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Abstract: Generalized monotone method is a useful technique to prove the existence
of coupled minimal and maximal solutions when the nonlinear function is the sum of
an increasing and decreasing functions. In this work, we develop generalized monotone
method for Caputo fractional impulsive differential equations with initial conditions,
using coupled lower and upper solutions of Type 1. For that purpose we develop
comparison results for Caputo fractional impulsive differential equation. Further,
under uniqueness assumption, we prove the existence of the unique solution of the
nonlinear Caputo fractional impulsive differential equation with initial conditions.
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1 Introduction

In the past few decades, the impulsive equations have exhibited more advantages in the
mathematical models of physical and biological models. See [2, 3, 6–8, 14, 23] for details.
These equations can describe more naturally and more closed to the real world problems.
See [9,12,15]. In the past four decades, the study of fractional differential equations has
gained lots of importance due to its applications. See [1,4,5,10,11,13,25,26]. In fact, the
dynamic equations with fractional derivative have represented as better and economical
models in various branches of science and engineering. See [12,13,15–17].

In this work, we develop generalized monotone method combined with coupled lower
and upper solutions for nonlinear Caputo fractional impulsive differential equations with
initial conditions. In general, explicit solution for nonlinear problems is rarely possible.
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In addition, explicit solution even for linear Caputo fractional differential equations with
variable coefficients with or without impulses and initial conditions is not trivial either.
However, explicit solution of the solution and/or representation form of the solution of
linear Caputo fractional impulsive differential equation with initial condition is possible.
See [22] for more details. In addition, in [22], the uniqueness of the solution of the
linear Caputo fractional impulsive differential equation has been proved by developing a
comparison result.

We apply generalized monotone method, Laplace transform and some properties in
the main result. See [6, 18–21, 24, 27, 28] for more details. In [22], we have obtained
explicit solutions for the linear Caputo fractional impulsive differential equations with
initial condition. In addition, we have also developed a comparison result in [22] relative
to coupled lower and upper solutions.

In the present work, we have also developed linear comparison results as an auxil-
iary result which is useful in our main result. We have developed monotone sequences
{vn} and {wn} which are piece-wise left continuous using the coupled lower and upper
solutions, when the nonlinear function is the sum of non-decreasing and non-increasing
functions. We have established the monotone sequences which converge uniformly and
monotonically to coupled minimal and maximal solutions of the nonlinear problem. Fur-
thermore, under uniqueness assumptions on the nonlinear terms, we prove that the cou-
pled minimal and maximal solutions reduce to the unique solutions of the nonlinear
problem.

2 Preliminary Results

In this section, we introduce some known definitions and results, which are needed for
the main results. First, we recall some basic definitions.

Definition 2.1 The Riemann-Liouville fractional integral of u(t) of order q is defined
by

D−qt u =
1

Γ(q)

∫ t

0

(t− s)q−1u(s)ds, (1)

where 0 < q ≤ 1.

Definition 2.2 The Caputo (left) fractional derivative of u(t) of order q, when 0 <
q < 1, is defined as:

cDq
tu(t) =

1

Γ(1− q)

∫ t

0

(t− s)−qu′(s)ds. (2)

Definition 2.3 The Riemann-Liouville (left-sided) fractional derivative of u(t) of
order q, when 0 < q < 1, is defined as

Dqu(t) =
1

Γ(1− q)
d

dt

∫ t

0

(t− s)−qu(s)ds, t > 0. (3)

The relation between Caputo derivative and Riemann-Liouville derivative of a function
f(t) is given by

cDqu(t) = Dq(u(t)− u(0)).

This relation will be useful for results relative to differential inequalities.
Next we define the Mittag-Leffler function which is useful in computing the solution

of the linear fractional differential equations.
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Definition 2.4 The two parameter Mittag-Leffler function is defined as

Eq,r(λt
q) =

∞∑
k=0

(λtq)k

Γ(qk + r)
. (4)

If r = q, the relation (4) reduces to

Eq,q(λt
q) =

∞∑
k=0

(λtq)k

Γq(k + 1)
. (5)

If r = 1, the Mittag-leffler function is defined as

Eq,1(λtq) =

∞∑
k=0

(λtq)k

Γq(k + 1)
. (6)

See [5, 10, 13, 16] for more details.
In our next definition we assume p = 1−q, when 0 < q < 1, J = (0, T ] and J0 = [0, T ].

Definition 2.5 A function φ(t) ∈ C(J,R) is a Cp continuous function on J if
t1−qφ(t) ∈ C(J0, R). The set of Cp continuous functions is denoted by Cp(J,R). Fur-
ther, given a function φ(t) ∈ Cp(J,R), we call the function t1−qφ(t) the continuous
extension of φ(t).

Next, we introduce some theorems and lemmas which are useful to our main results.

Lemma 2.1 Let J = [0, T ], m ∈ Cp(J,R) be such that for some t0 ∈ J, we have
m(t0) = 0 and m(t) ≤ 0 for t ∈ [0, t0], then (Riemann-Liouville fractional derivative)
Dqm(t0) ≥ 0.

See [4, 5] for the details of the proof.

Lemma 2.2 Let J = [0, T ], such that 0 < t1 < t2 < ... < tN−1 < tN−1 = T, and m
be piece-wise left continuous on each (ti, ti+1]. Suppose there exists a t0 ∈ J, such that
m(t0) = 0 and m(t) ≤ 0 for t ∈ [0, t0], then Dqm(t0) ≥ 0.

See [4, 21] for the details of the proof.
Remark: The above result is also true with Caputo derivative in place of Riemann-

Liouville derivative. The proof can be easily obtained by applying the relation be-
tween the Caputo derivative and the Riemann-Liouville derivative, which is cDqm(t) =
Dq (m(t)−m(0)) .

Consider the linear Caputo fractional differential equation

cDqu = λu+ f(t), u(0) = u0. (7)

Then the solution of (7) is given by

u(t) = u0Eq,1(λtq) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)f(s)ds. (8)
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Consider the nonlinear Caputo fractional impulsive differential equations with initial
condition 

cDqu(t) = λu(t) +
N∑
i=1

ciχ(t− ti)si(t− ti)u(ti)

+
N∑
i=1

biχ(t− ti)ri(t− ti)u(ti) + f(t, u(t)) + g(t, u(t)),

u(o) = u0,

(9)

where t ∈ [0, T ], and 0 < t1 < t2 < · · · < tN = T. Also, χ(t − ti) is the Heaviside unit
step function which is left continuous,

χ(t− ti) =

{
1, if t > ti,
0, if t ≤ ti.

(10)

Furthermore, we assume that λ 6= 0, and for each 1 ≤ i ≤ N, ciχ(t − ti)si(t − ti) ≥ 0
and biχ(t − ti)ri(t − ti) ≤ 0. The function f(t, u) is nondecreasing in u and g(t, u) is
nonincreasing in u. In addition, si(t − ti) and ri(t − ti) are continuous on each interval
[ti, ti+1] for i = 1, . . . , N − 1. Therefore, they are bounded on each interval.

Next we define the coupled lower and upper solutions of natural type as well of Type
1. See [9] for other types of coupled lower and upper solutions.

Definition 2.6 If u : C[0, T ] → R which is piecewise left continuous at ti, i =
1, 2, . . . , N , such that 0 < t1 ≤ t2 ≤ · · · ≤ tN = T, and whose Caputo derivative of order
q exists on [0, T ]. Then we denote f ∈ PCq[[0, T ],R].

Definition 2.7 We say that v, w are PCq[[0, T ],R] piecewise left continuous on
(ti, ti+1) for i = 1, . . . , N − 1. Then we say v and w are coupled lower and upper so-
lutions of natural type of (9) if they satisfy the inequalities:

cDqv(t) ≤ λv(t) +

N∑
i=1

aiχ(t− ti)si(t− ti)v(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)v(ti)

+ f(t, v) + g(t, v),

v(0) ≤ u0,

(11)

cDqw(t) ≥ λw(t) +

N∑
i=1

aiχ(t− ti)si(t− ti)w(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)w(ti)

+ f(t, w) + g(t, w),

w(0) ≥ u0.

(12)

Definition 2.8 We say that v, w are PCq[[0, T ],R] piecewise left continuous on
(ti, ti+1) for i = 1, . . . , N − 1. Then we say v and w are coupled lower and upper so-
lutions of type 1 if they satisfy the inequalities:

cDqv(t) ≤ λv(t) +

N∑
i=1

aiχ(t− ti)si(t− ti)v(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)w(ti)

+ f(t, v) + g(t, w)

v(0) ≤ u0,

(13)
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cDqw(t) ≥ λw(t) +

N∑
i=1

aiχ(t− ti)si(t− ti)w(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)v(ti)

+ f(t, w) + g(t, v),

w(0) ≥ u0.

(14)

Theorem 2.1 If λ 6= 0, v(t) and w(t) are coupled lower and upper solutions of type
1 of the nonlinear Caputo impulsive fractional differential equation (9), where f(t, u) and
g(t, u) satisfy the one-sided Lipschitz condition in u, of the following form with u1 ≥ u2

f(t, u1)− f(t, u2) ≤ L1(u1 − u2), (15)

g(t, u1)− g(t, u2) ≥ −L2(u1 − u2), (16)

where L1 ≥ 0 and L2 ≥ 0. Then v(0) ≤ w(0) implies that v(t) ≤ w(t), ∀t ≥ J = [0.T ].

See [22] for the details of the proof.

3 Auxiliary Results

In this section, we prove a comparison theorem which will be used to prove the generalized
monotone method in the main result.

Theorem 3.1 If the functions P (t) and Q(t) are PCq[[0, T ],R] such that satisfy the
following inequalities:

cDqP ≤ λP +

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti), (17)

cDqQ ≥ λQ+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti), (18)

where λ ≥ 0, and for each 1 ≤ i ≤ N, ciχ(t− ti)si(t− ti) ≥ 0 and biχ(t− ti)ri(t− ti) ≤ 0,
then the initial condition P (0) ≤ 0 and Q(0) ≥ 0 implies P (t) ≤ 0 and Q(t) ≥ 0 for all
t ∈ [0, T ].

Proof. We prove by the method of mathematical induction. For t ∈ [0, t1)

cDqP (t) ≤ λP (t), cDqQ(t) ≥ λQ(t). (19)

Then we can get

P (t) ≤ P (0)Eq,1(λtq) ≤ 0, Q(t) ≥ Q(0)Eq,1(λtq) ≥ 0. (20)

For t = t1, we have

P (t1) ≤ P (0)Eq,1(λtq1) ≤ 0, Q(t1) ≥ Q(0)Eq,1(λtq1) ≥ 0. (21)

Assume the result is true for t ∈ [tk−1, tk), for 0 ≤ k ≤ N − 1, which yields P (tk) ≤ 0
and Q(tk) ≥ 0 for all 0 ≤ k ≤ N − 1. Then, for t ∈ [tk, tk+1),

cDqP (t) ≤ λP (t)+

k∑
i=1

ciχ(t−ti)si(tk+1−ti)P (ti)+

k∑
i=1

biχ(t−ti)ri(tk+1−ti)Q(ti). (22)
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With the result of P (tk) ≤ 0 and Q(tk) ≥ 0 for all 0 ≤ k ≤ N−1, we can get cDqP ≤ λP .
Therefore we have P (t) ≤ P (0)Eq,1(λtq) ≤ 0 on [0, tk+1). Then for t = tk+1, we have
P (tk+1) ≤ 0. Similarly, we have the results for Q(t),

Q(t) ≥ Q(0)Eq,1(λtq) ≥ 0.

Then Q(tk+1) ≥ 0. Since it is true for i = 1, therefore, by induction, for all ti, 0 ≤ i ≤ N,
P (ti) ≤ 0 and Q(ti) ≥ 0. Then we have P (t) ≤ 0 and Q(t) ≥ 0 for all 0 ≤ t ≤ tN , which
completes the proof.

Lemma 3.1 If the functions P (t) and Q(t) are PCq[[0, T ],R] such that to satisfy the
following inequalities:

cDqP ≤ λP +

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti), (23)

cDqQ ≥ λQ+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti). (24)

where λ 6= 0,
N∑
i=1

ciχ(t−ti)si(t−ti) ≥ 0, then the initial condition P (0) ≤ 0 and Q(0) ≥ 0

implies P (t) ≤ 0 and Q(t) ≥ 0 for all t ∈ [0, T ].

Proof. This is a special case of Theorem 3.1 with bi = 0 for all i = 1, 2, · · · , N.
Therefore the proof is almost the same as the one in Theorem 3.1.

4 Main Result

In this section, we consider the nonlinear Caputo impulsive differential equation of the
form (9), which has application in science and biology. Since it is rarely possible to
compute the solution of the nonlinear problem with or without impulses and with integer
derivatives or fractional derivatives, hence we develop generalized monotone method
together with coupled lower and upper solution. See [9, 18] for more details.

The method yields monotone sequences which converge uniformly and monotonically
to coupled minimal and maximal solutions of (9) on the sector defined by coupled lower
and upper solutions. Furthermore, if the nonlinear functions satisfy uniqueness condition,
then the coupled minimal and maximal solutions coincide to be the unique solution of
(9).

Note that the generalized monotone method is a more appropriate method to prove
the existence of the nonlinear Caputo fractional impulsive differential equations when
the nonlinear function is the sum of nondecreasing and nonincreasing functions.

In order to prove our main results, we need the existence and uniqueness of solution
of two linear systems of Caputo fractional impulsive differential equations with initial
condition. This is precisely the next result.

Theorem 4.1 Let v0, w0 be coupled lower and upper solutions of (9) of type 1, such
that v0(t) ≤ w0(t) on t ∈ [0, T ]. Suppose η and µ are any two functions such that
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v0 ≤ η ≤ µ ≤ w0 on [0, T ], then the solution of the following linear Caputo fractional
impulsive differential equations:cDqp = λp+ f(t, η) + g(t, µ) +

N∑
i=1

ciχ(t−ti)si(t−ti)p(ti)+
N∑
i=1

biχ(t−ti)ri(t−ti)q(ti),

p(0) = u0,

(25)cDqq = λq + f(t, µ) + g(t, η) +
N∑
i=1

ciχ(t−ti)si(t−ti)q(ti)+
N∑
i=1

biχ(t−ti)ri(t−ti)p(ti),

q(0) = u0,

(26)
exists and it is unique.

Proof. Since µ(t) and η(t) are known functions of t, it is easy to see that f(t, µ),
f(t, η), g(t, µ) and g(t, η) become functions of t and let us denote

f(t, η) + g(t, µ) = F (t), f(t, µ) + g(t, η) = G(t). (27)

Then the equations (25) and (26) become linear system of Caputo fractional impulsive
differential equations, namely

cDqp = λp+ F (t) +

N∑
i=1

ciχ(t− ti)si(t− ti)p(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)q(ti),

p(0) = u0,

(28)

cDqq = λq +G(t) +

N∑
i=1

ciχ(t− ti)si(t− ti)q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)p(ti),

q(0) = 0.

(29)

Applying the Laplace transformation, the solution of the p(t) and q(t) are given by

p = u0Eq,1(λtq) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)F (s)ds

+
N∑
i=1

ciχ(t− ti)Si(t− ti)p(ti) +
N∑
i=1

biχ(t− ti)Ri(t− ti)q(ti),

q = u0Eq,1(λtq) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)G(s)ds

+
N∑
i=1

ciχ(t− ti)Si(t− ti)q(ti) +
N∑
i=1

biχ(t− ti)Ri(t− ti)p(ti),

(30)

where Si(t− ti) = L−1
(

L(si)
sq−λ

)
and Ri(t− ti) = L−1

(
L(ri)
sq−λ

)
, for i = 1, 2, · · · , N. L and

L−1 are the Laplace transformation and the inverse Laplace transformation, respectively.
Then for t ∈ [0, t1), the equations (28) and (29) reduce to

cDqp = λp+ F (t), cDqq = λq +G(t). (31)

Use the result of (8). The solution p(t) and q(t) can be given by{
p = u0Eq,1(λtq) +

∫ t
0
(t− s)q−1Eq,q(λ(t− s)q)F (s)ds,

q = u0Eq,1(λtq) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)G(s)ds.

(32)
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For t = t1, we get{
p(t1) = u0Eq,1(λtq1) +

∫ t1
0

(t1 − s)q−1Eq,q(λ(t1 − s)q)F (s)ds,

q(t1) = u0Eq,1(λtq1) +
∫ t1

0
(t1 − s)q−1Eq,q(λ(t1 − s)q)G(s)ds.

(33)

For t ∈ [t1, t2), the equations (28) and (29) reduce to

cDqp = λp+ F (t) + c1s1(t− t1)p(t1) + b1r1(t− t1)q(t1), (34)

cDqq = λq +G(t) + c1s1(t− t1)q(t1) + b1r1(t− t1)p(t1). (35)

The solution can be given as
p = u0Eq,1(λtq) +

∫ t
0
(t− s)q−1Eq,q(λ(t− s)q)F (s)ds

+c1S1(t− t1)p(t1) + b1R1(t− t1)q(t1),

q = u0Eq,1(λtq) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)G(s)ds

+c1S1(t− t1)q(t1) + b1R1(t− t1)p(t1).

(36)

After substituting p(t1) and q(t1), the equation (36) reduces to

p = u0Eq,1(λtq) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)F (s)ds

+c1S1(t− t1)
(
u0Eq,1(λtq1) +

∫ t1
0

(t1 − s)q−1Eq,q(λ(t1 − s)q)F (s)ds
)

+b1R1(t− t1)
(
u0Eq,1(λtq1) +

∫ t1
0

(t1 − s)q−1Eq,q(λ(t1 − s)q)G(s)ds
)
,

q = u0Eq,1(λtq) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)G(s)ds

+c1S1(t− t1)
(
u0Eq,1(λtq1) +

∫ t1
0

(t1 − s)q−1Eq,q(λ(t1 − s)q)G(s)ds
)

+b1R1(t− t1)
(
u0Eq,1(λtq1) +

∫ t1
0

(t1 − s)q−1Eq,q(λ(t1 − s)q)F (s)ds
)
,

(37)

where S1(t − t1) = L−1
(

L(s1)
sq−λ

)
and R1(t − t1) = L−1

(
L(r1)
sq−λ

)
. Then we can find the

value of p(t2) and q(t2) by substituting t2 into the equation (37). Then after another
iteration, we can get the solution for t ∈ [t2, t3). If we continue the above process, we
can obtain a closed form of solution of (25)-(26) for all t ∈ [0, T ].

In order to prove the uniqueness of the solution of the equations (25) and (26), let
(p1, q1) and (p2, q2) be two solutions. Then let m = p1 − p2 and n = q1 − q2. Then,

cDqm = λm+

N∑
i=1

ciχ(t− ti)si(t− ti)m(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)n(ti),

m(0) = 0,

(38)

cDqn = λn+

N∑
i=1

ciχ(t− ti)si(t− ti)n(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)m(ti),

n(0) = 0.

(39)

Then by applying Theorem 3.1, we can get that m ≡ 0 and n ≡ 0 for all t ∈ [0, T ],
which means p1 ≡ p2 and q1 ≡ q2 for all t ∈ [0, T ]. Hence the solution of the system
(25)-(26) is unique. This concludes the proof.
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In the next result, we construct the sequences vn and wn, which are monotonically
increasing and decreasing sequences. The sequences vn and wn are the solution of the
following linear system of Caputo fractional impulsive differential equation. They are
defined as

cDqvn = λvn + f(t, vn−1) + g(t, wn−1)

+

N∑
i=1

ciχ(t− ti)si(t− ti)vn(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)wn(ti),

vn(0) = u0,

(40)

cDqwn = λwn + f(t, wn−1) + g(t, vn−1)

+

N∑
i=1

ciχ(t− ti)si(t− ti)wn(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)vn(ti),

wn(0) = u0.

(41)

Here v0 and w0 are coupled lower and upper solutions of Type 1 of the problem (9).
In order to prove our first next main result, we need the following sector Ω, defined

as
Ω = [(t, u) : v0(t) ≤ u ≤ w0(t), t ∈ [0, T ]], (42)

where v0 and w0 are coupled lower and upper solution of suitable type of equation (9)

Theorem 4.2 Assume
(A1). v0 and w0 are coupled lower and upper solutions of type 1 of the equation (9), such
that v0 ≤ w0 on [0, T ];
(A2). f(t, u) and g(t, u) are nondecreasing and nonincreasing, respectively, on Ω.
Then the sequences {vn} and {wn} defined by (40)-(41) are well defined and satisfy the
following results:
(i). {vn} and {wn} satisfy the inequality

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0, ∀t ∈ [0, T ]. (43)

(ii). If u is any solution of equation (9) such that v0 ≤ u ≤ w0, then the sequences {vn}
and {wn} converge uniformly and monotonically to the coupled minimal and maximal
solutions v(t) and w(t), respectively, such that v(t) ≤ u ≤ w(t).
(iii). Furthermore, if f(t, u) and g(t, u) satisfy the one-sided Lipschitz condition of the
form

f(t, u1)− f(t, u2) ≤ L1(u1 − u2), g(t, u1)− g(t, u2) ≥ L2(u1 − u2), (44)

where u1 ≥ u2, L1 ≥ 0 and L2 ≥ 0, ∀t ∈ [0, T ], then we have v(t) = w(t) = u(t) being
the unique solution of (9) on [0, T ].

Proof. We know that v0 ≤ w0. Then from Theorem 4.1, it is easy to see that v1(t)
and w1(t) exist and are unique as well as vn(t) and wn(t) for each n ≥ 1. In order to
prove that vn and wn are monotonically non-decreasing and non-increasing respectively
and vn ≤ wn for all n ≥ 1, we use the method of mathematical induction. Initially, we
prove v0 ≤ v1 and w1 ≤ w0. Assume P (t) = v0(t)−v1(t) and Q(t) = w0(t)−w1(t). Then
we have

P (0) ≤ u0 − u0 = 0 Q(0) ≥ u0 − u0 = 0, (45)
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and

cDqP = cDq(v0 − v1) = cDqv0 − cDqv1

≤ λP +

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti),

cDqQ = cDq(w0 − w1) = cDqw0 − cDqw1

≥ λQ+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti).

(46)

Using Theorem 3.1, we have P (t) ≤ 0 and Q(t) ≥ 0. This proves v0 ≤ v1 and w1 ≤ w0

for all t ∈ [0, T ].

Assume that vn ≤ vn+1 and wn+1 ≤ wn are true for n = k, k ≥ 0. Therefore,
vk ≤ vk+1 and wk+1 ≤ wk for all t ∈ [0, T ]. Then let n = k + 1, let P (t) = vk+1 − vk+2

and Q(t) = wk+1 − wk+2. Therefore P (0) = Q(0) = 0.

With the assumption (A2) on f and g, we can get

cDqP = λP + f(t, vk)− f(t, vk+1) + g(t, wk)− g(t, wk+1)

+

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti)

≤ λP +

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti).

(47)

Similarly, for Q(t) we can get

cDqQ = λQ+ f(t, wk)− f(t, wk+1) + g(t, vk)− g(t, vk+1)

+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti)

≥ λQ+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti).

(48)

Using Theorem 3.1, we have P (t) ≤ 0 and Q(t) ≥ 0. This proves vk+1 ≤ vk+2 and
wk+2 ≤ wk+1 for all 0 ≤ t ≤ tN . Certainly, it is true for k = 1, hence, by induction, we
have the result

v0 ≤ v1 ≤ · · · ≤ vn−1 ≤ vn, wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0. (49)

Next we prove that vn ≤ wn on t ∈ [0, T ] for all n ≥ 1. We prove it using the method
of mathematical induction.

Let p(t) = v1(t) − w1(t), then p(0) = v1(0) − w1(0) = u0 − u0 = 0. Using the
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assumption (A2) on f and g, we can get

cDqp = λp+ f(t, v0)− f(t, w0) + g(t, w0)− g(t, v0)

+

N∑
i=1

ciχ(t− ti)si(t− ti)p(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)(−p(ti))

≤ λp+

N∑
i=1

ciχ(t− ti)si(t− ti)p(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)(−p(ti))

≤ λp+

N∑
i=1

(
ciχ(t− ti)si(t− ti)− biχ(t− ti)ri(t− ti)

)
p(ti).

(50)

By Lemma 3.1, we have p(t) ≤ 0. Therefore, v1 ≤ w1 for all t ∈ [0, T ].

Assume the result vn ≤ wn is true for n = k, which is vk ≤ wk for all t ∈ [0, T ].
For n = k + 1, we let p(t) = vk+1(t) − wk+1(t), then p(0) = u0 − u0 = 0. With the
assumption (A2), we have

cDqp = λp+ f(t, vk)− f(t, wk) + g(t, wk)− g(t, vk)

+

N∑
i=1

ciχ(t− ti)si(t− ti)p(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)(−p(ti))

≤ λp+

N∑
i=1

ciχ(t− ti)si(t− ti)p(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)(−p(ti))

≤ λp+

N∑
i=1

(
ciχ(t− ti)si(t− ti)− biχ(t− ti)ri(t− ti)

)
p(ti).

(51)

Using the result of Lemma 3.1, we have p(t) ≤ 0. Therefore, vk+1 ≤ wk+1 for all t ∈ [0, T ].
Since it is true for k = 1, therefore, by induction, we have the conclusion vn ≤ wn is
true for every n ≥ 1. Since we have already assumed that v0 ≤ w0, we can obtain the
inequality

v0 ≤ v1 ≤ · · · ≤ vn−1 ≤ vn ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0. (52)

In the next result, we will show that v0 ≤ u ≤ w0 implies vn ≤ u ≤ wn for all n ≥ 1.
We prove by the method of mathematical induction. For n = 1, let

P (t) = v1(t)− u(t), Q(t) = u(t)− w1(t). (53)

The initial condition is P (0) = Q(0) = u0 − u0 = 0.
Then with the assumption (A2), we have

cDqP = λP + f(t, v0)− f(t, u) + g(t, w0)− g(t, u)

+

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti)

≤ λP +

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti).

(54)
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Similarly, for Q(t) we have

cDqQ = λQ+ f(t, u)− f(t, w0) + g(t, u)− g(t, v0)

+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti)

≤ λQ+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti).

(55)

Then, by Theorem 3.1, we can get P (t) ≤ 0 and Q(t) ≤ 0. Therefore, v1 ≤ u ≤ w1 for
all t ∈ [0, T ].

Assume the result vn ≤ wn is true for n = k, then we have vk ≤ u ≤ wk. Then for
n = k + 1, let

P (t) = vk+1(t)− u(t), Q(t) = u(t)− wk+1(t). (56)

The initial condition is P (0) = Q(0) = u0 − u0 = 0.
Using the assumption (A2), we can get

cDqP = λP + f(t, vk)− f(t, u) + g(t, wk)− g(t, u)

+

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti)

≤ λP +

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti).

(57)

Similarly, for Q(t) we have

cDqQ = λQ+ f(t, u)− f(t, wk) + g(t, u)− g(t, vk)

+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti)

≤ λQ+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti).

(58)

Then, by Theorem 3.1, we can get P (t) ≤ 0 and Q(t) ≤ 0. Therefore, vk+1 ≤ u ≤ wk+1

for all t ∈ [0, T ]. Since the result is true for k = 1, then by induction, we have vn(t) ≤
u(t) ≤ wn(t) for all n ≥ 0 and t ∈ [0, T ],

If we consider the result above and the result (i) we proved, we can have

v0 ≤ v1 ≤ · · · ≤ vn ≤ u ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0. (59)

For the next result, we will prove that the sequences {vn} and {wn} are uniformly
bounded and equicontinuous.

Since v0(t) and w0(t) are continuous on each interval [tk, tk+1], we can get they are
bounded on the whole interval [0, T ]. Then assume |v0(t)| ≤Mv and |w0(t)| ≤Mw. Then
for every n and t ∈ [0, T ], by monotonicity we have

0 ≤ vn − v0 ≤ w0 − v0. (60)
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We take the absolute value to obtain

|vn| ≤ |vn − v0|+ |v0| ≤ |w0 − v0|+ |v0| ≤ |w0|+ |v0|+ |v0| ≤Mw + 2Mv. (61)

Therefore, there exists some positive constant M which is independent of t or N, such
that |vn| ≤M.

Similarly,

|vn| ≤ |wn − w0|+ |w0| ≤ |v0 − w0|+ |w0| ≤ |v0|+ |w0|+ |w0| ≤Mv + 2Mw. (62)

Therefore, there exists some positive constant M ′ which is independent of t or N such
that |wn| ≤ M ′. Furthermore, M and M ′ do not depend on n or t. Then the sequences
{vn(t)} and {wn(t)} are uniformly bounded on the interval [0, T ].

In order to prove the equicontinuity, we use the integral representation of vn(t) ,

vn(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1

(
f(s, vn−1(s)) + g(s, wn−1(s)) + λvn(s)

+

k∑
i=1

cisi(t− ti)vn(ti) +

k∑
i=1

biri(t− ti)wn(ti)

)
ds.

(63)

Then for any k = 0, 1, . . . , N − 1, let t1 ∈ [tk, tk+1] , t2 ∈ [tk, tk+1]. Without losing
the generalization, we assume that t1 > t2 and

∣∣t1 − t2∣∣ < δ, where M is some positive
constant. Since si(t− ti) , ri(t− ti) and f(t, u(t)) , g(t, u(t)) are continuous in t on the
interval [ti, ti+1], we can let |cisi(t− ti)| ≤ Cs, |biri(t− ti)| ≤ Cr and |f(t, u(t))| ≤ Mf ,
|g(t, u(t))| ≤ Mg. Based on the uniformly boundedness, we have |vn| ≤ Mv and |wn| ≤
Mw, then we have

∣∣vn(t1)− vn(t2)
∣∣ =

∣∣∣∣ 1

Γ(q)

∫ t1

0

(t1 − s)q−1

(
f(s, vn−1(s)) + g(s, wn−1(s)) + λvn(s)

+

k∑
i=1

cisi(t
1 − ti)vn(ti) +

k∑
i=1

biri(t
1 − ti)wn(ti)

)
ds

− 1

Γ(q)

∫ t2

0

(t2 − s)q−1

(
f(s, vn−1(s)) + g(s, wn−1(s)) + λvn(s)

+

k∑
i=1

cisi(t
2 − ti)vn(ti) +

k∑
i=1

biri(t
2 − ti)wn(ti)

)
ds

∣∣∣∣.

(64)

For any t ∈ [tk, tk+1] we have

∣∣∣∣f(t, vn−1(t)) + g(t, wn−1(t)) + λvn(t) +

k∑
i=1

cisi(t− ti)vn(ti) +

k∑
i=1

biri(t− ti)wn(ti)

∣∣∣∣
≤Mf +Mg +

k∑
i=1

CsMv +

k∑
i=1

biMw.

(65)
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We let M = Mf +Mg +
k∑
i=1

CsMv +
k∑
i=1

biMw, then for any t ∈ [tk, tk+1],

∣∣∣∣f(t, vn−1(t))+g(t, wn−1(t))+λvn(t)+

k∑
i=1

cisi(t− ti)vn(ti)+

k∑
i=1

biri(t− ti)wn(ti)

∣∣∣∣ ≤M.

(66)
Therefore, we have

∣∣vn(t1)− vn(t2)
∣∣ ≤ M

Γ(q)

∫ t2

0

∣∣∣∣(t1 − s)q−1 − (t2 − s)q−1

∣∣∣∣ds+
M

Γ(q)

∫ t1

t2

∣∣(t1 − s)q−1
∣∣ ds

≤ M

Γ(q + 1)
(t1 − t2)q +

M

Γ(q + 1)
(t1 − t2)q =

2M

Γ(q + 1)

∣∣t1 − t2∣∣q < ε.

(67)

Providing
∣∣t1 − t2∣∣ ≤ δ =

(
εΓ(q+1)

2M

) 1
q

, we can have that vn is equicontinuous.

Similarly, for wn we have∣∣∣∣f(t, wn−1(t)) + g(t, vn−1(t)) + λwn(t) +

k∑
i=1

cisi(t− ti)wn(ti) +

k∑
i=1

biri(t− ti)vn(ti)

∣∣∣∣
≤Mf +Mg +

k∑
i=1

CsMw +

k∑
i=1

biMv.

(68)

Let M ′ = Mf +Mg +
k∑
i=1

CsMw +
k∑
i=1

biMv, then for any t ∈ [tk, tk+1],

∣∣∣∣f(t, wn−1(t))+g(t, vn−1(t))+λwn(t)+

k∑
i=1

cisi(t−ti)wn(ti)+

k∑
i=1

biri(t−ti)vn(ti)

∣∣∣∣ ≤M ′.
(69)

Therefore, we have

∣∣wn(t1)− wn(t2)
∣∣ ≤ M ′

Γ(q)

∫ t2

0

∣∣∣∣(t1 − s)q−1 − (t2 − s)q−1

∣∣∣∣ds+
M ′

Γ(q)

∫ t1

t2

∣∣(t1 − s)q−1
∣∣ds

≤ M ′

Γ(q + 1)
(t1 − t2)q +

M ′

Γ(q + 1)
(t1 − t2)q =

2M ′

Γ(q + 1)

∣∣t1 − t2∣∣q < ε.

(70)

We provide
∣∣t1 − t2∣∣ ≤ δ =

(
εΓ(q+1)

2M ′

) 1
q

, then wn is equicontinuous. Therefore,

if we take the minimum of these two, δ = min

((
εΓ(q+1)

2M

) 1
q

,
(
εΓ(q+1)

2M ′

) 1
q

)
, then can

obtain that {vn(t)} and {wn(t)} are equicontinuous on the interval [tk, tk+1]. Since
k = 0, 1, . . . , N − 1 was arbitrary, we proved that {vn(t)} and {wn(t)} are equicon-
tinuous on the interval [0, tN = T ].

Since we have proved that {vn(t)} and {wn(t)} are equicontinuous and uniformly
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bounded on the interval [0, T ], by Ascoli-Arzela’s theorem, there exist subsequences
{vnk

(t)} and {wnk
(t)}, which converge uniformly to v(t) and w(t), respectively, on [0, T ].

Because of the monotonicity of the sequences {vn(t)} and {wn(t)} we have shown, we can
get that the entire sequences {vn(t)} and {wn(t)} converge uniformly and monotonically
to v(t) and w(t), respectively.

For the next step, we will prove that v(t) and w(t) we have above are the minimal
and maximal solutions of the problem (9). Furthermore, we want to show that they are
equivalent to the solution of the equation (9).
We use the integral representation.

vn(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1

(
f(s, vn−1(s)) + g(s, wn−1(s)) + λvn(s)

+

k∑
i=1

cisi(t− ti)vn(ti) +

k∑
i=1

biri(t− ti)wn(ti)

)
ds.

(71)

Then, we take the limit of n on both sides. Since {vn} converges uniformly, we have

lim
n→∞

vn = lim
n→∞

(
u0 +

1

Γ(q)

∫ t

0

(t− s)q−1

(
f(s, vn−1(s)) + g(s, wn−1(s)) + λvn(s)

+

k∑
i=1

cisi(t− ti)vn(ti) +

k∑
i=1

biri(t− ti)wn(ti)

)
ds.

(72)

Then,

v(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1

(
f(s, v(s)) + g(s, w(s)) + λv(s)

+

k∑
i=1

cisi(t− ti)v(ti) +

k∑
i=1

biri(t− ti)w(ti)

)
ds.

(73)

Similarly, for wn we have

wn(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1

(
f(s, wn−1(s)) + g(s, vn−1(s)) + λwn(s)

+

k∑
i=1

cisi(t− ti)wn(ti) +

k∑
i=1

biri(t− ti)vn(ti)

)
ds.

(74)

After taking the limits of n on both sides, we can get

lim
n→∞

wn = lim
n→∞

(
u0 +

1

Γ(q)

∫ t

0

(t− s)q−1

(
f(s, wn−1(s)) + g(s, vn−1(s)) + λwn(s)

+

k∑
i=1

cisi(t− ti)wn(ti) +

k∑
i=1

biri(t− ti)vn(ti)

)
ds

)
.

(75)

Then,

w(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1

(
f(s, w(s)) + g(s, v(s)) + λw(s)

+

k∑
i=1

cisi(t− ti)w(ti) +

k∑
i=1

biri(t− ti)v(ti)

)
ds.

(76)



18 Y. BAI AND A. S. VATSALA

Now we can get that v(t) and w(t) satisfy the equation (9). Therefore, v(t) and
w(t) are coupled minimal and maximal solutions of equation (9). Thus, we have already
shown that vn ≤ u ≤ wn. Taking the limits of n we can get lim

n→∞
vn ≤ lim

n→∞
u ≤ lim

n→∞
wn.

Then we can obtain v ≤ u ≤ w.
In the last result, we will show that if f and g satisfy the one-sided Lipschitz condition,

then the coupled minimal and maximal solutions are equivalent to the solution u of the
equation (9).
Let m(t) = w(t)− v(t), then m(0) = w(0)− v(0) = u0 − u0 = 0, and we can get

cDqm(t) = cDq(w(t)− v(t) = cDqw(t)− cDqv(t)

= λ(w(t)− v(t)) + [f(t, w(t))− f(t, v(t))] + [g(t, v(t))− g(t, w(t))]

+

N∑
i=1

ciχ(t− ti)si(t− ti)(w(ti)− v(ti)) +

N∑
i=1

biχ(t− ti)ri(t− ti)(v(ti)− w(ti)).

(77)

Let Λ = λ+ L1 + L2, we can get

cDqm(t) ≤ Λm(t) +

N∑
i=1

ciχ(t− ti)si(t− ti)m(ti)−
N∑
i=1

biχ(t− ti)ri(t− ti)m(ti). (78)

Then, by using the Laplace transformation, we can get

m(t) ≤ m(0)Eq,1(Λtq) +

N−1∑
i=1

ciSi(t− ti)m(ti)−
N−1∑
i=1

biRi(t− ti)m(ti). (79)

We know that m(0) = 0, then according to the result of Theorem 3.1, we have m(t) ≤ 0,
∀t ∈ [0, tN ]. By definition of m(t) we can get ∀t ∈ [0, T ], w(t) ≤ v(t). Since we have proved
the monotonicity v(t) ≤ u(t) ≤ w(t), we can get that ∀t ∈ [0, T ], v(t) = u(t) = w(t),
which concludes the proof.

Theorem 4.3 Assume
(A1). v0 and w0 are coupled lower and upper solutions of natural type of the equation
(9), such that v0 ≤ u ≤ w0 on [0, T ];
(A2). f(t, u) and g(t, u) are nondecreasing and nonincreasing, respectively, on Ω.
Then the sequences vn and wn defined by (40)-(41) are well defined and satisfy the fol-
lowing results:
(i). For all n ≥ 1, on [0, T ] we have

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0, (80)

provided v0 ≤ v1 and w1 ≤ w0.
(ii). The sequences vn and wn converge uniformly and monotonically to the coupled
minimal and maximal solutions v(t) and w(t), respectively. Furthermore, if u is any
solution of equation (9), then v(t) ≤ u ≤ w(t).
(iii). Furthermore, if f(t, u) and g(t, u) satisfy the one-sided Lipschitz condition, which
is for any u1 ≥ u2, we have

f(t, u1)− f(t, u2) ≤ L1(u1 − u2), g(t, u1)− g(t, u2) ≥ L2(u1 − u2), (81)

where L1 ≥ 0 and L2 ≥ 0, then ∀t ∈ [0, T ], we have v(t) = u(t) = w(t), the uniqueness
of (9) holds on [0, T ].
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Proof. The proof follows the same lines as the proof of Theorem 4.2 except in the
first part, instead of proving v0 ≤ v1 and w1 ≤ w0, we have this result provided. The
rest of the proof is the same.

5 Conclusion

We generalized the monotone method and use the method to prove that for the nonlinear
Caputo fractional impulsive differential equation (9), under certain conditions, the cou-
pled lower and upper solutions of both the natural type and type 1 converge to the exact
solution of the problem. Therefore, in the future work, the monotone method will be
significantly useful to approximate the solution of the problem. In the numerical results,
we will discuss another method which converges faster than this method.
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