
Nonlinear Dynamics and Systems Theory, 20 (2) (2020) 144–152

Chaos in New 2-d Discrete Mapping and Its
Application in Optimization

R. Bououden 1∗, M. S. Abdelouahab 1 and F. Jarad 2

1Laboratory of Mathematics and their Interactions, Abdelhafid Boussouf University Center,
Mila, Algeria.

2 Department of Mathematics, Faculty of Arts and Sciences, Cankaya University,
Ankara, Turkey.

Received: November 24, 2019; Revised: March 5, 2020

Abstract: In this paper, we propose a new map which is a combination of the
Hénon and Lozi maps. We analyze the proposed map numerically and with the aid
of bifurcation plots. On the other hand, and as an example of application of this
new map, we are going to use it in the chaotic optimisation algorithm. To prove the
efficiency of this map, we use numerical results thorought the paper.
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1 Introduction

Recently, a large number of complex nonlinear optimization problems are solved using
chaotic optimization algorithms [2–6]. In such cases, traditional algorithms [7–10] may
not often produce the desired outcomes and therefore alternate methods must be em-
ployed.

For the last few decades, researchers have focused on developing hybrid algorithms
by combining heuristic algorithms with chaos searching techniques to solve a non-linear
system of equations and optimization problems such as the chaotic Monte Carlo opti-
mization, chaotic BFGS, chaotic particle swarm optimization, chaotic genetic algorithms,
chaotic harmony search algorithm, chaotic simulated annealing, gradient-based methods
and so on [11–13]. Due to the non-repetition of chaos, the chaotic optimization algo-
rithm can carry out overall searches at higher speeds than the stochastic ergodic searches
that depend on probabilities.
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Different types of chaotic systems have been considered in literature for applications
in optimization methods. The logistic equation and other equations, such as the tent
map, Gauss map, Lozi map, Hénon map, sinusoidal iterator, Chua’s oscillator, Ikeda
map, and others, have been adopted instead of the random ones with very interesting
results [14–17].

The most popular map which is used in chaotic optimization algorithm is the Hénon
map [18]. M. Hénon has defined a map from the plane to itself. It is one of the most
studied examples of dynamical systems that exhibit chaotic behaviour. The Hénon map
is defined by

H

(
x
y

)
=

(
1− ax2 + by

x

)
. (1)

For a = 1.4 and b = 0.3, the Hénon map (1) is chaotic as in Figure 1 (a). For other
values of a and b, the map may be chaotic or converge to a periodic orbit.
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Figure 1: (a) The Hénon attractor obtained for a = 1.4 and b = 0.3. (b) The Lozi attractor
obtained for a = 1.7 and b = 0.5.

In 1978, Lozi introduced a two-dimensional map (2), see [19], where he replaced the
quadratic term in the Hénon map (1) by a piecewise linear one

L

(
x
y

)
=

(
1− a | x | +by

x

)
. (2)

This map displays a chaotic attractor for a = 1.7 and b = 0.5 as in Figure 1 (b).
In this paper we propose a new map which is a combination of the Hénon and Lozi

maps and we use it to find solutions of complex optimization problems.

2 The New Proposed Map

Because we need a map that has a very complex behaviour to be used in the optimization
algorithm as mentioned in the previous section, we suggest the following new map:

HL

(
x
y

)
=

(
1− ax2 + by

1− a | y | +bx

)
, (3)

where a, b are the bifurcation parameters.
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3 Bifurcation and Chaos

In this section, the dynamical behaviour of system (3) will be investigated numerically.
We recall that the Lyapunov exponents of an attractive periodic orbit are negative.
Also, a periodic point can only bifurcate if at least one of its Lyapunov exponents is zero.
Finally, if at least one of the Lyapunov exponents is positive, then the behaviour of the
map becomes chaotic.
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Figure 2: (a) Bifurcation diagram for b = −0.25 and 0.4 < a 6 1.5. (b) Variation of the
Lyapunov exponents versus the parameter 0.4 < a ≤ 1.5, with b = −.025.

For b = −0.25 and 0.4 < a < 1.53 we can see different bifurcations of map (3) as
shown in Figure 2 (a). In the interval 0.4 < a < 0.658, map (3) converges to a stable
fixed point. The first bifurcation occurs at a = 0.659 from the fixed point to a period-2
orbit. This period-2 orbit arises out of a period-doubling bifurcation [2]. Then, along
the interval 0.659 ≤ a < 0.974, map (3) converges to a stable period-2 orbit. When
a = 0.975, the second bifurcation (period-doubling bifurcation) occurs from the period-2
orbit to a stable period-4 orbit. The third bifurcation happens when a = 1.08925 from
period-4 orbit to a full chaotic behaviour. These bifurcations seem very clear in Figure
2 (b), where we notice that the Lyapunov exponents are both negative on the interval
0.4 < a < 1.0892 except at the bifurcation points a = 0.659, a = 0.975 and a = 1.08925,
where one of the Lyapunov exponents is zero. This means that map (3) converges to
the periodic orbit on the interval 0.4 < a < 1.0892. In the interval 1.0893 < a < 1.53
it converges to a chaotic attractor and this is clear in Figure 2 (b), where one of the
Lyapunov exponents is positive. Figure 4 (a) shows an example of the chaotic attractor
that appears when 1.0893 < a < 1.53.

Similarly, as we see in Figure 3 (a), for the fixed a = 0.95 and −0.9487 ≤ b ≤ 0.4474,
the behaviour of map (3) takes different shapes. On the interval −0.9487 ≤ b < −0.8135,
map (3) converges to the chaotic attractor (one of the Lyapunov exponents is positive as
in Figure 3 (b). As an example of the chaotic attractor that appears when −0.9487 ≤
b < −0.8135, we have Figure 4 (b). In the interval −0.9488 < b 6 0.177 we have a series
of bifurcations of the types of the period-doubling bifurcation as in Figure 3 (a) and (b).
Get back again to a chaotic behaviour when 0.1773 < b ≤ 0.2117. When b = 0.2118, we
have a new bifurcation from the chaos behaviour to a period-14 orbit. When b exceeds
the value b = 0.253, map (3) converges to a chaotic attractor (Figure 4 (b)).

The advantage of the proposed map is that it possesses rich dynamical properties such
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Figure 3: (a) Bifurcation diagram for a = 0.95 and −0.94 < b 6 0.45. (b) Variation of the
Lyapunov exponents versus the parameter −0.94 < b ≤ 0.45, with a = 0.95.
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Figure 4: (a) Chaotic attractor of map (3) obtained for a = 1.33 and b = −0.25. (b) Chaotic
attractor of map (3) obtained for a = 0.95 and b = 0.44.

as fixed points of different types, periodic orbits of different periods and strange attractors
which are completely different from all the attractors observed in the behaviour of maps
(1) and (2).

4 Pure Chaotic Optimization Algorithm Based on Map (3)

In [2], Bououden R. and Abdelouahab M.S. have used a sampling mechanism to coordi-
nate the research methods based on chaos theory by using the Lozi map. The obtained
results show that the PCOA algorithm is fast and converges to a good optimum. In this
paper we use map (3) to solve some optimization problems.

In the following we are going to describe the pure chaotic optimization algorithm.

Algorithm 4.1
Inputs:
N : max number of iterations of chaotic global search.
Np: max number of packets of global search.
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Mg: max number of iterations of chaotic global search for any packets.
Mgl: max number of iterations of chaotic local search in global search.
Ml: max number of iterations of chaotic local search.
Mt = Np(MgMgl +Ml): stopping criterion of chaotic optimization method in iterations.
λgl: the width of the interval in chaotic local search in global search.
λ: the width of the interval in chaotic local search.
Outputs:
x̄: best solution from current run of chaotic search.
f̄ : best objective function (minimization problem).
Step 1: Initialization of the numbers Mg, Mgl, Ml of the steps of chaotic search and
initialization of the parameters λgl, λ and initial conditions. The Lozi map (2) is adopted
to have a chaotic behaviour in order to use it for generating several sequences of points
by using different initial conditions (the number of sequences is equal to the dimension
of the objective function) after every sequence {y(i), i = 1, 2, ...n} is normalized in the
range [0, 1] as follows:

z(i) =
y(i)− α
β − α

(4)

for all i = 1, 2, ...n, where α = min{(y(i), i ≥ 1}, β = max{(y(i), i ≥ 1}.
-Step 2-1: Algorithm of chaotic global search:
for t = 1 : Np

Set the initial best objective function ¯f(t) = +∞.
while k ≤Mg do
xi(k) = Li + zi(k)(Ui − Li), i = 1, 2, ..., n
if f(x(k)) < f̄ , then
x̄ = x(k), f̄ = f(x(k))
- Step 2-2: Sub algorithm of chaotic global-local search:
Transform the points generated by Lozi map in the neighbourhood of the point x̄ and
we begin the search
while j ≤Mgl do
if f(x(j)) < f̄ , then
x̄ = x(j), f̄ = f(x(j))
end if
j = j + 1
end while
end if
k = k + 1
end while
end for
- Step 3: Algorithm of chaotic local search:
Transform the points generated by logistic map in the neighbourhood of the point x̄ and
we begin the search
while k ≤Ml do
if f(x(k)) < f̄ , then
x̄ = x(k), f̄ = f(x(k))
end if
k = k + 1
end while
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During the chaotic local search, the step size λ (resp λgl) is an important parameter
in convergence behaviour of the optimization method which adjusts small ergodic ranges
around X∗. The step sizes λ and λgl are employed to control the impact of the current
best solution on generating a new trial solution. The small λ and λgl tend to perform
exploitation to refine results by local search, while the large ones tend to facilitate a
global exploration of search space.

5 Experimental Results and Analysis

5.1 Some test functions

To validate the effectiveness of this new map in solving optimization problems we use it
with the PCOA proposed in [2] in order to search for optimal solutions of the following
benchmark functions.
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Figure 5: (a) The Styblinski-Tang function f1. (b) Magnification of the Styblinski-Tang func-
tion f1. (c) Function f2. (d) Magnification of function f2. (e) The Goldstein-Price function f3.
(f) The Bukin function f4.

1.

f1(x1, x2, ..., xn) =

n∑
i=1

(x4i − 16x2i + 5xi)

2
,

where −5 ≤ xi ≤ 5 for 1 ≤ i ≤ n.
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2.

f2(x1, x2) = x41 − 7x21 + x42 − 9x22 − 5x2 + 11x21x
2
2 + 99 sin(71x1)

+ 137 sin(97x1x2) + 131 sin(51x2),

where −10 ≤ x1 ≤ 10 and −10 ≤ x2 ≤ 10.

3.

f3(x1, x2) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)]×
[30 + (2x1 − 3x2)2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)],

where −2 ≤ x1 ≤ 2 and −2 ≤ x2 ≤ 2.

4.
f4(x1, x2) = 100

√
|x2 − 0.01x21|+ 0.01 |x1 + 10| ,

where −15 ≤ x1 ≤ −5 and −3 ≤ x2 ≤ 3.

Figures 5 (a) and (b) show the 3D plots of the Styblinski-Tang function f1 which is a d-
dimensional function, usually evaluated on the hypercube xi ∈ [−5, 5], for all i = 1, ..., d.
It has a global minimum

−39.16617× d ≤ f4(−2.903534, ...,−2.903534) ≤ −39.16616× d.

Concerning f2 shown in Figures 5 (c) and (d), it possesses hundreds of local minima [2],
but its global minimum is not yet theoretically known.
f3 is the Goldstein-Price function usually evaluated on the rectangle

(x1, x2) ∈ [−2, 2]× [−2, 2],

it has a lot of local minima and one global minimum f3(0,−1) = 3 and the 3D plot of
this function is in Figure 5 (e).
f4 is the Bukin function which is usually evaluated on the rectangle

(x1, x2) ∈ [−15,−5]× [−3, 3],

it has a lot of local minima and one global minimum f4(−10, 1) = 0, see Figure 5 (f).

5.2 Numerical experiments

In order to enrich our study, we are going to use different values of the step sizes λ, λgl,
different values of the number of iterations Mg, Mgl and Ml as in Table 1 and different
values of the max number of packets of global search Np presented in Table 1. Each
optimization code was implemented in Matlab (MathWorks). All the codes were run on
a 2.53 GHz, i3 processor with 4 GB of random access memory.

Table 2 shows the numerical results of the global minima research of the test functions
f1, f2, f3 and f4.

For the Styblinski-Tang function f1, the best result is −117.4985 and we got it by
using the Lozi map and Lozi-Hénon map. Concerning the function f2, the best result is
−395.8756 and we got it by using the Lozi-Hénon map. The Lozi-Hénon map gave the
best results for the optimization problem of f3 in common with the Lozi map. Again,
the Lozi-Hénon map gave the best results (0.0049) of the optimization problem of f4.
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λ λgl Np Mg Mgl Ml

C1 0.001 0.01 100 10 100 100
C2 0.002 0.05 100 100 200 200
C3 0.005 0.08 1000 100 200 200

Table 1: The set of parameter values for every run of the PCOA algorithm.

Function Cases LPCOA HPCOA LHPCOA Best map

f1

C1
C2
C3

−117.4772
−117.4924
−117.4985

−116.2624
−117.1878
−117.4981

−117.3158
−117.4979
−117.4985

Lozi and Lozi-Hénon

f2

C1
C2
C3

−390.2672
−395.8622
−395.8742

−394.5880
−395.6099
−395.8641

−385.7419
−395.8374
−395.8756

Lozi-Hénon

f3

C1
C2
C3

3.0000
3.0000
3.0000

3.1689
3.0000
3.0000

3.0000
3.0000
3.0000

Lozi and Lozi-Hénon

f4

C1
C2
C3

0.0322
0.0108
0.0086

0.0371
0.0096
0.0145

0.0310
0.0071
0.0049

Lozi-Hénon

Table 2: Optimization results over one run for 3 parameter configurations using the PCA
algorithm with three different maps (The Lozi map, Hénon map and Lozi-Hénon map).

6 Conclusion

This paper reported the results of a study of a new 2-d map derived from the Lozi and
Hénon maps by mixing between them. The fixed points, periodic orbits and chaotic
behaviour of the new 2-d map are analysed by means of the bifurcation diagrams. On
the other hand, this paper gives an application of this new map to the optimization
problems with a comparison study to the Lozi and Hénon map findings. The results
obtained show that the Lozi-Hénon map yields better results than the Lozi and Hénon
maps.
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