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1 Introduction

One of the most important phenomena in the solar system is the occurrence of resonance
which plays a significant role in the study of dynamical system. Resonance occurs when
any two or more frequencies are commensurable in their ratio. The resonance in the
orbital motion of the celestial bodies occurs not only due to the gravitational forces
but also the non gravitational forces, for e.g., radiation pressures, oblateness, P-R drag,
equatorial ellipticity of the Earth etc.

[3] discussed the motion of a geosynchronous satellite by taking the combined grav-
itational forces of the Sun (with radiation pressure), the Moon and the Earth. They
showed for the geosynchronous satellite that angular velocity of the orbital plane lies
between 0.042° to 0.58° degree per year.

[4] discussed numerically the effects of P-R drag on the equilibrium points of the
photo-gravitational CR3BP including the P-R effect by taking the radiation of two mas-
sive bodies. They have used the modified bisection method to compute the position of
the equilibrium points.

[7] studied the minimum fuel maneuvers to change the position of a spacecraft in
orbit around the Earth. Bi-impulsive maneuver control is applied in the initial position
of the satellite to send it to a transfer orbit that will cross the desired final position of
the spacecraft where both the initial and the final position of satellite belong to the same
Keplerian orbit.

[8] investigated the numerical search of bounded relative motion between two or more
satellites. They studied the possibility of using global optimization technique to locate
the initial conditions resulting into minimum drift per orbit as the perturbations such
as the Earth oblateness and air drag effects are taken into account, an analytic solution
appears to be more complicated.

Other pioneers in this field are [12], [6], [9], |L1], [13], [5], [10], [14], [15].

The P-R effect in the three-body problem on numerical experiments in dynamical
consequences has been discussed by many authors by taking only two of the three: (1)
the P-R drag; (2) the three-body problem; (3) resonance. Taking all the three factors
in this paper collectively, we have attempted to bridge the said gap. The motive of
this paper is to investigate the resonance in the motion of geo-centric satellite due to the
Poynting-Robertson drag and oblateness of the Earth in the framework of the three-body
problem. Meticulous study of equations of motion in Section [2] of this paper reveals that
if the regression angle is constant, there are five critical points R.s, i = 1 — 5, at which
resonance occurs in the motion of the orbiting satellite, between the mean motion of
the satellite and the average angular velocity of the Earth around the Sun and if the
regression angel is not constant, resonance occurs at six points Rj’ /s, 7 =1—-6, with two
frequencies due to the oblateness of the Earth and at many points with three frequencies.
Evaluation of the corresponding amplitude and time period at resonance points have
been evaluated in Section Discussion and conclusion are given in Section In this
section we have compared the amplitudes and time periods at same resonant point and
for different values of ¢’s, and also discussed the variation in the amplitudes and time
periods for variation in ¢ and ¢ at the resonant point 1: 1 and 1 : 2 with the P-R drag
and without the P-R drag. Further we have drawn graphs showing amplitudes and time
periods due to oblateness of the Earth (J3) at different resonant points.
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2 Statement of the Problem and Equations of Motion

Let S represent the Sun, E be the Earth and S be the satellite with the masses Mg,
Mpg and Mp, respectively. The satellite moves around the Earth in orbital plane. Let
the satellite be revolving about the Earth with the angular velocity ¢ and the system be
also revolving with the same angular velocity . Let g, 7s and 7 represent the vectors
from the Sun and the Earth, the Sun and the satellite and the Earth and the satellite,
respectively; v be the vernal equinox, a be the angle between the ecliptic plane and
orbital plane, 6 be the angle between the direction of ascending node and the direction
of the satellite, ¢ be the angle between the direction of ascending node and the direction
of the Sun, 1 be the regression angle, € be the angle between the equatorial plane and
ecliptic plane (obliquity) and ¢ be the velocity of light. For convenience, let z, y, z be
the co-ordinate system of the satellite with the origin at the center of the Earth with the
unit vectors I J and K along the co-ordinates axes, respectively. Let xq, yo and zy be
another set of the co-ordinate system in the same plane, with the origin at the center
of the Earth, with the unit vectors IO, JO and Ko along the co-ordinate axes. Let Xa,
Ye and Zg be the geo-centric reference system with the unit vectors Ig, JG and Kg,
respectively, along the co-ordinate axes, while the X4Ys plane be the Earth’s equatorial
plane, which makes an angle 23°27" with the ecliptic plane (Figure 1).

Satellite

Figure 1: Configuration of the three-body problem; (a) in vector form; (b) with co-
ordinate axis.

2.1 Equations of motion in polar form

Let Fp be the Poynting-Robertson drag per unit mass acting on the satellite due to the
radiating body (the Sun) as shown in Figure 1, given by [4]

MpFp = fi + fo+ f3,

where

> T

fi = F-> (the radiation pressure),
Ts

P (17'F5)Tg(

S

the Doppler shift owing to the motion),
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. v
f3 = —F— (the force due to the absorption and re-emission of part of the incident radiation),
c

¥ = the velocity of S,
¢ = the velocity of light,

F = the measure of the radiation pressure.

P(r,é,ﬂ')

bs

Figure 2: The coordinate system of the satellite in (X¢g, Ye, Zg) system.

The relative motion of the satellite with respect to the Earth is obtained by
_ Fsp+ Fpp + FpMp  Fsp

=Ty =T —
® = Mp Mg’
where
o MM o M Mg
J2 N s —
Ty Ty

Force of the Earth on the satellite: We take the potential of the Earth [2| at the
point outside it in the form

y_ GMeMp [ B(Re) (((ZeP \\,
r 27"2 712

= ou ou ou ou
F = —7 71 7:] 7[(
EP ar’f"‘f'aXGG‘i‘aYG G+8ZG G
2 2 2
__GMg (3J2<R@> (520 _1)_1)F_ 3h(Fs) ; ke,
T

r3 2r2 r2

G = the gravitational constant,

0’ = /yEP’ = the angle between the projection of the line,
EP in the plane of the equator (EP’) and the vernal (Figure [2)) equinox,
Jo = the coefficient due to the oblateness of the Earth,
Rg = the mean radius of the Earth.

Thus,

7 GM 2 (Zg)?
LG E<3J22(i®) (5(7«2) —1)—1)77
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. GM, TR A A
ZaKg + 57, — pF, (H + ) :

(rg) cre c

3J2(Re)?
- el

where ¢ = 1 — F,,/F,; exhibits the relation between the gravitational force and the radi-
ation pressure resulting from the Sun. Evidently, 0 <¢g<landp=1-—gq.

The motion of the Earth relative to the Sun is given by

: GM;,
¢2 = 3

"R

also,

—

r=rl, 7, =r,t,, 7, =cos¢l, +sineJ,, 7, =7, cos¢l, +r,sinpJ,.

Using these values in the equation of motion of the satellite with respect to the Earth in
vector form yields

= s GMg 3J2(Rs)? . (Zg)? >
r:—qGMSE— 3 {(—1—!— 52 (5 2 -1 7

- = —

U-Ts)Ts U
— 4 — 5. 1
cr +c} (1)

2 . ~ A~
- MZCJ(G + ¢21"E (cos @I, +sin@Js) — pFy { (

72

In the rotating frame of reference with angular velocity & of the satellite about the center
of the Earth, we have

ﬁ:gj;“nzgz(wxf)+r(%fxf)w{(a-f)w—(w-w)f}, (2)

where & = K + ) K,. Taking dot products of equations (1) and (2) with I and J and
equating the respective coefficients, we get the equations of motion of the satellite in the
synodic coordinate system ( [3])

2 w o 7 .
% — 76 + Gi\;[E = —qGM; (7“573 D + ¢*r {cos 0 cos(¢p — 1) + cos asin Osin(p — 1)}
3GMpJoRE[1 - 3(I.Kg)?]  GM, [(7-7) (7, - 1) L@ 1)
B 274 R (rs)? crs c [’
3)
2 ) > . 7 .
d(;ta) = —qGM,r (s 3J) — ¢*rr,, {sin@ cos(¢ — 1) — cos acos Osin(¢p — )}

 3GMpJR%(1.Kg)(J Ke) GMS{(6~KQ)(ﬁg~j) (aj)} "
2r3 r2 ’
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Iy | Jo | Ko Iy Jo Ky
I |ag | by | cu Ia 1 0 0
J |ay | by | ¢ Ja | 0| cose | sine
Kla, | b, | c, Kg | 0 | —sine | cose

Table 1: Relation between coordinate system.

a, = cos B cosp — cos asin 6§ sin ),
a, = —sinfcos1 — cosacosfsinyp,
a, = sinasiny,

b, = cosfsin1 — cos asin B cos Y,
b, = —sinfsiny + cos a cos f cos ¥,
b, = cosysina,

c; = sinasind, ¢, = sinacosd,

¢, = cosa.

Equations (3) and (4)) are the required equations of motion of the satellite in polar
form. These equatlonb are not integrable, therefore we follow the perturbation technique
and replace r, 6 and w by their steady state values 7, 00, ?/10 and we may take 0 = 90t
P = 1/)015 and ¢ = ¢t respectively. Putting the steady state values in the R.H.S of

equations and ( 7 we get

d27“ 2 GME (’/_‘; . f) 3GMEJ2R§9{1 — 3(jk@)2}
a2 v r2 —4GM; 3 2rg
+ @21, {cos ot cos(¢ — 1)y )t + cos asin Gyt sin(p — Yo )t)}
GM, [ (T-7)(F-1) (71
_ oL {( )7 d) | ( >}7 5)
r2 cr c
20 7, - J)  3GMpJoR%(I.Kg)(J.K,
d(;tﬁ) = —qGM;rg (7 3J) - £/ g 3 UCLS)
T3 2rg
— @2ror, {sin Got cos(¢p — o)t + cos ag cos Byt sin(p — o)t}
GM, | (T-7)(Fs-J) (T
~ro 2({< )75 d) >}. ©
72 crs c
Now

= {—rp(d — o) cos Ot sin(¢ — 1o )t + rE(d — o) cos asin Gt cos(¢ — o )t}
{robo + rE(d — o) sin Ggt sin(¢ — 1bo)t + re(d — o) cos Oyt cos(¢ — 1)t cos ag }.J
— r5($ — 1) sin ag cos(¢ — o)t K,
K’G = —sin ejo + cos EKO
= —sine(Ib, + Jb, + Kb.) + cose(C,I + C,J + C.K)
= (—bysine 4 ¢, cose)I + (—bysine + ¢, cos€)J + (b, sine + ¢, cos €) K.
With the help of the above values, the transformations in Table 1 and taking r26 =
constant = h, r = =, we get
d*u

el +n?u=K; + Ko cosnt + K3 sinnt + Ky cos 2nt + kg sin 2nt
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+ K¢ cos 3nt + K7 sin 3nt 4+ Kg cos(¢ + 1)t + Kg sin(d — o)t

+ Ko cos(n+ ¢ — o)t + K11 sin(n + ¢ — o)t + K1z cos(n + ¢ + 1)t

+ Kizsin(n — ¢ + o)t + K14 cos(2n + ¢ — )t + K15 sin(2n + ¢ — 1)t

+ K16 c08(2n — ¢ + o)t + Ki7sin(2n — ¢ + o)t + Kigsin2(¢ — o))t

+ K19 sin(2n+2¢ — 240 )t+ Ko sin(2n — 26424 )t+ Koy sin(n + 2¢ — 24yt
+ Koo sin(n — 2é+21/}0)t—|—K23 sin(3n42¢ — 200 )t + Koy sin(3n — 20 + 21/')0)t
+ K5 cos gzlﬁot + Ko cos 2q50t + Ko7 cos(2n + éo)t + Kog cos(2n — 1/}0)t

+ Kag cos(2n + 249 )t + Ksg cos(2n — 2¢0))t + Ks1 cos(n + ¢)t

+ K3 cos(n — gi)o)t + K33 cos(n + 21/}0)t + K34 cos(n — 21/}0)t

+ K35 cos(3n + 2¢)t + Ksg cos(3n — 2u)t + Ks7 cos(3n + o )t

+ Ksg cos(3n — o). (7)

The solution is given by

K, Kstsinnt Kstcosnt  K4cos2nt K5 sin 2nt
n2 * 2n n? —(2n)2  n?— (2n)?
Kgcos3nt  Krsin3nt Kg(ci) — Ll}o)t n Ky sin(ci) — Ll}o)t n Ko cos(n + é— 1/}0)t
n?—(@Bn)? n?— @) n2(b—do)2t  n2(b—10)?  n?—(n+d— i)’
K1 sin(n —|—.¢ — .1&0)15 n K15 cos(n —.q-b —|—.1/.10)t n Kissin(n —.d-) -I-.?/.Jo)t
n? — (n+¢ — o)t n? —(n — ¢+ 1o)? n? —(n— ¢+ o)?
K4 cos(2n —|—.(;.5 —.ql}o)t N K5 sin(2n —|—.¢5 — .1&0)15 n Ky cos(2n —.q.S —|—.@[.Jo)t
- @ntg—do? | m-(@ntd—do) | - (20— o+ go)?
Ky7sin(2n — b+ 1/}0)t Kigsin 2((;5 — 1/}0)t Kigsin(2n + 20 — 2¢O)t
n2 — (2n — ¢ + 1j)? n? — 4(¢ — 1jo)? n2 — (2n + 2¢ — 24y)?
Koo sin(2n — 26 + 2¢)t K sin(n + 2¢ — 24t K sin(n + 2¢ — 2ot
n2 — (2n — 26 + 1)g)? 2 (n + 26 — 242 2z (n — 26 + 24)?
zin(i’m + 24 - QQLQ)t Koy sin(3n — 2(;'5.— 2%)2& Ko cos ¢qt
n2 — (3n + 2¢ — 2¢y)2 n? — (3n — 2¢ + 21))? n? — |}
cos 2uot cos(2n + 1o )t cos(2n + 1o )t cos(2n + 1o )t
6 2 i )2 Kar 2 i )2 K2gﬁ KQQﬁ
n? — (2¢o) n? — (2n+1g) n? — (2n — ) n? — (2n + 1)
cos(2n — 1/}0)t X, cos(n+21/}0)t K35 cos(n — ¢O)t K33 cos(n + ¢0)t
n2 — (2n — 2402 Sz _ (n+2¢0)2  n2— (n— )2 n2 — (n + )2
K34 cos(n — 21/}0)t Kss cos(3n+2z/}0)t K36 cos(3n — 21/}0)t K37 cos(3n + QLo)t
n? — (n — 2¢g)? n2 — (3n+2¢)2 n2 — (3n — 2¢y)2 n2 — (3n + )2
K328 cos(3n —.zﬁo)t. (8)
n? — (3n — )2

u= Acos(nt —e1) +

+ Ko3

+ Ky

+ K3

The values of constant K/s are given in Appendix ‘A’ (which can be obtained from the
authors).



504 CHARANPREET KAUR, BINAY KUMAR SHARMA AND SUSHIL YADAV

2.2 Resonance

It is clear that the motion becomes indeterminate if any one of the denominator vanishes
in equation ({8]), and hence the resonance occurs at these points, called the critical points.
It is found that resonance occurs at many points with three frequencies and at six points
Ry(n = 1), Ry(3n = v), Ry(2n = ¢), Ry(3n = 24), Rh(n = 2¢) and Ry(dn = 1))
with two frequencies due to oblateness. Also, it is found that resonance occurs at five
points (n = @), (n = 2¢), (3n = ¢), (2n = ¢), (3n = 2¢) in the frequencies n and ¢.
The 1 : 1 resonance repeated four times, 2 : 1 resonance occurs thrice while other four
resonances occur once only. If we take the solar radiation pressure as a perturbing force,
then there are only three points at which resonance occurs. If we consider the velocity
dependent terms of the P-R drag, then five points of resonance occur, where three points
of resonance are same, and 1 : 2 and 3 : 2 resonances occurs only due to the velocity
dependent terms of the P-R drag.

3 Time Period and Amplitude at the Resonance Point

3.1 Time period and amplitude at n = 2¢.>

We follow the method in [1] to determine the time period and amplitude at n = 2@5. It
is suggested to obtain the solution of when that of

du
W + n2u =0 (9)

is periodic and is known. The solution of @D is
u = kcoss,
where
s=nt+e n= % = the function of k; (10)
k, k1 and € are arbitrary constants. As we are probing the resonance in the motion of

the satellite at the point n = 2(;5, in our case, the resulting equation. can be written
as

d2u 2 / / /

ﬁ_i_n u=HA COSTLt:Hwa
where

F 2] .
- W = constant,n’ = 2¢, A’ = —sin?a,
ca(rs)(l —e
. a¢ o , . , ’ . Alk / /
P = i A'cos2n't, ) = uA'cosn't, = T{COS(QTL t+s) 4+ cos(2n't — s)}. (11)

Then

%_E@ ’_Eaﬂ (12)
dt  Wads — Was’
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ds Hou ,, H 0y
" wal T wan (13)

where

0, Ou Ou 0%u Ou

W=k "0s)0s ~"0s2 ok

Since n and W are the function of k only, we can put and into canonical
form with new variables defined by

= a function of k£ only.

dky = Wdk, (14)
dB = —ndk, = —nWdk, (15)
and can be put in the form
dkq 0 ds 0
- (B4 HY), — =——(B+ Hy).
dt 85( + Hy), dt 88( +HY)

Differentiating with respect to t and substituting the expression for % and %, we
have

?s H <anaw Rl 321/)) H? (a% % 0 <1 éw) 01/1) (16)

ez~ w K2 \0s0k 0k 0k \W 9k ) 0s

ok 0s 050k  Okot

Since the last expression of has the factor H?, it may, in general, be neglected in a
first approximation. In we find s and t are present in 1)’ as a sum of the periodic
terms with argument

s’ =s—n't,

the affected term in our case is

kA coss’
y= M a7)

Equation for s’ is then

d?s’ H 0 1 oy

_ 2 !/ 277 _r — 1

dt2+(n ") W@k(n—n’@s’) 0 (18)

or
d?s’ no H O kA’ .

At first approximation, we put constants k = kg, n =mng, W = Wy. Then can
be written as 5 5 o

d*s ne H k o
If the oscillations are small intervals, then may be put in the form

a2’ H 0 [ kA
-2 -9 AV bl /:0
a2 g ey (nnl)s
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or

2o/
d*s 9
1

=z TP s’ =0, (21)

where

_|pF, (TE)Qq.Ssin2oz V1
= \/ 8cga(7"s)(1 —e?) \ Woko’ (22)

9, 0y dy  d*yoy 5
Wo=W)=(n=—")= —n—— =k 2n't
0= Mo = 51050 85 ~ "2 iy — (¥ F1 cos” (20t + o),
= Vky cos? (26t + €g). (23)
The solution of is given by
s’ = Asin(pit + M),
where
k
A= \pfg, k2, Ao = the constants of integration, s’ =s—2n't.
1
The equation for s gives
s =2n't + Asin(pit + o). (24)
Using , and the equation for k gives
A
k=ko+ HA' ({5) = cos(pt + o), 25
o+ o cos(p1t + Ao) (25)

where kg is determined from ny = n’. Since ng is a known function of kg, the amplitude
‘A’ and the time period T are given by

k 27
A= Q’ ="
b1 b1
where ko is an arbitrary constant,
pF,(r,)2¢sin® a

b= V/8cars (1 — e2)kq cos(2¢ + €o)

Using equation (13), ko may be written as

k
Y
no

We may choose the constants of integration k1 = 1, ks = 1, g = 0 [12].
The amplitude and time period are given by

24/2car,(1 — €2 4m4/2 s)(1 — e2
= car ( <) cos2¢, T = T ca(r.)( <) cos 2¢.
\/pFynodr, sin o \/PFynodr, sina

In the same manner we have calculated the amplitudes and time periods at other points
also. Thereafter two cases arise.

A

Case 1: Regression angle is constant.
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o If we take the solar radiation pressure as a perturbing force, then there are only
three points at which resonance occurs. The corresponding amplitudes and time
periods are given in Table 2 below.

e In addition to the above, if we consider the velocity dependent terms of the P-R
drag, then at five points Ri(n = ¢), Re(3n = ¢), R3(2n = ¢), R4(3n = 2¢),
Rs(n = 2(;5) resonance occurs, where three points of resonance are same as in
subcase 1, and 1 : 2 and 3 : 2 resonances occur only due to the velocity dependent
terms of the P-R drag. But the amplitudes and time periods at all resonance points
are not same as in the case of the solar radiation pressure. The corresponding
amplitude and time period are given in Table 3.

Case 2: Regression angle is not constant.

It is found that resonance occurs at many points with three frequencies and at six
points R} (n = v), Ry(3n = ), R4(2n = 4), R,(3n = 2¢)), Ri(n = 2¢)) and Rj(4n = 1))
with two frequencies. The corresponding amplitudes and time-periods are given in Table
4.

Table 2: Amplitudes A;’s and time periods T;’s at resonance points with only radiation

Resonance | Amplitude | Time Period
1 n = (Z) A]_, AQ T17 T2
2n = gb A5 T5
3 3n=2¢ Ay Ty

pressure as a perturbing force when the regression angle is constant.

Resonance | Amplitude | Time Period
1 n = d) Ag, A4 T3, T4
2 2n = gb A6 T6
3 n=2¢ Aq, Ag 17,1y
4 3n = Q(b AlO TlO

Table 3: Amplitudes A;’s and time periods T;’s at resonance points for the velocity
dependent terms of the P-R drag when the regression angle is constant.

Table 4: Amplitudes A;’s and time periods T;’s at resonance points for two frequencies

Resonance Amplitude Time Period
n=1 Ay, Ay, Ayz, Avy | Tiy, Tho, Ths, Ty
2n =1 Ay, Ase Ti5,T16
n =2y Ay, Asg Ti7,T1g
3n=1v¢ Aqg Tig

3n = 2¢) AQO T20
dn =1 Aoy 15

when the regression angle is not constant.
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where A;’s and T;’s are are given in the Appendix A and Appendix B, respectively (which
can be obtained from the authors).

4 Discussion and Conclusion

We have investigated the resonance in the motion of a satellite in the Earth-Sun system
due to oblateness of the Earth and the P-R drag. Firstly, the equations of motion of
the geo-centric satellite in vector as well as in polar form has been evaluated by taking
the velocity of the satellite as v. Secondly, the velocity of the satellite in the P-R drag
have been deduced by using an operator and then substituted in the equations of motion.
We get resonances at many points with three frequencies, and at eleven points with two
frequencies between n and ¢ and n and 1.

Two resonance points 3 : 2 and 1 : 2 occur only due to the velocity dependent terms of
the P-R drag. We have shown the effect of the P-R drag and oblateness on the amplitude
and time period by using the following data of the satellite:

d . d
a = 6921000m; e = .0065;n = 0.06287662: & = 0.0000114077.,
SecC SecC

re = 149599 x 10%m; 7, = 149.6 x 10%m; ¢ =3 x 108 .
SEeC

We make the above quantities dimensionless by taking

Mg+ Mg = lunit, G = lunit,
rs = the distance between the Earth and the Sun = lunit.

From Figure 3, we observe that the amplitude and time period increase when ¢ increases
and it is maximum at ¢ = 0. p is the factor of the velocity dependent terms of the
P-R drag, when ¢ increases, p decreases, and hence, when the P-R decreases, then the
amplitude as well as the time period increase.

Figure 4 explains the variation in A; and time-period Ty, respectively, for —90° <
¢ < 90° and 0 < g < 1, at resonance 1 : 1 with the P-R drag. The below graphs show
that the amplitude and time period decrease as ¢ increases.

Amplitude Timeperiods

ooozf ; ]
Agd Tg4
y Ag3 0010} 9 /Tq3

0.001 [ ;
0.005

0.000 0.000

h=3

h=3

Aqt -0005 Ta1
-0.001 | 1

=0.010 |
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Figure 3: (a) Comparison of amplitudes at same resonant points and for different ¢’s:
Aql = 0.20 (Red); Agq2 = 0.40 (Green); Ag3 = 0.60 (Gray) and Ag4 = 0.80 (Blue). (b)
Comparison of time periods at same resonant points and for different ¢’s: T'ql = 0.20
(Red); T'q2 = 0.40 (Green); T'q3 = 0.60 (Gray) and T'q¢4 = 0.80 (Blue), at resonance 1:1.
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Figure 4: (a) Variation in amplitude, (b) variation in time period T’ for 0° < ¢ < 90°
and ¢ (0 < g < 1) at resonance 1:1 with the P-R drag.
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(a) Variation in amplitude 'A’ w.r.t. ¢ , at resonance 1:2. (b) Time period

"T” at resonance 1:1, for —1° < ¢ < 1% and ¢ (0 < ¢ < 1) without the P-R drag

Amplitude

6.x10710

4 x1070

-10

2.x10
1]

-2.x10710 }

-4.%10710

-6.x10710

(a)

(b)

TimePericd

T
] ﬁ

W

7
i

2
-1

-1 5 a

Figure 6: (a) Comparison of amplitude. (b) Comparison of time periods due to the
coefficient of oblateness of the Earth (J3) at different resonant points.

Figure 4 explains the variation in A; and time period T}, respectively, for —90° <
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¢ < 90° and 0 < ¢ < 1 at resonance 1 : 1 with the P-R drag. The above graphs show
that the amplitude and time-period decrease as ¢ increases.

Figure 5 also explains the amplitude and time period with respect to ¢. In this case
it can be observed that the amplitude becomes very high of greater range of ¢ but it
is not in the case of the velocity dependent terms of the P-R drag. Similarly, Figure 5
explains the variation in amplitude for —90° < ¢ < 90° and 0 < ¢ < 1 at resonance
1: 2. The graphs show that the amplitude is periodic with respect to ¢ and it increases
(decreases) as ¢ increases (decreases).

Figure 6 also explains the amplitudes and time periods due to oblateness of the Earth
(J2). In these graphs we have shown the comparison of the amplitude and time period
at different critical points, where resonance occurs, and it is clear from the figures that
the value of the amplitudes and time periods is different at different critical points. The
present study is becoming of more interest in the commensurable orbits, for example,
the interacting and navigation satellite system.
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