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Abstract: We discuss in this paper three notions of chaos which are com-
monly used in the mathematical literature, namely those being introduced
by Li & Yorke, Block & Coppel and Devaney, respectively. We in particular
show that for continuous mappings of a compact interval into itself the no-
tions of chaos due to Block & Coppel and Devaney are equivalent while each
of these is sufficient but not necessary for chaos in the sense of Li & Yorke.
We also give an example indicating that in the general context of continuous
mappings between compact metric spaces the relation between these three
notions of chaos is more involved.
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1 Introduction

As a mathematical notion the term chaos has first been used in 1975 by Li & Yorke
in their paper [13] “Period three implies chaos”, but even before it has been observed
that very simple functions may give rise to very complicated dynamics. One of the
cornerstones in the development of chaotic dynamics is the 1964 paper [15] “Coexistence

of cycles of a continuous mapping of the line into itself” (in Russian) by Šarkovskii.
During the seventies and eighties the interest in chaotic dynamics has been exploding
and various attempts have been made to give the notion of chaos a mathematically precise
meaning. Outstanding works in this context are the 1980 book [6] “Iterated Maps on the
Interval as Dynamical Systems” by Collet & Eckmann, the 1989 book [16] “Dynamics

of One-dimensional Mappings” (in Russian) by Šarkovskii, Kolyada, Sivak & Fedorenko
and the 1992 Lecture Notes [4] “Dynamics in One Dimension” by Block & Coppel. While
up to the end of the eighties the subject of chaotic dynamics was restricted mainly to
research oriented publications, the 1986 book [7] “An Introduction to Chaotic Dynamical
Systems” by Devaney marked the point where chaos (as a mathematical notion) became
popular and began to enter university textbooks such as [9] “A First Course in Discrete
Dynamical Systems” by Holmgren (1994) or [8] “Discrete Chaos” by Elaydi (1999).
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The different definitions of chaos being around at the turn of the century have been
designed to meet different purposes and they are based on very different backgrounds
and levels of mathematical sophistication. Therefore it is not obvious how these notions
of chaos relate to each other and whether there is a chance that – in the long run – a
universally accepted definition of chaos might evolve. With this paper we want to make
a contribution to this question by picking three of the most popular definitions of chaos
and investigating their mutual interconnections. After listing the technical prerequisites
in Section 2, in Section 3 we give the precise definitions of the notions of chaos due to
Li & Yorke [13], Block & Coppel [4] and Devaney [7], respectively. In Section 4 we then
show that in the case of continuous maps on a compact interval the notions of chaos in
the sense of Block & Coppel and Devaney are equivalent and that, on the other hand,
each of these two notions is sufficient for chaos in the sense of Li & Yorke. In Section 5 we
discuss the familiy of so-called truncated tent maps by means of which we in particular
demonstate that chaos in the sense of Block & Coppel and Devaney is not necessary
for chaos in the sense of Li & Yorke. Finally, in Section 6 we indicate by means of an
example that the previously described simple relations for interval maps do not carry
over to maps between general compact metric spaces. In fact, we exhibit a map which is
chaotic both in the sense of Li & Yorke and Block & Coppel but not chaotic in the sense
of Devaney.

Before going into detail we want to mention that the majority of results we describe
and prove in this paper can be found – more or less explicitly stated – in the literature,
in particular in the Lecture Notes [4] of Block & Coppel. Since those results, on the
other hand, appear in the broad context of discrete dynamics and since they partly are
formulated with notations which subtly differ from each other it is the purpose of this
paper to narrow the view and sketch a clearer picture of the notion of chaos in a unified
way.

2 Preliminaries

In this section we collect some notation and a few facts from topological and symbolic
dynamics which are used in this paper.

Throughout this paper let (X, d) be a compact metric space and f : X → X a
continuous mapping. A nonempty subset Y of X satisfying f(Y ) ⊆ Y is said to be
(f -)invariant and it is called strongly (f -)invariant if f(Y ) = Y . The set Y is called
minimal if it is compact and does not contain any nonempty compact invariant proper
subset. By fn, n ∈ N, we denote the mapping which is defined recursively by f ◦ fn−1

and f0 = id. The sequence γ(x, f) := (fn(x))n≥0 is the trajectory of x ∈ X , the set

O(x, f) := {fn(x) | n ≥ 0} the (forward-)orbit of x and ω(x, f) :=
⋂

m≥0

O(fm(x), f) is
the (ω-)limit set of x.

A point x ∈ X and its orbit is periodic if fn(x) = x for some n ∈ N, x is called
recurrent if x ∈ ω(x, f). P(f) denotes the set of periodic points in X and R(f) the
set of recurrent points. A point x ∈ X is finally periodic if fn(x) is periodic for some
n ∈ N, it is asymptotically periodic if there exists a periodic point z ∈ X such that
lim

n→∞
d(fn(x), fn(z)) = 0, and it is approximately periodic if for any ε > 0 there exists

a periodic point z ∈ X such that lim sup
n→∞

d(fn(x), fn(z)) < ε.

If ω(x, f) = X for some x ∈ X , the mapping f is called (topologically) transitive. The
map f is said to have sensitive dependence on initial conditions if there exists a δ > 0
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such that for any x ∈ X and any ε > 0 there exists a y ∈ {z ∈ X | d(x, z) < ε} and an
n ∈ N with d(fn(x), fn(z)) > δ.

In the sequel we need a few results on the notions just introduced. They are described
in the following remarks.

Remarks 2.1

(1) X always contains a minimal subset Y (see [4, V Lemma 3]) and Y ⊆ X is
minimal if and only if ω(x, f) = Y for all x ∈ Y (see [4, V Lemma 1]).

(2) Any limit set ω(x, f) is nonempty, compact and strongly invariant (see [4, IV Lem-

ma 2]), ω(x, f) =
n−1
⋃

i=0

ω(f i(x), fn) and f(ω(x, fn)) = ω(f(x), fn) for any n ∈ N

(see [4, p.70/71]).

(3) P(f) = P(fn) and R(f) = R(fn) for all n ∈ N (see [4, I Lemma 10 and
IV Lemma 25]).

(4) f is transitive if and only if for any two open sets U and V in X there exists an
n ∈ N such that fn(U) ∩ V 6= ∅ (see [4, VI Prop. 39]).

Let Σ := {α = (a0, a1, . . . ) | ai ∈ {0, 1}} be the space of sequences with entries 0 or
1. The map dΣ : Σ × Σ → R defined by (α, β) 7→ 0 if α = β and (α, β) 7→ 2−j if
α=(a0, a1, . . . ) 6= (b0, b1, . . . )=β and ai = bi for i = 0, . . . , j − 1 and aj 6= bj defines a
metric on Σ under which Σ becomes a cantor set [4, p.34]. The shift operator σ : Σ → Σ
is defined by (a0, a1, . . . ) 7→ (a1, a2, . . . ). This shift operator is continuous and surjective
(see e.g. [7, Proposition 6.5]).

Let (Y, dY ) be another compact metric space and let g : Y → Y be continuous. If
there exists a continuous surjection h : X → Y such that h ◦ f = g ◦ h on X then f is
said to be (topologically) semi-conjugate to g via the (topological ) semi-conjugacy h.

3 Three Definitions of Chaos

We now describe three commonly used definitions of chaos for continuous maps. To begin
with we consider the general case of maps from a compact metric space (X, d) into itself
and later we concentrate on the special case where X is a real interval.

Definition 3.1 [L/Y-chaos] A continuous map f : X → X on a compact metric
space (X, d) is called chaotic in the sense of Li and Yorke – or just L/Y-chaotic – if
there exists an uncountable subset S (called a scrambled set) of X with the following
properties:

(i) lim sup
n→∞

d(fn(x), fn(y)) > 0 for all x, y ∈ S, x 6= y,

(ii) lim inf
n→∞

d(fn(x), fn(y)) = 0 for all x, y ∈ S, x 6= y,

(ii) lim sup
n→∞

d(fn(x), fn(p)) > 0 for all x ∈ S, p ∈ X , p periodic.

Remarks 3.1

(1) In Li & Yorke’s original definition of chaos there is the additional condition that
f has periodic points of any period in N [13, Theorem 1]. In the literature,
however, most authors (see e.g. [12, Definition. 1.1]) refer to chaos in the sense
of Li & Yorke without this condition.
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(2) That condition (iii) in the definition of L/Y-chaos is redundant can be seen as
follows. Two approximately periodic points x, y cannot satisfy both (i) and (ii)
in the definition of a scrambled set (see [4, VI Lemma 28]). Consequently there
exists at most one approximately periodic point in any set satisfying conditions
(i) and (ii) of Definition 3.1. Removing this point the new set also satisfies (iii).

Definition 3.2 [B/C-chaos] A continuous map f : X → X on a compact metric
space X is called chaotic in the sense of Block and Coppel – or just B/C-chaotic – if
there exists an m ∈ N and a compact fm-invariant subset Y of X such that fm|Y is
semi-conjugate to the shift on Σ, i.e. if there exists a continuous surjection h : Y → Σ
satisfying

h ◦ fm = σ ◦ h on Y.

Remarks 3.2

(1) In [4, p.127/128] it has been described that the definition of B/C-chaos is equiv-
alent to the property that there exist an m ∈ N and two compact disjoint sets
X0, X1 in X such that given any (a0, a1, . . . ) ∈ Σ there is an x ∈ X such that
fmn(x) ∈ Xan

for all n ∈ N0 (see also [10, Theorem 2.2.3]).
(2) If m = 1 in Defintion3.2 then this notion of chaos is also known as chaos in

the sense of coin tossing [11, Definition 1]. It should be noted here that not
every B/C-chaotic map is also chaotic in the sense of coin tossing. In order
to see this consider the subset T := {(0, a0, 0, a1, 0, . . . ) | (a0, a1, . . . ) ∈ Σ} ∪
{(a0, 0, a1, 0, a2, . . . ) | (a0, a1, . . . ) ∈ Σ} of Σ. This set is σ-invariant and the map
σ2|T is semi-conjugate to σ : Σ → Σ. However, there is no σ-invariant subset W
of T such that σ|W is semi-conjugate to σ : Σ → Σ (see [10, Example 2.2.5] for
more details).

Definition 3.3 [D-chaos] A continuous map f : X → X on a compact metric
space X is called chaotic in the sense of Devaney – or just D-chaotic – if there exists a
compact invariant subset Y (called a D-chaotic set ) of X with the following properties:

(i) f |Y is transitiv,

(ii) P(f |Y ) = Y ,
(iii) f |Y has sensitive dependence on initial conditions.

Remarks 3.3

(1) In [7, Definition 8.5] Devaney originally defined f to be chaotic if Y = X in
Definition 3.3. In the literatur, however, D-chaos is usually meant in the more
general sense with Y ⊆ X (see e.g. [12, Definition 1.3]).

(2) Condition (iii) in Definition 3.3 turned out to be redundant in the nontrivial case
where Y is infinite (see [2]).

The three notions of chaos just described have the nice property of being invariant
under conjugation and iteration. The corresponding statements are as follows.

Proposition 3.1 Let (X, dX) and (Y, dY ) be compact metric spaces and suppose that
a continuous map f : X → X is conjugate to a continuous map g : Y → Y . Then f is
D-chaotic (or B/C-chaotic or L/Y-chaotic) if and only if g is D-chaotic (or B/C-chaotic
or L/Y-chaotic, respectively).

Proof See [11, Proposition 1].
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Proposition 3.2 Let (X, d) be compact and suppose f : X → X is continuous. Then
for any n ∈ N the map f is D-chaotic (or B/C-chaotic or L/Y-chaotic) if and only if
fn is D-chaotic (or B/C-chaotic or L/Y-chaotic, respectively).

Proof D-chaos: If f is D-chaotic with D-chaotic set Y ⊆ X then there is an x ∈ Y
such that ω(x, f |Y ) = Y . Since R(f |Y ) = R(fn|Y ) we have x ∈ W := ω(x, fn|Y ), so

fn|W is transitive. Since P(f |Y ) = P(fn|Y ) and Y =
n−1
⋃

i=0

f i(W ) we get P(fn|W ) =

P(fn|Y ) ∩ W = Y ∩ W = W and W is infinite because Y is infinite (fn|Y has sensitive
dependence on initial conditions). So also fn|W sensitively depends on initial conditions.
Conversely, let fn|W satisfy the conditions in the definition of D-chaos for an fn-invariant

compact set W in X . Then it is easy to see that also f |Y with Y :=
n−1
⋃

i=0

f i(W ) satisfies

these conditions (see also [12, Proposition 4.10]).

B/C-chaos: Let f be B/C-chaotic, m ∈ N, Y ⊆ X compact and fm-invariant and let
fm|Y be semi-conjugate to σ via h : Y → Σ. Then defining the continuous surjection
t : Σ → Σ by (a0, a1, a2, . . . ) 7→ (a0, an, a2n, . . . ) and h̄ := t◦h we get h̄◦ (fn)m = σ ◦ h̄
on Y and fn is B/C-chaotic. The converse immediately follows from the definition of
B/C-chaos.

L/Y-chaos: It is easy to see that a set S ⊆ X is a scrambled set with respect to f if and
only if it is a scrambled set with respect to fn (see also [10, Proposition 2.3.8]). This
completes the proof of Proposition 3.2.

For the remainder of this section we concentrate on the special case where the compact
metric space X is a nontrivial real interval I (i.e. nonempty and not a singleton). In this
case B/C-chaos originally (see [4, p.33]) has been defined differently from Definition 3.2.
In fact, the original definition of a B/C-chaotic map was based on the notion of tubulence
which is defined as follows (see [4, p.25]). A map f : I → I is called turbulent if there
exist compact subintervals J , K of I with at most one common point such that J ∪K ⊆
f(J) ∩ f(K). If J and K can be chosen disjoint then f is said to be strictly turbulent.
The relation between turbulence and B/C-chaos is described in the following result (see
[4, p.33/128]).

Proposition 3.3 A continuous map f : I → I on a nontrivial compact interval I is
B/C-chaotic if and only if one of the following equivalent conditions is satisfied:

(i) fm is turbulent for some m ∈ N,

(ii) fm is strictly turbulent for some m ∈ N,

(iii) f has a periodic point whose period is not a power of 2.

Three more results are needed in order to reach the goals of this paper.

Proposition 3.4 f is L/Y-chaotic if and only if not every point in I is approximately
periodic.

Proof See [4, p.145]).

Lemma 3.1 f is B/C-chaotic if and only if there exists a c ∈ I such that ω(c, f)
contains a periodic orbit as a proper subset.

Proof See [4, VI Proposition 6]).
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Lemma 3.2 Let J and K be two compact subintervals of I having the property K ⊆
f(J). Then there exists a compact subinterval L of J such that f(L) = K and that f
maps the endpoints of L onto the endpoints of K.

Proof Let K = [a, b] for two points a, b ∈ I and let c be the largest point in J with
f(c) = a. If there exists an x ∈ J , x > c, with f(x) = b, let d be the smallest x with
this property. Then with L := [c, d] the claim follows. On the other hand, if there exists

an x ∈ J , x < c, with f(x) = b we define c̃ as the largest x with this property. Let d̃

be the smallest x ∈ (c̃, c] (⊂ J ) satisfying f(x) = a. Then the interval L := [c̃, d̃] has
the claimed property and the proof of the lemma is complete.

4 The Mutual Relations for Interval Maps

In this section we discuss the mutual relations between the three notions of chaos de-
scribed in the previous section for the special case of interval maps. In fact, throughout
the present section we consider continuous maps f : I → I from a nontrivial compact
interval I = [a, b], a < b, into itself. The main results of this section say that in this case
B/C-chaos and D-chaos are equivalent while, on the other hand, B/C-chaos and D-chaos
are sufficient for L/Y-chaos. For the lacking necessity in the last statement we refer to
the counterexample gλ∗ presented in the next section.

Theorem 4.1 A continuous map f : I → I on an interval I is D-chaotic if and only
if it is B/C-chaotic.

Proof (⇒) Let f be D-chaotic with compact D-chaotic set Y ⊆ I. Then Y is
infinite since f |Y has sensitive dependence on initial conditions. Furthermore, since f |Y
is transitive there is a c ∈ Y with ω(c, f) = Y , and because of the relation P(f |Y ) = Y
the map f |Y has a periodic orbit. As a finite set this periodic orbit is a proper subset of
Y = ω(c, f), and this implies (by Lemma 3.1) that f is B/C-chaotic.

(⇐) Now suppose f is B/C-chaotic. Then because of Proposition 3.3 the map fm is
strongly turbulent for some m ∈ N, i.e. there exist two disjoint compact subintervals X0

and X1 of I with the property that for g := fm we have

X0 ∪ X1 ⊆ g(X0) ∩ g(X1). (1)

The idea of proceeding from here is to first derive from (1) the existence of a compact
g-invariant subset X of X0 ∪ X1 with the property that the map g|X : X → X is semi-
conjugate to the shift σ via a continuous surjection s : X → Σ and then to show that
there exists a compact g-invariant subset Z of X on which g is D-chaotic. We carry out
this program in 5 steps.

Step 1. Construction of X and s: Starting with the above X0 and X1 and using math-
ematical induction, for each α = (a1, a2, . . . ) ∈ Σ Lemma 3.2 yields a sequence of com-
pact, pairwise disjoint intervals Xa1a2...ak

, (a1, a2, . . . , ak) ∈ {0, 1}k, k ≥ 1 in X0 ∪X1

having the following properties:

Xa1a2...ak
⊆ Xa1a2...ak−1

, g(Xa1a2...ak
) = Xa2a3...ak

and

g maps endpoints of Xa1a2...ak
onto endpoints of Xa2a3...ak

.
(2)
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Then for each α=(a1, a2, . . . ) ∈ Σ the set

Xα :=

∞
⋂

k=1

Xa1...ak
(3)

is either a singleton or a nontrivial compact interval. Furthermore we have

Xα ∩ Xβ = ∅ for all α, β ∈ Σ, α 6= β (4)

since the sets Xa1a2...ak
, (a1, a2, . . . , ak) ∈ {0, 1}k, are pairwise disjoint and

g(Xα) = Xσ(α) for all α ∈ Σ. (5)

Next we define the set
X̃ :=

⋃

α∈Σ

Xα (6)

which turns out to be strongly g-invariant and compact. Also the set

X := {x ∈ I | x is an endpoint of Xα for some α ∈ Σ}

is compact (even if Xα = {x} for some x we call x an endpoint of Xα). From (2) and (5)
we conclude that for any α ∈ Σ the map g maps the endpoints of Xα onto the endpoints
of Xσ(α) and that X is strongly g-invariant. On X we define the map

s : X → Σ, x 7→ α if x ∈ Xα.

Obviously, this map is well defined, continuous and onto and each point of Σ is the
s-image of at most two points of X . Finally, because of (5) and the definition of s we
have

s ◦ g|X = σ ◦ s on X. (7)

Step 2. Construction of Z: For any α ∈ Σ the set Xα defined in (3) is a nonempty
compact interval. Since the Xα’s are pairwise disjoint (see (4)) there exist at most
countably many α’s in Σ such that Xα is not a singleton. Therefore the set

R := {x ∈ X | Xα = {x} for some α ∈ Σ}

is nonempty and consists of all but countably many points of X . Because of (5) the set
R is g-invariant and the set

Z := R̄

and the map g|Z : Z → Z are well defined.

Step 3. Transitivity of g|Z : Let U be an arbitrary open nonempty subset of Z. Then
there exists a point x ∈ U ∩ R and some α = (a1, a2, . . . ) ∈ Σ with Xα = {x}.
Because of definition (3) of Xα and the openness of U in Z there exists a k ∈ N with
Z∩Xa1a2...ak

⊆ U . Therefore, in order to prove the transitivity of g|Z it suffices to prove
the relation

gk(Z ∩ Xa1a2...ak
) = Z. (8)
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Since Z = R̄ and since the set Z ∩ Xa1a2...ak
is compact, it even suffices to find a

gk-preimage of an arbitrary point y ∈ R in the set Z ∩Xa1a2...ak
. Due to the definition

of R, for any y ∈ R there exists a β =(b1, b2, . . . ) ∈ Σ with {y} = Xβ . With the aid of
this β we define

γ := (a1, a2, . . . , ak, b1, b2, . . . ) ∈ Σ

and use (5) to get the relation

gk(Xγ) = Xβ = {y}. (9)

If Xγ consists of a single point we get the inclusion Xγ ⊆ Z and the claim (8) is proved,
since Xγ is a subset of Xa1a2...ak

. If, on the other hand, Xγ is a nontrivial interval then
at least one of its endpoints is contained in Z. This can be shown as follows: For any
n ∈ N there exists (because of (3)) a number mn ∈ N with

Xa1a2...akb1b2...bmn
⊆ {x ∈ I | dist(x, Xγ) < 1

n
}, (10)

and since the set

{(a1, a2, . . . , ak, b1, b2, . . . , bmn
, ∗, ∗, . . . ) ∈ Σ | ∗ ∈ {0, 1}}

is uncountable we can find a point γn in this set such that Xγn
= {yn}. By (4) the sets

Xγ and Xγn
are disjoint and by (10) the distance of the point yn from at least one of

the endpoints of Xγ is less than 1
n

(since yn ∈ Xa1a2...akb1b2...bmn
). Because the relation

Xγn
⊂ R holds for all n ∈ N, the sequence (yn)n∈N in R converges, w.l.o.g., to one of

the endpoints of Xγ . On the other hand, because of Z = R̄ this endpoint is contained

in Z and it is mapped via gk to y according to (9). In both cases we thus can find a
gk-preimage of the point y in Z ∩ Xa1a2...ak

, and this proves claim (8).

Step 4. P(g|Z) = Z: Let U again be an arbitrary open nonempty set in Z and x a point
in U ∩R with {x} = Xα for some α=(a1, a2, . . . ) ∈ Σ. As in the proof of Step 3, given
any n ∈ N there is an mn ∈ N with

Xa1a2...amn
⊆ {x ∈ I | dist(x, Xα) < 1

n
}. (11)

We now consider the periodic point

γn := (a1, a2, . . . , amn
, . . . ) ∈ Σ

and notice that because of σmn(γn) = γn and (5) we get gmn(Xγn
) = Xγn

. Furthermore,
the two endpoints of Xγn

are periodic with respect to g, since gmn maps the endpoints
of Xγn

onto the endpoints of gmn(Xγn
) (= Xγn

). In case Xγn
is a nontrivial interval

then at least one of its (periodic) endpoints is contained in Z. This can be seen as in the
previous Step 3. So in any case, for any n ∈ N we get a g-periodic point xn ∈ Xγn

∩ Z
and the sequence (xn)n∈N converges to x because of Xγn

⊆ Xa1...amn
and (11). This

implies the relation x ∈ P(g|Z) and completes the proof of Step 4.

Step 5. Conclusion: The set Z is infinite (because R is infinite), and therefore the map

g is D-chaotic on Z. By Proposition 3.2 then f is D-chaotic on Y :=
⋃n−1

i=0 f i(Z). This
completes the proof of Theorem 4.1.

Remark 4.1 Theorem 4.1 can also be proved by using the notion of positive entropy
(see [4, VIII] and [12]). The argument is as follows: The map f is D-chaotic if and only if
it has positive entropy (see [12]) and positive entropy in turn is equivalent to B/C-chaos
(see e.g. [4, VII Theorem 24]).
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Theorem 4.2 If a continuous map f : I → I on an interval I is B/C-chaotic then
it is also L/Y-chaotic.

Proof See [4, VI Proposition 27]).

As mentioned above the implication of Theorem 4.2 cannot be reversed. In fact, in the
next section we present an example of a map which is L/Y-chaotic but not B/C-chaotic.
Before doing this, however, we want to show that all maps which are L/Y- but not B/C-
chaotic have an interesting property in common. In fact, we show that for any map of
this kind there exists an infinite compact invariant set such that the restriction of the
map to this set is transitive but does not have periodic points. This shows that the result
“On intervals transitivity = chaos” [3] (earlier proved in [4, VI Lemma 41] and stating

that P(f) = I if f is transitive) cannot be generalized from intervals to disconnected
compact subsets of R.

Proposition 4.1 If a continuous map f : I → I on a compact interval I is L/Y-
chaotic but not B/C-chaotic then there exists a compact infinite invariant subset Y of I
such that f |Y : Y → Y is transitive but does not have periodic points.

Proof Since f is L/Y-chaotic there exists (by Proposition 3.4) a point x ∈ I which
is not approximately periodic. So the limit set ω(x, f) of x is infinite by [4, IV Lemma 4].
According to [4, VI Proposition 7] there exists a unique minimal set Y in ω(x, f) such
that

Y = ω(y, f) for some y ∈ Y. (12)

Again using [4, IV Lemma 4] the set Y (as a subset of ω(x, f)) is infinite. This is because
f is not B/C-chaotic and therefore the infinite set ω(x, f) contains no periodic points by
Proposition 3.4. So finally the well defined map f |Y : Y → Y has no periodic points but
is transitive by (12).

5 The Family of Truncated Tent Maps

In order to analyse the so-called truncated tent maps we need a famous theorem due to
Šarkovskii and two lemmas. In any case we consider a continuous map f : I → I of a
compact interval into itself.

Theorem 5.1 [Šarkovskii] Let N be totally ordered in the following way:

3 ≺ 5 ≺ 7 ≺ . . . ≺ 3 · 2 ≺ 5 · 2 ≺ 7 · 2 ≺ . . . ≺ 3 · 22 ≺ 5 · 22 ≺ . . . ≺ 23 ≺ 22 ≺ 2 ≺ 1.

Then if f has a periodic orbit of period n ∈ N and if m ∈ N with n ≺ m, then f also
has a periodic orbit of period m.

Proof See [15], also [4, I Theorem 1].

Lemma 5.1 Suppose f : I → I is not B/C-chaotic. Then for any x ∈ I with infinite
ω(x, f) and any s ∈ N the intervals

Js
i := [min ω(f i(x), f2s

), max ω(f i(x), f2s

)], i = 0, 1, . . . , 2s − 1

have the following properties:

(i) Js
i ∩ Js

k = ∅ for all i, k ∈ {0, 1, . . . , 2s − 1} with i 6= k,
(ii) Js

i contains a 2s-periodic point for i = 0, 1, . . . , 2s − 1.

Proof See [4, VI Lemma 14].
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Lemma 5.2 If f is L/Y-chaotic then f has infinitely many periodic points.

Proof We distinguish the two cases of f being B/C-chaotic or not.
If f is B/C-chaotic then by Proposition 3.3 f has an n-periodic point with n not being

a power of 2. By Šarkovskii’s Theorem then f has periodic points with periods 2n for all
n ∈ N. So f has infinitely many periodic points.

In case f is not B/C-chaotic then there exists a point x ∈ I which is not approxi-
mately periodic by Proposition 3.4. Therefore the limit set ω(x, f) of x is infinite (see
[4, IV Lemma 4]). Now take any s ∈ N and define

Js
i := [min ω(f i(x), f2s

), max ω(f i(x), f2s

)] for i = 0, 1, . . . , 2s − 1.

Then the intervals Js
i are pairwise disjoint and each of them contains a 2s-periodic point

by Lemma 5.1. Therefore f has at least 2s distinct periodic points and hence infinitely
many since s ∈ N was arbitrary. This completes the proof of Lemma 5.2.

Now we are prepared to investigate the announced family of maps one member of
which shows that the statement of Theorem 4.2 cannot be reversed.

Example 5.1 The piecewise linear map g : [0, 1] → [0, 1] with

g(0) = 0, g
(

1
2

)

= 1, g(1) = 0

is known as the (standard) tent map. Its graph is a “tent” with peak of height 1 at the
point 1

2 . In order to modify this map to get a family of maps suitable for our purposes
we cut the peak at any height λ ∈ [0, 1] and consider the family of truncated tent maps
defined by

gλ : [0, 1] → [0, 1], x 7→ min{λ, g(x)}, λ ∈ [0, 1].

It is apparent that for any 0 ≤ λ < γ ≤ 1 the maps gλ and gγ coincide on the set

Jλ :=
[

0, λ
2

]

∪
[

1 − λ
2 , 1

]

, λ ∈ [0, 1]

and that (periodic) orbits of gγ in Jλ are also (periodic) orbits of gλ and vice versa.
Furthermore, since gλ is constant on the open interval

Kλ :=
(

λ
2 , 1 − λ

2

)

, λ ∈ [0, 1],

the map gλ has at most one periodic point in K̄λ.
For the original tent map g (= g1) the set

{

2
7 , 4

7 , 6
7

}

is obviously a 3-periodic orbit and

therefore, by Šarkovskii’s Theorem, it has 2n-periodic points for all n ∈ N. Furthermore,
it is easy to see that

|{x ∈ [0, 1] | x is m-periodic with respect to g}| ≤ 2m for all m ∈ N. (13)

Therefore the number

λn := min{λ ∈ [0, 1] | g has a 2n-periodic orbit in [0, λ]}

is well defined and λn is a 2n-periodic point of g for any n ∈ N. Because of the relation
g(Kλn

) = (λn, 1] we have O(λn, g) ⊆ Jλn
, and therefore λn is also periodic with respect
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to gλn
having the same periodic orbit as for g. By Šarkovskii’s Theorem we have the

identity

{2i | i = 0, 1, . . . , n} = {k ∈ N | x is k-periodic w.r. to gλn
for some x ∈ [0, 1]} (14)

because otherwise there were an m-periodic orbit M of gλn
for some m ∈ N with m ≺ 2n.

Since gλn
has at most one periodic point in K̄λn

(the point λn) the inclusion M ⊆ Jλn

holds and with ρ := max M < λn the map gρ and hence also gλn
has a 2n-periodic orbit

in [0, ρ] ∩ Jρ. This contradicts the minimality of λn.
The sequence (λn)n∈N is strongly increasing because otherwise there would exist

numbers n, m ∈ N, m > n with λm ≤ λn such that the map gλm
has a 2n-periodic

orbit in [0, λm) and this would again contradict the minimality of λn. On the other
hand, the sequence (λn)n∈N is bounded above by 1 and therefore it has a limit

λ∗ := lim
n→∞

λn

which is smaller then 6
7 since the map g 6

7

has periodic points of any period n ∈ N (by

Šarkovskii’s Theorem). In addition, λ∗ is greater than 4
5 , since λ2 = 4

5 . Indeed, in [14,
Remark 4] it has been mentioned that λ∗ = 0.8249080 . . .

We now determine for each member of the family of truncated tent maps which kind
of chaos prevails.

For 0 ≤ λ < λ∗ the map gλ is not L/Y-chaotic:

For any λ ∈ [0, λ∗) there exists an n ∈ N with λ < λn. Therefore, any periodic orbit
of gλ in Jλ is also a periodic orbit of gλn

. On the other hand, the map gλn
has finitely

many periodic points because of (13) and (14), and therefore also gλ has only finitely
many periodic points, since at most one periodic orbit of gλ has nonempty intersection
with Kλ. So gλ is not L/Y-chaotic by Lemma 5.2.

The map gλ∗ is L/Y-chaotic but not B/C-chaotic:

In [4, VI Example 29] it has been shown that not all points in [0, 1] are approximately
periodic with respect to gλ∗ , and therefore gλ∗ is L/Y-chaotic by Proposition 3.4. On the
other hand, assuming to the contrary that gλ∗ is B/C-chaotic, by Proposition 3.3 there
exists an odd number q > 1 such that gλ∗ has a q 2k-periodic orbit P for some k ≥ 0.
In case p := max P < λ∗ there is an n ∈ N with λn > p such that P is a periodic orbit
of gλn

. This contradicts (14). If, on the other hand, p = λ∗, by Šarkovskii’s Theorem
the map gλ∗ has a (q + 2) 2k-periodic orbit Q. Because of max Q < λ∗ this again leads
to a contradiction.

For λ∗ < λ ≤ 1 the map gλ is B/C-chaotic:

The original tent map g (= g1) is D-chaotic on [0, 1] (see e.g. [7, III Example 9]) and
therefore g has a periodic point ρ ∈ [λ∗, λ].

We first prove now that the map gρ is B/C-chaotic. To this end we notice that ρ is
a periodic point of gρ. This is due to the fact that either O(ρ, g) ∩ Kρ = ∅, and thus

O(ρ, gρ) = O(ρ, g), or gj(ρ) ∈ Kρ for some minimal j ∈ N, and therefore g j+1
ρ (ρ) = ρ.

The case where ρ is m-periodic with respect to gρ for some m ∈ N, m 6∈ {2n | n ∈ N0}
is easily settled because in this case gρ is B/C-chaotic by Proposition 3.3. So from now
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on we may assume that ρ is a 2n-periodic point of gρ for some n ∈ N0. We now define
the intervals

K := [g2n

ρ (λn+1), λn+1] and J := [λn+1, ρ]

and prove the existence of an N ∈ N with the property

K ∪ J ⊆ gN
ρ (K) ∩ g N

ρ (J) (15)

which in turn implies, by Proposition 3.3, that gρ is B/C-chaotic. To this end we first
notice that the intervals K and J are well defined since the relations ρ > λ∗ and
O(λn+1, gρ) = O(λn+1, g) are valid. Since ρ is 2n-periodic we get

K ∪ J ⊆ g2n

ρ (J). (16)

In order to prove that for some r ∈ N we have

K ∪ J ⊆ gr
ρ(K) (17)

we state the following property which is valid for all τ ∈ [0, 1] and j ∈ N:

|gj
τ (x) − gj

τ (y)| = 2j|x − y| for all x, y ∈ [0, 1] such that

gi
τ (x), gi

τ (y) ≥ 1 − τ
2 or gi

τ (x), gi
τ (y) ≤ τ

2 for i = 0, 1, . . . , j.
(18)

Using (18) and the fact that both λn+1 and g2n

ρ (λn+1) are 2n+1-periodic with respect

to gρ, we see that there is some j ∈ {0, 1, . . . , 2n − 1} with the following property:

gj
ρ(λn+1) < ρ

2 and g2n+j
ρ (λn+1) > 1 − ρ

2

or gj
ρ(λn+1) > 1 − ρ

2 and g2n+j
ρ (λn+1) < ρ

2 .

So we get ρ ∈ gj+1
ρ (K) and therefore [λn+1, ρ] ⊆ gj+1

ρ (K). Thus with r := 2n + j + 1

condition (17) is satisfied. Using (16), (17) and the definition N := r + 2n the claim
(15) follows and gN

ρ is turbulent. By Proposition 3.3 then gρ is B/C-chaotic.

Finally, since gρ is now known to be B/C-chaotic, there is a p-periodic orbit P of gρ

in Jρ for some p ∈ N, p 6∈ {2n | n ∈ N0} (compare with the above proof that gλ∗ is not
B/C-chaotic). Because of λ > ρ the orbit P is also p-periodic with respect to gλ and
therefore gλ is B/C-chaotic by Proposition 3.3.

Combining the previous considerations with the results of Section 4 we get the follow-
ing summary for the family of truncated tent maps:

• For each λ ∈ [0, λ∗) the map gλ is not chaotic in any of the three senses considerd
in this paper.

• The particular map gλ∗ is chaotic in the sense of Li & Yorke but neither in the
sense of Block & Coppel nor Devaney.

• For each λ ∈ (λ∗, 1] the map gλ is chaotic in any of the three senses considered
in this paper.
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We conclude this section with a few additional remarks on the family of truncated
tent maps.

Remarks 5.1

(1) The map gλ∗ first appeared in [14, Remark 4] as an example of a map of typ 2∞

(i.e. the set of periods of its periodic points is {2i | i ∈ N0}) having a scrambled
set. Block and Coppel [4, VI Example 29] have proved that gλ∗ is L/Y-chaotic

by showing that λ∗

2 , 1− λ∗

2 ∈ P(gλ∗), but
[

λ∗

2 , 1− λ∗

2

]

∩P(gλ∗) = ∅. To this end
additional results [4, VI Lemma 17 and Theorem 24] have been used.

(2) The fact that gλ is B/C-chaotic for all λ ∈ (λ∗, 1] can also be proved by using
kneading theory for unimodal maps (see [6]). In this context one considers the

restriction gλ|[0,λ] of gλ on [0, λ] and defines the intervals L :=
[

0, λ
2

)

, C :=
[

λ
2 , 1 − λ

2

]

and R :=
(

1 − λ
2 , λ

]

, where {L, C, R}N is the symbol space of the

itineraries of gλ. Then the corresponding results from [6] for unimodal maps are
also valid for gλ|[0,λ].

Using kneading theory one can also prove that gλ∗ is L/Y-chaotic. To this
end one shows that λ∗ is not finally periodic with respect to gλ∗ and hence not
approximately periodic (see (18)). In addition one can see that the set of periodic
points of gλ∗ is

⋃

n∈N0

O(λn, g) ∪ { 2
3}.

(3) Example 5.1 suggests that the set of B/C-chaotic maps on I is open in the set
C0(I, I) of continuous self maps of I (in the topology defined by the supremum
norm). That this is indeed true can be seen in [4, Corrolary 20].

Example 5.1 might also suggest that the set of L/Y-chaotic maps on I is closed in
C0(I, I). This, however, is not true. In [5] the family Tλ : [0, 1] → [0, 1], 0 ≤ λ ≤ 2, of

tent maps is defined by Tλ(x) := λx for x ∈
[

0, 1
2

]

and Tλ(x) := λ(1−x) for x ∈
[

1
2 , 1

]

.

It is proved then that for any λ > 1 the map Tλ is B/C- and therefore L/Y-chaotic.
On the other hand, for λ = 1 all points of [0, 1] are obviously mapped on fixpoints in
[

0, 1
2

]

and this means that T1 is not L/Y-chaotic.

6 An Example in a General Compact Metric Space

We finally show by means of an example that in the context of general compact metric
spaces we canot expect the close relations between the three definitions of chaos as they
appear in the particular case of interval maps. In fact, our example shows that even
L/Y-chaos together with B/C-chaos does not imply D-chaos.

Example 6.1 The adding machine τ : Σ → Σ is defined as follows: To any point
α = (a0, a1, a2, . . . ) ∈ Σ it “adds” the particular point (1, 0, 0, 0, . . . ) according to the
following rule: If α=(1, 1, 1, . . . ) define τ(α) := (0, 0, 0, . . . ), otherwise let all entries of
α unchanged except the first an which vanishes; change this an to 1. It is well known
that τ is a homeomorphism without periodic points (see e.g. [4, p.133/134]). So if we
define the continuous map

f : Σ × Σ → Σ × Σ, (α, β) 7→ (σ(α), τ(β))

we see that f is semi-conjugate to σ via the projection h : Σ × Σ → Σ from Σ × Σ to
its first component. Therefore f is B/C-chaotic. Furthermore, if S ⊂ Σ is a scrambled



36 B. AULBACH AND B. KIENINGER

set for σ then for any α ∈ Σ the set Sα := {(s, α) | s ∈ S} is obviously a scrambled set
for f . Hence f is L/Y-chaotic. On the other hand, since τ has no periodic points f has
none either and therefore f is not D-chaotic.

Remarks 6.1

(1) The previous example shows that condition (ii) of the Definition 3.3 of D-chaos
(or more general, the existence of periodic points) may by too restrictive. Indeed,
for a B/C-chaotic map f : X → X (X any compact metric space) there exists a
compact invariant set Y ⊆ X such that f |Y is B/C-chaotic, transitive and has
sensitive dependence on initial conditions (use [1, Theorem. 3]).

(2) For maps defined on non-compact metric spaces in [10] we have given examples
of maps which are D- but neither L/Y- nor B/C-chaotic (see [10, Theorem 3.3.3])
or D- and L/Y-chaotic but not B/C-chaotic (see [10, Theorem 3.3.5]).

We want to conclude this paper with raising the question about the relations between
the three definitions of chaos considered above in the general case of mappings on ar-
bitrary compact metric spaces. It is widely believed that B/C-chaos implies L/Y-chaos
but we do not know if this is really true. And what is known about the other relations?
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