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Abstract: In this work we use the sinc-Galerkin method to solve higher order frac-
tional boundary value problems. We estimate the second order fractional derivative
in the Caputo sense. More precisely, we find a numerical solution for

g1(t)Dαu(t) + g2(t)Dβu(t) + p(t)u(4)(t) + q(t)u(t) = f(t),

0 < t < 1, 0 < β < 1, 1 < α < 2,

subject to the boundary conditions u(0) = 0, u′(0) = 0, u(1) = 0, u′(1) = 0. Our
contribution appears in the estimate of Dαu for higher order α. Numerical examples
are described to show the accuracy of this attempt where we applied the sinc-Galerkin
method for fractional order differential equations with singularities.
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sinc-Galerkin method; numerical solution.
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1 Introduction

Boundary value problems come into view in many areas of science, engineering, and
economy. One of the physical modelings for boundary value problems is to suppose a
finite length elastic beam, which is fixed at one end, and rested on an elastic bearing at
the other end. We may add along its length a load to cause deformations, see [1]. In this
work we solve a more general model which has mechanical interpretation that involves
higher order fractional derivatives.
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Several papers discussed the numerical solution of boundary value problems [2–5].
The existence and uniqueness of solutions of such problems are covered in [6–9]. Recently,
fractional boundary value problems have been of interest to many mathematicians and
scientists, see [10–13]. The present work is motivated by the desire to obtain numerical
solutions to the general higher-order fractional boundary value problem of the form

Lu : g1(t)Dαu(t) + g2(t)Dβu(t) + p(t)u(4)(t) + q(t)u(t) = f(t), (1)

0 < t < 1, 0 < β < 1, 1 < α < 2,

subject to the conditions

u(0) = 0, u′(0) = 0, u(1) = 0, u′(1) = 0, (2)

where the notation y(4)(t) stands for the 4th derivative of y(t) and Dαu is the Caputo
fractional derivative.

Definition 1.1 For f : [a, b] → R and n − 1 < α < n, the left Caputo fractional
derivative of order α is

Dαf(t) =
1

Γ(n− α)

∫ t

a

(t− τ)n−α+1 d
n

dτn
f(τ)dτ

and the right Riemann-Liouville fractional derivative of order α is

Dα
Rf(t) =

(−1)n

Γ(n− α)

dn

dxn

∫ b

t

(t− τ)n−α+1f(τ)dτ.

The relation between the left Caputo and right Riemann-Liouville fractional deriva-
tives is given in the following integration by parts formula:∫ b

a

g(t)Dαf(t)dt =

∫ b

a

f(t)Dα
Rg(t)dt+

n−1∑
k=0

Dα−n+k
R g(t)

dn−k−1

dtn−k−1
f(t)

∣∣∣b
a
. (3)

One of the most common numerical methods to solve differential equations is the
sinc-Galerkin method (SGM). In [14], the authors applied the SGM to solve the general
case for the linear fourth-order boundary value problems. For more details about the
SGM, see [15–17]. In [18], the author applied the sinc-Galerkin method to solve first
order fractional differential equations, in our work we generalize the case to provide a
good approximation for higher order fractional boundary value problems. One of the
important benefits of the sinc-Galerkin method is dealing with the singularities occurred
at the boundaries as we will see in the provided examples. For more details about sinc
solutions of analytic problems with singularities, see [19].

The outline of this paper is as follows. In Section 2, we introduce basic definitions and
results of the sinc-Galerkin method to formulate the discrete system. Section 3 is devoted
to the proof of our main result on the discrete system that is obtained by implementing
the sinc-Galerkin method to construct a numerical solution. In Section 4, we demonstrate
the accuracy of our suggested scheme by presenting two concrete numerical examples,
where the exact solutions are explicitly given. The conclusion is drawn in the last section.
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2 The Sinc Function and the Quadrature Formula

The quadrature formula is the main recipe for this paper. It is a rule that approximates
integral of some class of functions using the sinc function (see [19,20]).

The sinc function is defined on the whole complex plane C by

sinc(z) ≡
{ sin(πz)

πz , z 6= 0,
1, z = 0.

(4)

For h > 0 and k = 0,±1,±2, ..., the translated sinc function with evenly spaced nodes is
given by

S(k, h)(z) ≡ sinc

(
z − kh
h

)
. (5)

One of the important results on the sinc function is the orthogonality relation

1

h

∫ ∞
−∞

S(k, h)(x)S(j, h)(x)dx = δkj :=
{ 1, k = j,

1, k 6= j.
(6)

This implies that for any f ∈ B(h), where B(h) is the Paley-Wiener space (see [19]), we
have

f(x) =

∞∑
k=−∞

f(hk)S(k, h)(x). (7)

The sinc-Galerkin method is originally designed to solve ODEs on the infinite domain
(−∞,∞). To solve the boundary value problem on the domain (T1, T2), we introduce
the conformal mapping φ that sends (T1, T2) onto (−∞,∞) :

φ(T1, T2; z) = log(
z − T1
T2 − z

), (8)

which maps the eye-shaped domain in the z−plane DE onto the infinite strip in the
w−plane, DS , where

DE = {z = x+ iy : |arg(
z − T1
T2 − z

)| < d ≤ π/2},

DS = {w = u+ iv : |v| < d ≤ π/2}.

We obtain the basis functions

Sk(T1, T2; t) := S(k, h) ◦ φ(T1, T2; t) = sinc[
φ(T1, T2; t)− kh

h
] (9)

over the interval t ∈ (T1, T2). We will use Sk(t) for Sk(0, 1 : t).
To discretize our proposed BVP we use the mesh size h which is the mesh size in DE

for the uniform grids {kh}, −∞ < k < ∞. Using the conformal mapping φ, one can
obtain the sinc grid points tk ∈ (T1, T2) under the action of the inverse image of φ :

tk = φ−1(T1, T2; kh) =
ekh + T1
T2 + ekh

.

Now we define a class of functions in which the quadrature formula is applied (for
more details, see [19,20]).
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Definition 2.1 Let φ : DE −→ DS be a conformal mapping of DE onto DS with
inverse ψ. Let Γ = {ψ(u) ∈ DE : −∞ < u <∞} = (T1, T2). Then B(DE) is the class of
functions F which are analytic in B(DE) and satisfy∫

ψ(t+L)

|F (z)|dz −→ 0, t→ ±∞,

where L = {iv : |v| < d ≤ π/2}, and on the boundary of DE , denoted by ∂DE , satisfy

N (F ) =

∫
∂DE

|F (z)| dz <∞.

For the choice of the conformal map φ(T1, T2; z) = log( z−T1

T2−z ) one can state the quadra-
ture formula as follows.

Theorem 2.1 Let F ∈ B(DE) and φ be defined as in 8 such that

|(T2 − z)(z − T1)F (z)| ≤ C exp(−α|φ(z)|)

for some C > 0, α > 0. Choose N = M +1, h =
√

2πd/(αM). Then the sinc trapezoidal
quadrature formula is ∫ 1

0

F (z)dz ≈ h
N∑

j=−M

F (zj)

φ′(zj)
(10)

with the exponential order error O(exp(−
√

2πdαM)).

3 SGM Approach

In this section, we present the SGM method to discretize the fourth-order fractional
differential equation for 1 < α < 2 and 0 < β < 1,

Lu := g1(t)Dαu(t) + g2(t)Dβu(t) + p(t)u(4)(t) + q(t)u(t) = f(t), 0 < t < 1, (11)

subject to the conditions

u(0) = 0, u′(0) = 0, u(1) = 0, u′(1) = 0. (12)

The completeness of the orthogonal system {Sk}, which is defined in (9), ensures that
we can suggest the approximate solution of the form

um(t) =

N2∑
k=−N1

ckSk(t), m = N1 +N2 + 1, (13)

where ck are the expansion coefficients which will be determined. These coefficients
are determined by the orthogonality property of the basis functions {Sk}N2

k=−N1
. The

orthogonality yields the discrete system

< Lum − f, Sk >= 0, −N1 ≤ k ≤ N2. (14)
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One can use the linearity of the inner product to simplify (14) in the form

< g1D
αu, Sk > + < g2D

βu, Sk > + < p u(4), Sk > + < q u, Sk >

− < f, Sk >= 0, −N1 ≤ k ≤ N2.
(15)

As we mentioned in the previous section, we use the weighted inner product

< u(t), v(t) > =

∫ 1

0

u(t)v(t)w(t)dt,

where the weight is
w(t) = (1− x)2x2. (16)

For the general choice of the weight function see [19], where the author suggested

w(t) = 1/(φ′(t))m

for the general case. In the case of higher order derivatives Dαu and dm

dtmu, we suggest
the weight

w(t) = 1/(φ′(t))N0 ,

where

N0 ≤
max{n,m}+ 1

2
< N0 + 1.

The First Term. We estimate the term < g1D
αu, Sk > for 1 < α < 2. We use the

integral by parts formula (3) and the boundary conditions u(0) = u(1) = u′(0) = u′(1) =
0 to find

< g1D
αu, Sk > =

∫ 1

0

g1(t)Dα[u(t)]Sk(t)w(t)dt

=

∫ 1

0

u(t)Dα
R[Sk(t)g1(t)w(t)]dt+

1∑
k=0

Dα−2+k
R [Sk(t)g1(t)w(t)]

d1−k

dt1−k
u(t)

∣∣∣1
0

=

∫ 1

0

u(t)Dα
R[Sk(t)g1(t)w(t)]dt

=

∫ 1

0

(
u(t)

1

Γ(2− α)

d2

dt2

∫ 1

t

(τ − t)1−αSk(τ)g1(t)w(τ)dτ

)
dt.

Using the quadrature formula 10, one can write∫ 1

t

(τ − t)1−αSk(τ)g1(t)w(τ)dτ ≈ h
N2∑

r=−N1

(τr − t)1−αSk(τr)g1(τr)w(τr)

φ′t(τr)
,

where h = π/
√
N2, and τk = φ−1(t, 1; kh).

It follows that

< g1D
αu, Sk > ≈

∫ 1

0

u(t)
1

Γ(2− α)

d2

dt2

(
h

N2∑
r=−N1

(τr − t)1−αSk(τr)w(τr)

φ′t(τr)

)
dt.
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Another use of the quadrature formula (10) for tk = φ−1(0, 1; kh) yields

< g1D
αu, Sj >≈

h2

Γ(2− α)

N2∑
k=−N1

N2∑
r=−N1

u(tk)

φ′(0, 1; tk)

d2

dt2

(
(τr − t)1−αSj(τr)g1(τr)w(τr)

φ′(t, 1; τr)

)∣∣∣∣∣
t=tk

for j = −N, ..., N .

The Second Term. The estimation of the second term is done similarly to
that of the first term with the change for 1 < α < 2 by 0 < β < 1. Hence, the same
computations show that

< g2D
βu,Sj >≈

−h2

Γ(1− β)

N2∑
k=−N1

N2∑
r=−N1

u(tk)

φ′(0, 1; tk)

d

dt

(
(τr − t)1−βSj(τr)g2(τr)w(τr)

φ′(t, 1; τr)

)∣∣∣∣∣
t=tk

for j = −N, ..., N .

The Third Term. Now we estimate the term < pu′′′′, Sk > using the sinc quadrature
formula in (10). Using the integration by parts and the fact that w(0) = w(1) = 0, one
can find that

< pu′′′′, Sk > = −
∫ 1

0

u′′′(x)
d

dx
[p(x)Sk(x)w(x)]dx

=

∫ 1

0

u′′(x)
d2

dx2
[p(x)Sk(x)w(x)]dx.

Now we use the boundary conditions in (2) and the integration by parts two more times
to get

< u′′′′, Sk > =

∫ 1

0

u(x)
d4

dx4
[p(x)Sk(x)w(x)]dx. (17)

If we use the chain rule to write dn

dxn [Sk(x)] in terms of dn

dφn [Sk] and φ(n)(0, 1;x), and if
we introduce the notation

S
(n)
k (x) :=

dn

dφn
[Sk(x)], n = 0, 1, 2, 3, 4

and simplify the calculations as in [19,20], then we can find the following result:

< pu′′′′, Sk >=

4∑
j=0

(∫ 1

0

u(x)S
(j)
k (x)ηj(x)dx

)
, (18)

where
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η0(x) = 48(−1 + 2x)P ′(x) + 12p′′(x) + (−1 + x)x

×
(

72p′′(x) + 8(−1 + 2x)p(3)(x) + (−1 + x)xp(4)(x)
)

+ 24p(x),

η1(x) =
18(−1 + x)x(−1 + 2x)p′′(x) + 4(−1 + x)2x2p(3)(x)

)
(−1 + x)x

+

−8
(
1− 9x+ 9x2

)
p′(x)

(−1 + x)x
−

2(−1 + 2x)
(
−1− 6x+ 6x2

)
p(x)

(−1 + x)2x2
,

η2(x) =

(
−1− 12x+ 12x2

)
p(x)

(−1 + x)2x2
+ (19)

−12
(
−2 + 13x− 15x2 + 2x3

)
p′(x) + 6(−1 + x)2x2p′′(x)

(−1 + x)2x2
,

η3(x) =
−2(−1 + 2x)p(x)− 4(−1 + x)xp′(x)

(−1 + x)2x2
,

η4(x) =
p(x)

(−1 + x)2x2
.

Applying the sinc quadrature formula (10) to the right-hand side of (18), we obtain

< pu′′′′, Sk > ≈ h
N2∑

j=−N1

4∑
i=0

u(xj)

φ′(0, 1;xj)hi
δ
(i)
jk ηi(xj), (20)

where xk = φ−1(0, 1; kh), and δ
(i)
jk are given by

δ
(0)
jk = [S(j, h) ◦ φ(x)]

∣∣∣
xk

=

 1, j = k,

0, j 6= k,

δ
(1)
jk = h

d

dφ
[S(j, h) ◦ φ(x)]

∣∣∣
xk

=


0, j = k,

(−1)k−j

(k−j) , j 6= k,

δ
(2)
jk = h2

d2

dφ2
[S(j, h) ◦ φ(x)]

∣∣∣
xk

=


−π2

3 , j = k,

−2(−1)k−j

(k−j)2 , j 6= k,

δ
(3)
jk = h3

d3

dφ3
[S(j, h) ◦ φ(x)]

∣∣∣
xk

=


0, j = k,

(−1)k−j

(k−j)3 [6− π2(k − j)2], j 6= k,

δ
(4)
jk = h4

d4

dφ4
[S(j, h) ◦ φ(x)]

∣∣∣
xk

=


π4

5 , j = k,

−4(−1)k−j

(k−j)4 [6− π2(k − j)2], j 6= k.

(21)
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The Last Two Terms. Finally, use (6) and (7). One can write

< qu− f, Sk > =

∫ 1

0

(q(x)u(x)− f(x))Sk(x)w(x)dx

=

∫ 1

0

(
q(x)u(x)− f(x)

φ′(0, 1;x)
w(x)

)
Sk(x)φ′(0, 1;x)dx

=

∫ 1

0

( ∞∑
i=−∞

q(ti)u(ti)− f(ti)

φ′(0, 1; ti)
w(ti)Si(x)

)
Sk(x)φ′(0, 1;x)dx

≈
N2∑

i=−N1

q(ti)u(ti)− f(ti)

φ′(0, 1; ti)
w(ti)

∫ 1

0

Si(x)Sk(x)φ′(0, 1;x)dx

=

N2∑
i=−N1

q(ti)u(ti)− f(ti)

φ′(0, 1; ti)
w(ti)

∫ ∞
−∞

sinc(
t− ih
h

)sinc(
t− ih
h

)dt

=

N2∑
i=−N1

q(ti)u(ti)− f(ti)

φ′(0, 1; ti)
w(ti)hδki

= h
q(tk)u(tk)− f(tk)

φ′(0, 1; tk)
w(tk).

Replacing each term in equation (15) by its approximation, we proved the following
theorem.

Theorem 3.1 Let φ(T1, T2;x), Sj(x),ηj(x), w(x), and δ
(i)
jk be defined as in (8), (9),

(19), (16), and (21), respectively. Discretize (0, 1) by {tj}, where tj = φ−1(0, 1; jh) and
(t, 1) by τj = φ−1(t, 1; jh) for all 0 < t < 1. We can discretize the BVP

g1(x)Dαu(t)+g2(x)Dβu(t)+p(t)u(4)(t)+q(t)u(t) = f(t), 0 < t < 1, 1 < α < 2, 0 < β < 1,

subject to the boundary conditions u(0) = 0, u′(0) = 0, u(1) = 0, u′(1) = 0, by the
system

h2

Γ(2− α)

N2∑
j=−N1

N2∑
i=−N1

u(tj)

φ′(0, 1; tj)

d2

dt2

(
(τi − t)1−αSk(τi)g1(τi)w(τi)

φ′(t, 1; τi)

)∣∣∣∣∣
t=tj

+

−h
Γ(1− β)

N2∑
j=−N1

N2∑
i=−N1

u(tj)

φ′(0, 1; tj)

d

dt

(
(τi − t)−βSk(τi)g2(τi)w(τi)

φ′(t, 1; τi)

)∣∣∣∣∣
t=tj

+

h

N2∑
j=−N1

4∑
i=0

u(tj)

φ′(0, 1; tj)hi
δ
(i)
jk ηi(tj) + h

q(tk)u(tk)− f(tk)

φ′(0, 1; tk)
w(tk) = 0,

for k = −N1, ..., 0, ..., N2.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 20 (3) (2020) 267–281 275

4 Numerical Applications

Example 4.1 Consider the following BVP:

x3/2D1.5u(x) + u(4)(x) +
1

1 + x2
u(x) = f(x) (22)

with the boundary conditions

u(0) = 0, u′(0) = 0, u(1) = 0, u′(1) = 0, (23)

where

f(x) = 24
(
6− 20x+ 15x2

)
+

(−1 + x)4x2

1 + x2
+

4x2
(
105− 840x+ 2016x2 − 1920x3 + 640x4

)
105
√
π

.

The exact solution for this problem is u(x) = (x− 1)4x2.

For the choice of w(x) = (1− x)2x2, we have

η0(x) = 24,

η1(x) =
−2− 4x

(
2− 9x+ 6x2

)
(−1 + x)2x2

,

η2(x) =
−1 + 12(−1 + x)x

(−1 + x)2x2
,

η3(x) = − 2

(−1 + x)2
+

2

x2
,

η4(x) =
1

(−1 + x)2x2
.

Use N1 = N2 = 30, and h = π√
30

. Then, the discrete system is given by the resulting
system

30∑
j=−-30

4∑
i=0

cj
hiφ′(0, 1;xj)

δ
(i)
jk ηi(xj) +

h

Γ(1/2)

30∑
j=−30

30∑
i=−30

cj
φ′(0, 1;xj)

×

d2

dt2

(
(τi)

3/2(τi − t)−1/2Sk(τi)w(τi)

φ′(t, 1; τi)

)∣∣∣∣∣
t=tj

+
ckw(xk)

(1 + x2k)φ′(0, 1;xk)
=
f(xk)w(xk)

φ′(0, 1;xk)

for k = −30,−29, ..., 29, 30. Using Mathematica, one can solve this system and find that
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u

Figure 1: The exact solution is the red color and the approximate solution is the dashed blue
color for Example 4.1 when N1 = N2 = 40 and h = π/

√
60.

c−30 = 5.99655× 10−14 c−10 = 0.00001 c10 = 1.48656× 10−8

c−29 = 1.042706× 10−13 c−9 = 0.0000317 c11 = 5.5547× 10−9

c−28 = 2.8087× 10−13 c−8 = 0.000097 c12 = 4.61723× 10−9

c−27 = 4.09977× 10−13 c−7 = 0.000292374 c13 = 1.82193× 10−9

c−26 = 9.09015× 10−13 c−6 = 0.000848463 c14 = 1.4434× 10−9

c−25 = 1.15627× 10−12 c−5 = 0.00231724 c15 = 5.9222× 10−10

c−24 = 2.21194× 10−12 c−4 = 0.00571294 c16 = 4.5229× 10−10

c−23 = 1.3661× 10−12 c−3 = 0.01192 c17 = 1.91280× 10−10

c−22 = 3.9494× 10−13 c−2 = 0.0192758 c18 = 1.420322× 10−10

c−21 = 1.91666× 10−11 c−1 = 0.0217367 c19 = 6.149521× 10−11

c−20 = 7.5221× 10−11 c0 = 0.0156253 c20 = 4.4668× 10−11

c−19 = 2.9383× 10−10 c1 = 0.00690247 c21 = 1.96808× 10−11

c−18 = 9.7171× 10−10 c2 = 0.001944 c22 = 1.40445× 10−11

c−17 = 3.2402× 10−9 c3 = 0.000382 c23 = 6.2537× 10−12

c−16 = 1.0346× 10−8 c4 = 0.0000584 c24 = 4.3941× 10−12

c−15 = 3.3137× 10−8 c5 = 7.59754× 10−6 c25 = 1.9531× 10−12

c−14 = 1.04718× 10−7 c6 = 1.01161× 10−6 c26 = 1.34788× 10−12

c−13 = 3.31083× 10−7 c7 = 1.41935× 10−7 c27 = 5.7864× 10−13

c−12 = 1.04126× 10−6 c8 = 5.67820× 10−8 c28 = 3.84874× 10−13

c−11 = 3.269197× 10−6 c9 = 1.7549× 10−8 c29 = 1.4007× 10−13

c30 = 8.0230× 10−14

Now the numerical solution is u(x) =
∑30
i=−30 ciSk(x). Figure 1, Table 1, and Table

2 show the accuracy of the SGM in Example 4.1.

Example 4.2 Consider the following BVP:

xD1.5u(x) +D0.5u(x) + u(4)(x) +
1

x
u(x) = f(x) (24)

with the boundary conditions

u(0) = 0, u′(0) = 0, u(1) = 0, u′(1) = 0, (25)
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xk Exact value Approximate Value Absolute Error

0.000103361 1.0679078727× 10−8 1.034606291× 10−8 3.33015812× 10−10

0.000325432 1.057680767× 10−7 1.047189702× 10−7 1.04910649× 10−9

0.00102413 1.044557458× 10−6 1.041265549× 10−6 3.291908932× 10−9

0.00321811 0.0000102236 0.0000102134 1.022024664× 10−8

0.0100649 0.0000972841 0.0000972533 3.081035295× 10−8

0.0310251 0.000848548 0.000848463 8.53263208× 10−8

0.0915966 0.00571312 0.00571294 1.826834860× 10−7

0.241011 0.0192759 0.0192758 1.500778530× 10−7

0.5 0.015625 0.0156253 3.16788086× 10−7

0.758989 0.00194364 0.00194426 6.24294102× 10−7

0.908403 0.0000580864 0.0000584573 3.70957577× 10−7

0.968975 8.6991642× 10−7 1.011614594× 10−6 1.416981697× 10−7

0.989935 1.005642443× 10−8 5.67820105× 10−8 4.672558615× 10−8

0.996782 1.065625857× 10−10 1.486565724× 10−8 1.475909466× 10−8

0.998976 1.097828970× 10−12 4.61723057× 10−9 4.616132746× 10−9

0.999675 1.12087543× 10−14 1.443447221× 10−9 1.443436012× 10−9

0.999897 1.14113473× 10−16 4.522918397× 10−10 4.52291725× 10−10

Table 1: Numerical values for Example 4.1 when N1 = N2 = 30 and h = π/
√

30.

xk Exact value Approximate Value Absolute Error

0.000888742 7.87057693× 10−7 7.8614223458× 10−7 9.15458562× 10−10

0.00179253 3.19018596× 10−6 3.1883409387× 10−6 1.84503042× 10−9

0.00361208 0.0000128597 0.0000128559 3.71143282× 10−9

0.00726518 0.0000512656 0.0000512581 7.438059772× 10−9

0.0145589 0.000199884 0.000199869 1.479564583× 10−8

0.0289613 0.000745729 0.0007457 2.89922931× 10−8

0.0567902 0.00255258 0.00255252 5.51198146× 10−8

0.108375 0.00742317 0.00742307 9.86259941× 10−8

0.19703 0.0161384 0.0161383 1.562575722× 10−7

0.331262 0.0219466 0.0219464 1.948937535× 10−7

0.5 0.015625 0.0156248 1.615772327× 10−7

0.668738 0.00538517 0.00538509 8.17869846× 10−8

0.80297 0.000971686 0.000971658 2.849247698× 10−8

0.891625 0.00010967 0.000109661 8.2069107× 10−9

0.94321 9.25355745× 10−6 9.2513881662× 10−6 2.16928432× 10−9

0.971039 6.63350097× 10−7 6.6280111914× 10−7 5.4897826× 10−10

0.985441 4.36286973× 10−8 4.3493511523× 10−8 1.35185823× 10−10

0.992735 2.745695415× 10−9 2.7132500384× 10−9 3.2445377× 10−11

0.996388 1.690005952× 10−10 1.6151162× 10−10 7.4889679× 10−12

Table 2: Numerical values for Example 4.1 when N1 = N2 = 40 and h = π/
√

60.
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Figure 2: The exact solution is the red color and the approximate solution is the dashed blue
color for Example 4.2 when N1 = N2 = 10 and h = π√

30
.

where

f(x) = (−1 + 2x)(24 + (1− x)2x+ 96) +
4x3/2

315
√
π

(
−525 + 3528x− 6480x2 + 3520x3

)
.

The exact solution for this problem is u(x) = x2(−1 + 4x− 5x2 + 2x3). In this example
we consider a fractional differential equation with singularity at x = 0 to show the power
of SGM with this kind of problems. We consider a different family of parameters, the
first N1 = N2 = 10, and h = π/

√
10. Next, we apply the SGM when N1 = N2 = 40,

and h = π/
√

20. It is clear from Figures 2 and 3, and Table 3 that we can obtain a high
quality approximation for a good choice of the parameters.

5 Conclusion

The sinc-Galerkin method is established for the higher order fractional boundary value
problems in this paper. The suggested method utilizes the properties of fractional deriva-
tives in order to solve the higher order BVP. The numerical scheme is computationally
captivating. We demonstrated our results by tables and figures, it is proved that the
convergence rate of the sinc method is of O(exp(−κ

√
N) with some κ > 0, where N is

the number of nodes or bases used in the method. We provided a fractional differential
equation with singularities, the method shows the best response to this example.
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Figure 3: The exact solution is the red color and the approximate solution is the dashed blue
color for Example 4.2 when N1 = N2 = 40 and h = π

2
√
30

.

xk Exact value Approximate Value Absolute Error

0.00691383 −0.0000464904 −0.0000460076 4.828512978699654× 10−7

0.0113114 −0.000122241 −0.00012146 7.809294063951228× 10−7

0.0184542 −0.000315995 −0.000314746 1.2489442106647592× 10−6

0.0299707 −0.000794545 −0.000792583 1.962081982870246× 10−6

0.0483203 −0.0019103 −0.00190731 2.995110557358835× 10−6

0.0770126 −0.00427437 −0.00427001 4.365622987672832× 10−6

0.120583 −0.00853317 −0.00852726 5.90892890370287× 10−6

0.183893 −0.0142393 −0.0142322 7.096707035069219× 10−6

0.270229 −0.0178716 −0.0178646 6.9694864587993566× 10−6

0.37831 −0.0134626 −0.013458 4.585623157854837× 10−6

0.5 0. 1.57961907× 10−7 1.5796190761125167× 10−7

0.62169 0.0134626 0.0134582 4.371289509910378× 10−6

0.729771 0.0178716 0.0178646 6.9222409211575076× 10−6

0.816107 0.0142393 0.0142322 7.127970986300913× 10−6

0.879417 0.00853317 0.00852723 5.94465157464398× 10−6

0.922987 0.00427437 0.00426998 4.386834537174061× 10−6

0.95168 0.0019103 0.0019073 3.0051297730975847× 10−6

0.970029 0.000794545 0.000792579 1.966324959320467× 10−6

0.981546 0.000315995 0.000314744 1.2506400348780188× 10−6

0.988689 0.000122241 0.000121459 7.815852781527434× 10−7

0.993086 0.0000464904 0.0000460073 4.83099931514434× 10−7

Table 3: Numerical values for Example 4.2 when N1 = N2 = 40 and h = π

2
√
30

.
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