Theorem 3.1.6] and part (2) of Lemma 3.1, we obtain the
convergence ∫ T

0

∫
I
(−∆)

1
2uα(−∆)α−

1
2φdx η dt→

∫ T
0

∫
I
(−∆)

1
2uφ dx η dt. (29)

Next, for the nonlinear term, since H1(I) is Banach algebra, we prove that∣∣∣∣∣
∫ T

0

∫
I

∇u2
αφη −∇u2φη dx dt

∣∣∣∣∣ ≤
∫ T

0

‖u2
α − u2‖H1(I)‖φ‖L2(I) |η| dt

≤ c‖uα − u‖
L2(0,T ;D((−∆)

1
2 ))
‖uα + u‖

L∞(0,T ;D((−∆)
1
2 ))
‖φ‖L2(I)‖η‖L2(0,T ).

By collecting all the limits together, we find the form of the limit critical equation∫ T

0

d

dt
< u, φ > η dt+

1

2

∫ T

0

< ∇u2, φ > η dt+

∫ T

0

< (−∆)
1
2u, φ > η dt = 0.

Properties of the weak solutions to the critical fractional Burgers equation.
We will start from collecting the properties inherited by the solution u of the critical
problem(1) in the process of passing to the limit. We have the following results

Corollary 3.1 For arbitrary T > 0 we have

• u ∈ L2(0, T ;D((−∆)
3
4 )) ∩ L∞(0, T ;D((−∆)

1
2 )),

• ut ∈ L2(0, T ;L2(I)),

• u ∈ Cw(0, T ;D((−∆)
1
2 )).

Proof. Using the properties of the weak limit, due to Lemma 3.1 (1) and (3), we
obtain the first two regularies. Next, the Corollary 2.1 from [17] implies that there exists

a weakly continuous function on [0, T ] with the values in D((−∆)
1
2 ) which is equal to u

almost everywhere.
We will show now that the local solutions of the critical fractional Burgers equation

obtained in Theorem 3.1, are locally unique.

Lemma 3.2 The solution of the critical fractional Burgers equation satisfying

u ∈ L∞([0, τ);H1(I))

is locally unique.

Proof. Let U = u1−u2, where u1 and u2 are the local in time solutions of the critical
problem (1) (in the above class) corresponding to the same initial condition u0. Then U
satisfies

Ut + u1∇U +∇u2U + (−∆)
1
2U = 0, x ∈ I ⊂ R, t > 0,

U = 0 on ∂I,

U(0, x) = 0.

Multiplying the above equation in L2(I) by U , thanks to the integration by parts, we
obtain

d

dt

∫
I

U2 dx+

∫
I

∇u2U
2 dx+ 2

∫
I

[
(−∆)

1
4U
]2

dx = 0.
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From the Hölder and the Nirenberg-Gagliardo inequality the nonlinear term can be trans-
formed as follows:∫

I

∇u2U
2 dx ≤ ‖∇u2‖L2(I)‖U‖2L4(I) ≤ ‖∇u2‖L2(I)‖U‖L2(I)‖U‖H 1

2 (I)
.

Since ‖u2‖H1(I) is bounded, using the Cauchy inequality, we get a differential inequality
of the form

d

dt
‖U(t, ·)‖2L2(I) ≤ c(‖u2‖H1(I))‖U(t, ·)‖2L2(I),

U(0, x) = 0,

having only a zero solution on [0, τ).

Theorem 3.2 The solution of the critical fractional Burgers equation obtained in
Theorem 3.1, is unique.

4 Conclusion

This paper is devoted to the global in time solvability and properties of solutions to the
critical problem (1) (α = 1

2 ) in a bounded domain I. For this purpose we constructed first

the local and then the global in time X
1
2α solution uα of the subcritical fractional Burgers

equation (α ∈ ( 1
2 , 1]) in the base spaces D((−∆)

s
2 ), s ≥ 0 fixed. Moreover, for small data

we obtained a uniform in α ∈ ( 1
2 , 1] estimate of the solutions uα in L∞(0, T ;D((−∆)

1
2 ))

and L2(0, T ;D((−∆)
3
4 )), where T > 0 is fixed but arbitrarily large. Using the Lions-

Aubin compactness lemma, thanks to the above uniform in α estimates, we showed that,
for the small data (the condition (17)), the solutions of subcritical problems (1) converge,

as α→ 1
2

+
, to the unique solution of the critical problem. For any data, the uniqueness

of the solution to the critical problem (1) is an open problem.
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