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Abstract: An unmanned submarine commonly called an Autonomous Underwater
Vehicle (AUV) is one type of underwater robots used for underwater mapping. The
AUV is an underwater vehicle capable of automatically moving in the water, con-
trolled by humans on a vessel. Building an AUV is not easy as many components
play important roles in the operation of the AUV. One of them is the motion control
system. This paper develops the motion control system of the UNUSAITS AUV by
applying a Sliding PID (SPID) control to a linear model with 6-DOF. The linear
model is obtained through linearization of the nonlinear model with 6-DOF. The
SPID is a combination of the Sliding Mode Control (SMC) and PID. The results of
the study indicate that the SPID method can be effectively used as the motion control
system of the linear model with an error of 0.2% - 4.2%.
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1 Introduction

Underwater vehicle technology plays an important role for archipelago nations such as
Indonesia. Since its water area is much larger than its land area, underwater technology is
required to explore and keep or maintain its natural resources. So, an underwater vehicle
is needed [1]. Underwater rides widely developed by many researchers and practitioners
today are unmanned underwater robots. This robot is known as the Autonomous Un-
derwater Vehicle (AUV). The AUV is one type of underwater robots that have attracted
a lot of researchers in recent years [2]. The AUV is a vehicle driven through water with
a propulsion system, controlled and driven by an onboard computer with six degrees
of freedom (DOF) maneuver, so that it can carry out its determined tasks entirely by
itself. The benefits of the AUV are not only for exploring marine resources, but also for
underwater mapping and underwater defense system equipment [3, 4].

Several studies on the AUV control system that have been conducted within the pe-
riod of 1990s up to now can be described as follows. Guo, Chiu and Huang examined
the AUV motion control by using a Fuzzy Sliding Mode Control for 6-DOF [5]. Then,
Mc Gann et al. used an adaptive control for 6-DOF underwater vehicles [6]. Petric dan
Stilwell applied PID to the Virginia Tech 475 AUV model with 2-DOF [7]. Oktafianto
et al. developed a Sliding Mode Control (SMC) method for a 6-DOF linear model [8].
Herlambang et al. proposed a Particle Swarm Optimization (PSO) and Ant Colony Op-
timization (ACO) for controlling an AUV system [9].

This study was carried out in the following stages. First, the equation of motion for
the 6-DOF nonlinear model was formulated. Then, the model was linearized using the
Jacobi matrix to obtain the 6-DOF linear model. Next, the Sliding PID (SPID) method
was employed to control the motion of the 6-DOF model to reach the desired set point
in the disturbance-free case (when the AUV is moving).

2 Autonomous Underwater Vehicle

Two important things are considered essential to analyze an AUV, that is, the axis
system consisting of the Earth Fixed Frame (EFF) and Body Fixed Frame (BFF) as
seen in Figure 1 (left) [10]. The EFF is used to show the position and orientation of the
AUV, of which the x-axis position leads northward, the y-axis goes to the east, and the
z-axis heads toward the center of the earth. The BFF defines the positive x-axis leading
to the prowess of the vehicle, the positive y-axis leads to the right side of the vehicle,
and the positive z-axis points downward [10]. The BFF system is used to show the speed
and acceleration of the AUV with the starting point at the center of gravity. The profile
of the UNUSAITS AUV is shown in Figure 1 (right). Figure 1 (left) and Table 1 show
that the AUV has six degrees of freedom (6-DOF), that is, surge, sway, heave, roll, pitch
and yaw. The equation of AUV motion is influenced by the outer force as follows:

τ = τhydrostatic + τaddedmass + τdrag + τlift + τcontrol .

The movement of the UNUSAITS AUV has 6 degrees of freedom, that is, 3 (three)
degrees of freedom for the direction of translational motion on the x-axis (surge), y-
axis (sway), and z-axis (heave) and the other 3 (three) degrees of freedom for rotational
motion on the x-axis (roll), y-axis (yaw), and z-axis (pitch). The UNUSAITS AUV
specifications include, among others, weight of 16 kg, length of 1.5 m, and a diameter
of 20 cm [12]. The general description of the AUV with 6 DOF can be expressed in the
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Figure 1: AUV motion with six degrees of freedom [11] and profile of UNUSAITS AUV [12].

Weight 16 Kg
Length 1500 mm

Diameter 200 mm
Controller Ardupilot Mega 2.0

Communication Wireless Xbee 2.4 GHz
Camera TTL Camera
Battery Li-Pro 11.8 V

Propulsion 12 V DC motor
Propeller 3 Blades OD : 50 mm

Speed 3.1 knots (1.5 m/s)
Maximum depth 8 m

Table 1: Specification of UNUSAITS AUV.

equations [10]:

η = [ηT1 , η
T
2 ]T , η1 = [x, y, z]T , η2 = [φ, θ, ψ]T ;

v = [vT1 , v
T
2 ]T , v1 = [u, v, w]T , v2 = [p, q, r]T ;

τ = [τT1 , τ
T
2 ]T , v1 = [X,Y, Z]T , v2 = [K,M,N ]T ;

In the equations above, η shows the vector position and orientation on the EFF. Then,
τ denotes the force vector and moment working on the AUV on the BFF, namely, surge
(u), sway (v), heave (w), roll (p), pitch (q) and yaw (r). The total force and moment
working on the AUV can be obtained by combining hydrostatic forces, hydrodynamic
forces and thrust forces. In this case, it is assumed that the diagonal inertia tensor (Io)
is zero, to obtain the total force and moment of the whole nonlinear AUV model [2].
The following equations represent the surge, sway, heave, roll, pitch and yaw motions,
respectively:

m[u̇− vr + wq − xG(q2 + r2) + yG(pq − ṙ) + zG(pr + q̇)] = Xres +X|u|uu|u|+Xu̇u̇

+Xwqwq +Xqqqq +Xvrvr +Xrrrr +Xprop , (1)

m[v̇ − wp+ ur − yG(r2 + p2) + zG(qr − ṗ) + xG(pq + ṙ)] = Yres + Y|v|vv|v|+ Yr|r|r|r|
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+ Yv̇ v̇ + Yṙ ṙ + Yurur + Ywpwp+ Ypqpq + Yuvuv + Yuuδr1u
2δr1, (2)

m[ẇ − uq + vp− zG(p2 + q2) + xG(rp− q̇) + yG(rq + ṗ)] = Zres + Z|w|ww|w|
+ Zq|q|q|q|+ Zẇẇ + Zq̇ q̇ + Zuquq + Zvpvp+ Zrprp+ Zuwuw + Zuuδs1u

2δs1, (3)

Ixṗ+ (Iz − Iy)qr +m[yG(ẇ − uq + vp)− zG(v̇ − wp+ ur)] = Kres +Kp|p|p|p|+Kṗṗ

+Kprop , (4)

Iy q̇ + (Ix − Iz)rp+m[zG(u̇− vr + wq)− xG(ẇ − uq + vp)] = Mres +Mw|w|w|w|
+Mq|q|q|q|+Mẇẇ +Mq̇ q̇ +Muquq +Mvpvp+Mrprp+Muwuw +Muuδs2u

2δs2,
(5)

Iz ṙ + (Iy − Iz)pq +m[xG(v̇ − wp+ ur)− yG(u̇− vr + wq)] = Nres +Nv|v|v|v|
+Nr|r|r|r|+Nv̇ v̇ +Nṙ ṙ +Nurur +Nwpwp+Npqpq +Nuvuv +Nuuδr2u

2δr2. (6)

The state variables of the model in (1)-(6) are u (surge), v (sway), w (heave), p (roll),
q (pitch) and r (yaw), i.e., x = [u, v, w, p, q, r]T . In this work, we assume that all state
variables are measured, i.e., y = x. The input variables are Xprop , δr1, δs1, Kprop , δs2
and δr2, i.e., u = [Xprop , δr1, δs1,Kprop , δs2, δr2]T . It follows that the model in (1)-(6)
can be formulated in the following state-space form:

ẋ(t) = f(x(t), u(t), t), (7)

y(t) = x(t), (8)

where

f1(x, u) = (−m[−vr + wq − xG(q2 + r2) + pqyG + przG] +Xres +X|u|uu|u|+Xwqwq

+Xqqqq +Xvrvr +Xrrrr +Xprop)/(m−Xu̇), (9)

f2(x, u) = (−m[−wp+ ur − yG(r2 + p2) + qrzG + pqxG] + Yres + Y|v|vv|v|+ Yr|r|r|r|
+ Yṙ ṙ + Yurur + Ywpwp+ Ypqpq + Yuvuv + Yuuδr1u

2δr1)/(m− Yv̇), (10)

f3(x, u) = (−m[−uq + vp− zG(p2 + q2) + rpxG + rqyG] + Zres + Z|w|ww|w|+ Zq|q|q|q|
+ Zq̇ q̇ + Zuquq + Zvpvp+ Zrprp+ Zuwuw + Zuuδs1u

2δs1)/(m− Zẇ), (11)

f4(x, u) = (−(Iz − Iy)qr −m[yG(−uq + vp)− zG(−wp+ ur)] +Kres +Kp|p|p|p|
+Kprop)/(Ix −Kṗ), (12)

f5(x, u) = (−(Ix − Iz)rp−m[zG(−vr + wq)− xG(−uq + vp)] +Mres +Mw|w|w|w|
+Mq|q|q|q|+Mẇẇ +Muquq +Mvpvp+Mrprp+Muwuw +Muuδs2u

2δs2)

/(Iy −Mq̇), (13)

f6(x, u) = (−(Iy − Iz)pq −m[xG(−wp+ ur)− yG(−vr + wq)] +Nres +Nv|v|v|v|
+Nr|r|r|r|+Nv̇ v̇ +Nurur +Nwpwp+Npqpq +Nuvuv +Nuuδr2u

2δr2)

/(Iz −Nṙ). (14)

Notice that the nonlinear AUV model in (7)-(8) is quite complicated. Thus, it is diffi-
cult to design a controller for the nonlinear model. Therefore, we linearize the nonlinear
AUV model (7)-(8) around a solution by using the Jacobi matrix. The linearized AUV
model is given by

ẋ(t) = Ax(t) +Bu(t), (15)
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y(t) = Cx(t) +Du(t), (16)

where

A =



1 0 0 0 mzG
m−Xu̇

−myG
m−Xu̇

0 1 0 − mzG
m−Yv̇

0 mxG−Yṙ

m−Yv̇

0 0 1 myG
m−Zẇ

(mxG+Zq̇)
m−Zẇ

0

0 − mzG
Ix−Kṗ

myG
Ix−Kṗ

1 0 0

mzG
Iy−Mq̇

0 − (mxG+Mẇ)
Iy−Mq̇

0 1 0

− myG
Iz−Nṙ

mxG−Nv̇

Iz−Nṙ
0 0 0 1



−1


a1 b1 c1 d1 e1 g1
a2 b2 c2 d2 e2 g2
a3 b3 c3 d3 e3 g3
a4 b4 c4 d4 e4 g4
a5 b5 c5 d5 e5 g5
a6 b6 c6 d6 e6 g6

 , (17)

B =



1 0 0 0 mzG
m−Xu̇

−myG
m−Xu̇

0 1 0 − mzG
m−Yv̇

0 mxG−Yṙ

m−Yv̇

0 0 1 myG
m−Zẇ

(mxG+Zq̇)
m−Zẇ

0

0 − mzG
Ix−Kṗ

myG
Ix−Kṗ

1 0 0

mzG
Iy−Mq̇

0 − (mxG+Mẇ)
Iy−Mq̇

0 1 0

− myG
Iz−Nṙ

mxG−Nv̇

Iz−Nṙ
0 0 0 1



−1


A1 B1 C1 D1 E1 G1

A2 B2 C2 D2 E2 G2

A3 B3 C3 D3 E3 G3

A4 B4 C4 D4 E4 G4

A5 B5 C5 D5 E5 G5

A6 B6 C6 D6 E6 G6

 , (18)

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , D =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (19)

3 Sliding PID

The Sliding-PID control system design is a combination of the SMC and PID. In the
first stage, the error signal (the difference between the set point and the output) is used
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as an input to the SMC. The SMC produces a signal that will guarantee that the error
becomes zero in finite time. Then, the signal generated by the SMC is used as an input
to the PID. Finally, the PID generates a signal that will be sent to the model as the
input signal. The above process can be compactly displayed as a block diagram of the
Sliding PID in Figure 2.

Figure 2: The block diagram of SPID.

Next, we design the SMC control system of the 6-DOF linear model for surge, sway,
heave, roll, pitch and yaw. The SMC algorithm is used to compute the control input for
those motions. Without going into the details, the control law produced by the SMC for
each motion is as follows:

Xprop = −
(
aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r +BB1δr1 + CC1δs1

AA1

)
−
(
DD1Kprop + EE1δs2 +GG1δr2

AA1

)
−
∣∣∣∣max

η

AA1

∣∣∣∣ sat

(
S

φ

)
, (20)

δr1 = −
(
aa2u+ bb2v + cc2w + dd2p+ ee2q + gg2r +AA2Xprop + CC2δs1

BB2

)
− DD2Kprop + EE2δs2 +GG2δr2

BB2
−
∣∣∣∣max

η

BB2

∣∣∣∣ sat

(
S

φ

)
, (21)
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δs1 = −
(
aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r +AA3Xprop +BB3δr1

CC3

)
−
(
DD3Kprop + EE3δs2 +GG3δr2

CC3

)
−
∣∣∣∣max

η

CC3

∣∣∣∣ sat

(
S

φ

)
, (22)

Kprop = −
(
aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r +AA4Xprop +BB4δr1

DD4

)
−
(
CC4δs1 + EE4δs2 +GG4δr2

DD4

)
−
∣∣∣∣max

η

AA1

∣∣∣∣ sat

(
S

φ

)
, (23)

δs2 = −
(
aa5u+ bb5v + cc5w + dd5p+ ee5q + gg5r +AA3Xprop +BB5δr1 + CC5δs1

EE5

)
−
(
DD5Kprop +GG5δr2

EE5

)
−
∣∣∣∣max

η

CC3

∣∣∣∣ sat

(
S

φ

)
, (24)

δr2 = −
(
aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r +AA6Xprop +BB6δr1 + CC6δs1

GG6

)
−
(
DD6Kprop + EE6δs2

GG6

)
−
∣∣∣∣max

η

BB2

∣∣∣∣ sat

(
S

φ

)
. (25)

As shown in Figure 2, the signals generated by the SMC (20)-(25) are fed to the
PID controller. In the PID controller, the coefficients for the proportional, integral and
derivative terms are shown in Table 2.

Kp Ki Kd

Surge 3.1 0 0
Sway 2.5 0 0
Heave 2.5 0 0
Roll 2.04 0 0
Pitch 2.2 0 0
Yaw 2.2 0 0

Table 2: The coefficients of the proportional, integral and derivative terms.

The designing the SPID control system on the 6-DOF linear model first passes the
SMC control system equation then optimized by the PID controller, of which the pro-
portional, integral and derivative values are shown in Table 2. Once the control system
equations are obtained, then they are connected to the 6-DOF linear model on the block
diagram shown by Figure 2.

4 Computational Results

In this section, we present the simulation results of the closed-loop system by using the
SPID controller designed in the previous section. First of all, we define the set point for
surge, sway, heave, roll, pitch and yaw. The set point of surge, sway and heave is 1 m/s.
The set point for roll rotation motion is 1 rad/s, whereas those of pitch and yaw are
−1 rad/s. For each simulation result, we compare the time delay, rise time, peak time
and settling time. The simulation results by using SPID control systems are as shown in
Figure 3.
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Figure 3: The results of the simulation by using the Sliding PID control system for surge and
sway.

Figure 3 shows that the surge responses by the SPID were more stable at a set point
of 1 m/s, reaching a settling time in 6 seconds with a maximum overshoot of 3.5 m/s, and
had an error of 3.2%. The sway response is stable at the set point of −1 m/s, reaching
the settling time in 0.1 of a second, and having an error of 0.1%. The heave response is
also stable at the set point of −1 m/s, reaching a settling time in approximately 0.2 of a
second, and having an error of 0.2%. These results show that the responses generated by
the SPID in surge, sway, and heave motion were stable for surge, sway and heave motions.
In this case, the overshoot was not the main consideration for the autonomous platform
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performance. The prioritized ones were the settling time and the resulting error.
The results of simulation for rotational motion are shown in Figure 3. For the roll

response, the result of simulation with the SPID shows that the roll responses were stable
at the set point of 1 rad/s, reached a settling time in 0.15 of a second with a maximum
overshoot of 1.2 rad/s, and had an error of 0.5%. The pitch responses by the SPID were
also stable at set point of −1 rad/s, reached a settling time in 1.5 of a second with a
maximum overshoot of −4.8 rad/s, and had an error of 4.1%. Finally, the yaw responses
by the SPID were stable at the set point of −1 rad/s, reached a settling time in 0.25 of a
second with a maximum overshoot of −5.6 rad/s, and had an error of 4.2%. In summary,
the responses by the SPID in roll, pitch, and yaw were stable. The complete results of
the transient responses are shown in Table 3, which shows that the error is very small.

Surge Sway Heave Roll Pitch Yaw
Delay time 0.04 s 0.042 s 0.043 s 0.045 s 0.09 s 0.003 s
Rise time 0.06 s 0.07 s 0.3 s 0.18 s 1.4 s 0.09 s
Peak time 0.1 s 0.01 s 0 s 0 s 0.3 s 0.1 s

Maximum peak 3.5 m/s -1.08 m/s 0 m/s 0 m/s -4.8 m/s -5.6 m/s
Settling time 6 s 0.1 s 0.2 s 0.15 s 1.5 s 0.25 s

Error 3.2 % 0.1 % 0.2 % 0.5 % 4.1 % 4.2 %

Table 3: Specification of the transient responses in surge, sway, heave, roll, pitch, and yaw
motions.

5 Conclusion

Based on the results of simulation and discussion about designing the Sliding Propor-
tional, Integral, and Derivative (SPID) control system, regarding the linear model of
6-DOF, it could be concluded that the SPID method could be used as a motion control
system of the 6-DOF linear model with a significant accuracy and an error of about
0.2%− 4.2%.
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