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Abstract: In this work, we establish the existence results on weak solutions via the
recent Berkovits topological degree for the following nonlinear p-elliptic problems :

−div(|∇u|p−2∇u) = λ|u|q−2u+ f(x, u, ∇u)
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1 Introduction

Let Ω be a bounded open set of RN (N ≥ 1) with a Lipschitz boundary if N ≥ 2, and
let p , q be real numbers such that 2 < q < p < ∞, and w = {wi(x), 0 ≤ i ≤ N} be a
vector of weight functions on Ω, i.e., each wi(x) is measurable a.e. positive on Ω. Let
W 1,p

0 (Ω, w) be the weighted Sobolev space associated with the vector w. Our objective
is to prove the existence of weak solutions to the following nonlinear p -elliptic problem :{

−div(a(x,∇u)) = λ|u|q−2u+ f(x, u,∇u) in Ω,
u = 0 on ∂Ω,

(1)

where a(x,∇u) = |∇u|p−2∇u. We shall suppose that the following degenerate ellipticity
condition is satisfied for all ξ ∈ RN and almost every x ∈ Ω :

a(x, ξ) · ξ ≥ γ
N∑
i=1

wi|ξi|p, (2)
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such that γ is a positive constant, and λ is a real parameter. The function f : Ω ×
R × RN → R is a Carathéodory function which satisfies only the growth condition, for
a.e x ∈ Ω and all (η, ζ) ∈ R× RN ,

|f(x, µ, ξ)| ≤ β(M(x) + σ
1
p′ |µ|

q
p′ +

N∑
j=1

w
1
p′

j |ξj |
p−1), (3)

where β is a positive constant, M ∈ Lp′(Ω),M(x) ≥ 0 and q is a real number such
that 2 < q < p.

We use, in this paper, the framework of the recent Berkovits topological degree. This
notion was introduced by J. Berkovits [7] in the study of the solvability of abstract
Hammerstein type equations and variational inequalities. The topological degree theory
was introduced for the first time by Leray and Schauder [17] in their study of the nonlinear
equations for compact perturbations of the identity in infinite-dimensional Banach spaces.
Browder [8] constructed a topological degree for the operators of class (S+) in reflexive
Banach spaces with the Galerkin method, see also [20, 22, 23]. This notion was then
extented by Berkovits [7] to the classical Leray-Schauder degree for the operators of
generalized monotone type. Roughly speaking, the class of operators for the extended
degree is essentially obtained by replacing the compact perturbation by a composition of
operators of monotone type. We refer to [10,24] for more details.

For f ≡ 0 and p = q, Melián et. al. (in [19]) study the eigenvalues of the problem, and
there the differentiability with respect to the domain of the first Dirichlet eigenvalue of
the minus p−Laplacian is shown for the first time. S. Liu [18], by using the Morse theory,
has established the existence of weak solutions to the equation 4pu = f(x, u) with the
Dirichlet boundary conditions. It should be mentioned that the results in this paper
are generalised to the case of the p-Laplacian results obtained in [14] for the strongly
nonlinear case using the Berkovits topological degree. One of the motivations for studying
(1) comes from the applications to such models of fluid mechaincs (see [5,6,11]), nonlinear
diffusion(see [21]) and nonlinear elasticity (see [4]). We note that the case 1 < p < 2
relates to the elastic-plastic models.

This paper is divided into four sections. In the next section, we give some preliminaries
and the definition of weighted Sobolev spaces and we recall some classes of mappings of
generalized (S+) type and the recent Berkovits degree. In the third section, we discuss
the p-Laplace operator. Finally, we give some existence results for weak solutions of
problem (1).

2 Preliminaries

In order to discuss problem (1), we need some theories on topological degree and on spaces
W 1,p(Ω, w) which we call the weighted Lebesgue–Sobolev spaces. Firstly, we state some
classes of mappings and topological degree, secondly, we give basic properties of spaces
W 1,p(Ω, w) which will be used later.

2.1 Classes of mappings and topological degree

Let X be a real separable reflexive Banach space with dual X∗ and with continuous
dual pairing 〈 · , · 〉 between X∗ and X in this order, and for a nonempty subset Ω of X,
let Ω and ∂Ω denote the closure and the boundary of Ω in X, respectively. The symbol
→ (⇀) stands for strong (weak) convergence.
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Definition 2.1 Let Y be another real Banach space. An operator F : Ω ⊂ X → Y
is said to be

1. bounded if it takes any bounded set into a bounded set.

2. demicontinuous if for any (un) ⊂ Ω, un → u implies F (un) ⇀ F (u) .

3. compact if it is continuous and the image of any bounded set is relatively compact.

Definition 2.2 A mapping F : Ω ⊂ X → X∗ is said to be

1. of class (S+) if for any (un) ⊂ Ω with un ⇀ u and lim sup
n→∞

〈Fun, un − u〉 ≤ 0,

we have un → u.

2. quasimonotone if for any (un) ⊂ Ω with un ⇀ u , we have lim sup
n→∞

〈Fun, un−u〉 ≥
0.

Definition 2.3 Let T : Ω1 ⊂ X → X∗ be a bounded operator such that Ω ⊂ Ω1.
For any operator F : Ω ⊂ X → X, we say that

1. F satisfies condition (S+)T if for any (un) ⊂ Ω with un ⇀ u, yn := Tun ⇀ y
and lim sup

n→∞
〈Fun, yn − y〉 ≤ 0, we have un → u.

2. F has the property (QM)T if for any (un) ⊂ Ω with un ⇀ u, yn := Tun ⇀ y,
we have lim sup

n→∞
〈Fun, y − yn〉 ≥ 0.

Let O be the collection of all bounded open sets in X. For any Ω ⊂ X, we consider
the following classes of operators:

F1(Ω) := {F : Ω→ X∗|F is bounded, demicontinuous and satifies condition(S+)},
FT,B(Ω) := {F : Ω→ X|F is bounded, demicontinuous and satifies condition(S+)T },
FT (Ω) := {F : Ω→ X|F is demicontinuous and satifies condition(S+)T },
FB(X) := {F ∈ FT,B(G)|G ∈ O, T ∈ F1(G)}.

Throughout the paper T ∈ F1(G) is called an essential inner map to F.

Lemma 2.1 ( [7], Lemmas 2.2 and 2.4) Let T ∈ F1(G) be continuous and S :
DS ⊂ X∗ → X be demicontinuous such that T (G) ⊂ Ds, where G is a bounded open
set in a real reflexive Banach space X. Then the following statements are true :

1. If S is quasimonotone, then I + SoT ∈ FT (G), where I denotes the identity
operator.

2. If S is of class (S+), then SoT ∈ FT (G).

Definition 2.4 Suppose that G is a bounded open subset of a real reflexive Banach
space X, T ∈ F1(G) be continuous and let F, S ∈ FT (G). The affine homotopy H :
[0, 1]×G→ X defined by

H(t, u) := (1− t)Fu+ tSu for (t, u) ∈ [0, 1]×G

is called an admissible affine homotopy with the common continuous essential inner map
T .
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Remark 2.1 [7] The above affine homotopy satisfies the condition (S+)T .

Now, we introduce the Berkovits topological degree for the class FB(X), for more
details see [7].

Theorem 2.1 There exists a unique degree function

d : {(F, G, h)|G ∈ O, T ∈ F1(G), F ∈ FT,B(G), h 6∈ F (∂G)} −→ Z

that satisfies the following properties:

1. (Normalization) For any h ∈ G, we have d(I, G, h) = 1.

2. (Additivity) Let F ∈ FT,B(G). If G1 and G2 are two disjoint open subsets of G
such that h 6∈ F (G\(G1 ∪G2)), then we have

d(F,G, h) = d(F,G1, h) + d(F,G2, h).

3. (Homotopy invariance) If H : [0, 1] × G → X is a bounded admissible affine ho-
motopy with a common continuous essential inner map and h: [0, 1] → X is a
continuous path in X such that h(t) 6∈ H(t, ∂G) for all t ∈ [0, 1], then the value of
d(H(t, ·), G, h(t)) is constant for all t ∈ [0, 1].

4. (Existence) If d(F,G, h) 6= 0, then the equation Fu = h has a solution in G.

2.2 The weighted Sobolev space

Let Ω be a bounded open set of RN (N ≥ 1), p be a real number such that 1 < p <∞,
and ω = {ωi(x), 0 ≤ i ≤ N} be a vector of weight functions, i.e., every component
ωi(x) is a measurable function which is positive a.e. in Ω. Further, we suppose for
any 0 ≤ i ≤ N in all our considerations that

wi ∈ L1
loc(Ω), (4)

w
−1
p−1

i ∈ L1
loc(Ω). (5)

We denote ∂i =
∂

∂xi
. The weighted Sobolev space, denoted by W 1,p(Ω, w), is

defined as follows :

W 1,p(Ω, w) =

{
u ∈ Lp(Ω, w0) and ∂iu ∈ Lp(Ω, wi), i = 1, ..., N

}
.

Note that the derivatives
∂u

∂xi
are understood in the sense of distributions. This set of

functions forms a Banach space under the norm

‖u‖1,p,w =

[∫
Ω

|u(x)|pw0(x) dx+

N∑
i=1

∫
Ω

|∂iu(x)|p wi(x) dx

]1/p

. (6)

The condition (4) implies that C∞0 (Ω) is a subspace of W 1,p(Ω, w) and, consequently, we
can introduce the subspace

X = W 1,p
0 (Ω, w)
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of W 1,p(Ω, w) as the closure of C∞0 (Ω) with respect to the norm (6). Moreover, condition
(5) implies that W 1,p(Ω, w) as well as W 1,p

0 (Ω, w) are the reflexive Banach spaces.
We recall that the dual space of weighted Sobolev spaces W 1,p

0 (Ω, w) is equivalent

to W−1,p′(Ω, w∗), where w∗ = {w∗i = w1−p′
i , i = 0, . . . , N} and where p′ is the conjugate

of p; i.e., p′ = p
p−1 (for more details we refer to [1–3]).

Let us define the norm on X equivalent to the norm (6) by

‖|u|‖
X

=
( N∑
i=1

∫
Ω

|∂iu(x)|p wi(x) dx
)1/p

. (7)

We can find a weight function σ on Ω and a parameter q, 1 < q <∞, such that

σ1−q′ ∈ L1(Ω) and σ−p/(q−p) ∈ L1(Ω) (8)

with q′ = q
q−1 . Then the Hardy inequality,

(∫
Ω

|u(x)|qσ dx
)1/q

≤ c
( N∑
i=1

∫
Ω

|∂iu(x)|pwi(x) dx
)1/p

, (9)

holds for every u ∈ X with a constant c > 0 independent of u, otherwise the imbedding

X ↪→↪→ Lq(Ω, σ), (10)

expressed by the inequality (9), is compact. Note that (X, ‖|.|‖X) is a uniformly convex
(and thus, reflexive) Banach space.

Remark 2.2 If we suppose that w0(x) ≡ 1, the integrability condition holds : there
exists ν ∈]Np ,+∞[∩] 1

p−1 ,+∞[ such that

w−νi ∈ L1(Ω), for all i = 1.....N, (11)

and note that the assumption (11) is stronger than (5), then

‖|u|‖ =
( N∑
i=1

∫
Ω

|∂iu|p wi(x) dx
)1/p

(12)

is a norm defined on W 1,p
0 (Ω, w) and equivalent to (6), and also, the imbedding

W 1,p
0 (Ω, w) ↪→ Lq(Ω) (13)

is compact for all 1 ≤ q ≤ p∗1 if pν < N(ν + 1), and for all q ≥ 1 if pν ≥ N(ν + 1),
where p1 = pν/ν + 1 and p∗1 is the Sobolev conjugate of p1 (see [12], pp.30-31).

3 Notions of Solutions and Properties of p -Laplace Operator

In this section, we give the definition of a weak solution for problem (1), and we discuss
the p-Laplace operator 4pu := div(|∇u|p−2∇u) .
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Definition 3.1 A point u ∈W 1,p
0 (Ω, w) is said to be a weak solution of (1) if∫

Ω

|∇u|p−2∇u∇v dx =

∫
Ω

(λ|u|q−2u+ f(x, u, ∇u))v dx, ∀v ∈W 1,p
0 (Ω, w).

Let us consider the following functional :

K u =

∫
Ω

1

p
|∇u|p dx, u ∈ X := W 1,p

0 (Ω, w) .

In view of [9], we have K ∈ C1(X,R), and the p -Laplace operator is the derivative
operator of K in the weak sense. We denote L = K ′ : X → X∗, then

〈Lu , v〉 =

∫
Ω

|∇u|p−2∇u∇v dx ∀v, u ∈ X.

Lemma 3.1 i) L : X → X∗ is a continuous, bounded and strictly monotone
operator;

ii) L is a mapping of type (S+);

iii) L : X → X∗ is a homeomorphism.

Proof. i) It is obvious that L is continuous and bounded. For all ξ, η ∈ RN , we
obtain the following inequalities (see [15]), from which we can get the strict monotonicity
of L :

(|ξ|p−2ξ − |η|p−2η)(ξ − η) ≥ (
1

2
)p|ξ − η|p, p ≥ 2. (14)

ii) From (i), if un ⇀ u and lim sup
n→∞

〈Lun − Lu , un − u〉 ≤ 0, then

lim
n→∞

〈Lun , un − u〉 = lim
n→∞

〈Lun − Lu , un − u〉 = 0.

In view of (14), ∇un converges in measure to ∇u in Ω, so we get a subsequence
denoted again by ∇un satisfying ∇un(x)→ ∇u(x) , a.e. x ∈ Ω.

Since un ⇀ u in X = W 1,p
0 (Ω, w), one has (un)n is bounded. Therefore, the

sequence (|∇un|p−2∇un)n is bounded in

N∏
i=1

Lp
′
(Ω, w∗i ) and |∇un|p−2∇un → |∇u|p−2∇u

a.e. in Ω, according to Lemma 2.1 in [2] we have

|∇un|p−2∇un ⇀ |∇u|p−2∇u in

N∏
i=1

Lp
′
(Ω, w∗i ) and a.e. in Ω.

We set yn = |∇un|p and y = |∇u|p. As in [13] (Lemma 5) we can write

yn → y in L1.

By (2) we have

γ

N∑
i=1

wi|∂iun|p ≤ |∇un|p.
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Let zn =

N∑
i=1

wi|∂iun|p, z =

N∑
i=1

wi|∂iu|p, yn =
yn
γ

and y =
y

γ
. Then, by Fatou’s theorem,

we obtain ∫
Ω

2ydx ≤ lim inf
n→∞

∫
Ω

y + yn − |zn − z|dx,

i.e., 0 ≤ − lim sup
n→∞

∫
Ω

|zn − z|dx. Then

0 ≤ lim inf
n→∞

∫
Ω

|zn − z|dx ≤ lim sup
n→∞

∫
Ω

|zn − z|dx ≤ 0.

This implies

∇un → ∇u in

N∏
i=1

Lp(Ω, wi).

Hence un → u in W 1,p
0 (Ω, w), i.e., L is of type (S+).

iii) By the strict monotonicity, L is an injection. Since

lim
‖|u|‖→∞

〈Lun, un − u〉
‖|u|‖

= lim
‖|u|‖→∞

∫
Ω

|∇u|p dx

‖|u|‖
=∞,

L is coercive, thus L is a surjection in view of the Minty−Browder theorem (see [24],
Theorem 26A) Hence L has an inverse mapping L−1 : X∗ → X. Therefore, the
continuity of L−1 is sufficient to ensure L to be a homeomorphism.

If fn, f ∈ X∗, fn → f , let un = L−1 fn, u = L−1 f , then Lun = fn, L u = f.
So (un)n is bounded in X. Without loss of generality, we can assume that un ⇀ u0.

Since fn → f , we have

lim
n→∞

〈Lun − Lu0, un − u0〉 = lim
n→∞

〈fn, un − u0〉 = 0. (15)

Since L is of type (S+), un → u0, we conclude that un → u, so L−1 is continuous.

4 Existence of Solutions

In this section, we study the strongly nonlinear problem (1) based on the degree theory
in Section 2.

Lemma 4.1 Under assumption (3), the operator S : W 1,p
0 (Ω, w) → W−1,p′(Ω, w∗)

set by

〈S u, v〉 = −
∫

Ω

(λ|u|q−2u+ f(x, u, ∇u))vdx, ∀u, v ∈W 1,p
0 (Ω, w),

is compact.

Proof. Step 1. Let ψ : W 1,p
0 (Ω, w)→ Lp

′
(Ω) be the operator defined by

ψ u(x) := −λ|u(x)|q−2u(x) for u ∈W 1,p
0 (Ω, w) and x ∈ Ω.
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It is obvious that ψ is continuous. We prove that ψ is bounded.
We pose α = (q − 1)p′ with 1 < α < p. For each u ∈ W 1,p

0 (Ω, w), by using the
continuous embedding Lp(Ω) ↪→ Lα(Ω) and the Hölder and the Hardy inequality, we
have

‖ψ u‖p
′

p′ =

∫
Ω

| − λ|u|q−2u|p
′
dx

≤ λp
′
∫

Ω

|u|(q−1)p′dx

≤ C λp
′
∫

Ω

|u|pdx

≤ C λp
′
∫

Ω

|u|pσ
p
q σ−

p
q dx

≤ C λp
′
(∫

Ω

|u|qσdx
) p

q
(∫

Ω

σ−
p

q−p dx

) q−p
q

≤ c′
( N∑
i=1

∫
Ω

|∂iu|p wi dx
)(∫

Ω

σ−
p

q−p dx

) q−p
q

≤ C ′‖|u|‖p. ( Due to (8))

This implies that ‖ψ u‖p′ ≤ C ′ ‖|u|‖p−1. Finally, ψ is bounded on W 1,p
0 (Ω, w) .

Step 2. Let ϕ : W 1,p
0 (Ω, w)→ Lp

′
(Ω) be an operator defined by

ϕu(x) := −f(x, u, ∇u) for u ∈W 1,p
0 (Ω, w) and x ∈ Ω.

We show that ϕ is bounded and continuous. For any u ∈ W 1,p
0 (Ω, w), we have by the

growth condition (3) and the Hardy inequality (9) that

‖ϕu‖p′ ≤
(∫

Ω

|f(x, un, ∇un)|p
′
dx

) 1
p′

≤ β

(∫
Ω

(
M(x) + σ

1
p′ |u|

q
p′ +

N∑
i=1

w
1
p′

i |∂iu|
p−1
)p′
dx

) 1
p′

≤ C1β

(∫
Ω

(M(x))p
′
dx+

∫
Ω

|u|qσdx+

N∑
i=1

∫
Ω

|∂iu|pwi dx

) 1
p′

≤ C1β

(∫
Ω

(M(x))p
′
dx

) 1
p′

+ C1β

(∫
Ω

|u|qσdx+

N∑
i=1

∫
Ω

|∂iu|pwi dx

) 1
p′

≤ C3

(
N∑
i=1

∫
Ω

|∂iu|pwi dx+

N∑
i=1

∫
Ω

|∂iu|pwi dx

) 1
p′

≤ C4‖|u|‖
p
p′ .

(16)

This implies that ϕ is bounded on W 1,p
0 (Ω, w).

Now, we prove that ϕ is continuous, let un → u in W 1,p
0 (Ω, w). Then un → u in

Lp(Ω, w0) and ∇un → ∇u in Lp(Ω, w). Hence there exist a subsequence still denoted
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by (un) and measurable functions h in Lp(Ω, w0) and g in

N∏
i=1

Lpi(Ω, wi) such that

un(x)→ u(x) and ∇un(x)→ ∇u(x),

|un(x)| ≤ h(x) and |∇un(x)| ≤ |g(x)|

for a.e., x ∈ Ω and all n ∈ N. Since f satisfies the Carathéodory condition, we obtain
that

f(x, un(x), ∇un(x))→ f(x, u(x), ∇u(x)) a.e. x ∈ Ω. (17)

According to (3) we get

|f(x, un(x), ∇un(x))| ≤ β(M(x) + σ
1
p′ |h(x)|

q
p′ +

N∑
j=1

w
1
p′

j |gj(x)|p−1)

for a.e. x ∈ Ω and for all k ∈ N.
Since

M(x) + σ
1
p′ |h(x)|

q
p′ +

N∑
j=1

w
1
p′

j |gj(x)|p−1 ∈ Lp
′
(Ω),

and using (17), we have∫
Ω

|f(x, uk(x), ∇uk(x))− f(x, u(x), ∇u(x))|p
′
dx −→ 0.

The dominated convergence theorem implies that

ϕuk → ϕu in Lp
′
(Ω).

Thus, the entire sequence (ϕun) converges to ϕu in Lp
′
(Ω), and then ϕ is continuous.

Step 3. As the embedding I : W 1,p
0 (Ω, w) → Lp

′
(Ω) is compact, it is known that

the adjoint operator I∗ : Lp
′
(Ω) → W−1,p′(Ω, w∗) is also compact. Therefore, the

compositions I∗oϕ and I∗oϕ : W 1,p
0 (Ω, w) → W−1,p′(Ω, w∗) are compact. We conclude

that S = I∗oϕ+ I∗oϕ is compact. This completes the present proof.

Theorem 4.1 Assume that hypothesis (3) is satisfied. Then problem (1) has a weak
solution u in W 1,p

0 (Ω, w).

Proof. Let S : W 1,p
0 (Ω, w) → W−1,p′(Ω, w∗) be as defined in Lemma 4.1 and L :

W 1,p
0 (Ω, w)→W−1,p′(Ω, w∗), set by

〈Lu, v〉 =

∫
Ω

|∇u|p−2∇u∇vdx, for all u, v ∈W 1,p
0 (Ω, w).

Then u ∈W 1,p
0 (Ω, w) is a weak solution of (1) if and only if

Lu = −Su. (18)

By dint of the properties of the operator L given in Lemma 3.1 and in view of the
Minty-Browder theorem (see [24], Theorem 26 A), the inverse operator T := L−1 :
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W−1,p′(x)(Ω) → W 1,p
0 (Ω, w) is bounded, continuous and satisfies condition (S+). Fur-

thermore, note that by Lemma (4.1) the operator S is bounded, continuous and quasi-
monotone.

Consequently, equation (18) is equivalent to

u = Tv and v + SoTv = 0. (19)

According to the terminology of [24], the equation v+SoTv = 0 is an abstract Hammer-
stein equation in the reflexive Banach space W−1,p′(Ω, w∗) .

To solve equations (19), we will apply the degree theory introduced in Section 2. To
do this, we first show that the set

B :=

{
v ∈ W−1,p′(Ω, w∗) | v + tSoTv = 0 for some t ∈ [0, 1]

}
is bounded. Indeed, let v ∈ B . Set u := Tv.
According to (2), (8), (9) and (16), the Hölder inequality, the Young inequality and

the continuous embedding Lp(Ω) ↪→ Lq(Ω), we get

‖|Tv|‖p = ‖|u|‖p =

N∑
i=1

∫
Ω

|∂iu|pwi dx

≤ 1

γ

N∑
i=1

∫
Ω

|∂iu|pdx =
1

γ
〈Lu, u〉 =

1

γ
〈v, Tv〉

≤ t

γ
|〈S ◦ Tv, Tv〉|

≤ tλ

γ

∫
Ω

|u|qdx+
t

γ

∫
Ω

|f(x, u, ∇u)|udx

≤ C1

∫
Ω

|u|pdx+ C2

(∫
Ω

|f(x, u, ∇u)|p
′
dx
) 1

p′
+ C3

(∫
Ω

|u|pdx
) 1

p

≤ C1

∫
Ω

|u|pσ
p
q σ−

p
q dx+ C2

(∫
Ω

|f(x, u, ∇u)|p
′
dx
) 1

p′

+ C3

(∫
Ω

|u|pσ
p
q σ−

p
q dx

) 1
p

≤ C1

(∫
Ω

|u|qσdx
) p

q
(∫

Ω

σ
−p
q−p dx

) q−p
q

+ C2‖ϕu‖p′

+ C3

(∫
Ω

|u|qσdx
) 1

q
(∫

Ω

σ
−p
q−p dx

) q−p
pq

≤ C ′1
N∑
i=1

∫
Ω

|∂iu|pwidx+ C ′2‖|Tv|‖
p
p′ + C ′3

( N∑
i=1

∫
Ω

|∂iu|pwidx
) 1

p

≤ C ′1‖|Tv|‖p + C ′2‖|Tv|‖
p
p′ + C ′3‖|Tv|‖.

It follows that {Tv | v ∈ B} is bounded.
Since the operator S is bounded, it is obvious from (19) that the set B is bounded in

W−1,p′(Ω, w∗) . Consequently, we can now choose a positive constant R such that

‖v‖W−1,p′ (Ω,w∗) < R for all v ∈ B.
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As a result

v + tSoTv 6= 0 for all v ∈ ∂BR(0) and all t ∈ [0, 1].

Notice by Lemma 2.1 it follows that

I + SoT ∈ FT (BR(0)) and I = LoT ∈ FT (BR(0)).

Since the operators I, S and T are bounded, I +SoT is also bounded. We conclude that

I + SoT ∈ FT,B(BR(0)) and I ∈ FT,B(BR(0)).

Consider an affine homotopy H : [0, 1]×BR(0)→W−1,p′(Ω, w∗) given by

H(t, v) := v + tSoTv for (t, v) ∈ [0, 1]×BR(0).

From the homotopy invariance and normalization property of the degree d stated in
Theorem 2.1, we have

d(I + SoT,BR(0), 0) = d(I,BR(0), 0) = 1,

then there exists a point v ∈ BR(0) such that

v + SoTv = 0.

Finally, we conclude that u = Tv is a weak solution of (1). This completes the proof.

Example. Let us consider the following special case :

a(x,∇u) = |∇u|p−2∇u and f(x, s, ξ) =

N∑
i=1

wi|ξi|p−1sign(ξi).

It is easy to show that the Carathéodory function f(x, s, ξ) satisfies the growth condition
(3). In particular, let us use a special weight function, w, expressed in terms of the
distance to the bounded ∂Ω. Denote d(x) = dist(x, ∂Ω) and set w(x) = d%(x), σ(x) =
dµ(x). Finally, the hypotheses of Theorem 4.1 are satisfied. Therefore, the following
problem:∫

Ω

|∇u|p−2∇u∇v dx =

∫
Ω

(λ|u|q−2u+ f(x, u,∇u))v dx, ∀v ∈W 1,p
0 (Ω, w),

has at least one weak solutions.

5 Conclusion

In this paper, the existence of weak solutions to the stated problem (1) is proved in
the weighted Sobolev space, by using the Berkovits topological degree theory. All this,
after transforming this Dirichlet boundary value problem related to the p-Laplacian with
nonlinearity into a new one governed by a Hammerstein equation. We intend to apply
the method for higher order and higher dimensional PDEs of physical interest.
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