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1 Introduction

Fractional differential equations and integrals are valuable tools in the modeling of many
phenomena in various fields of science and engineering. Indeed, there are numerous
applications in viscoelasticity, electrochemistry, control, porous media, electromagnetism,
etc. In the monographs [1,3,4,11,12,15], we can find the mathematical background and
various applications of fractional calculus. Recently, many researchers studied different
fractional problems involving the Riemaan-Liouville, Caputo and Hadamard derivatives;
see, for example, the papers [2, 17]. Sufficient conditions for the oscillation of solutions
of differential equations are given in [9, 14,16].
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The method of upper and lower solutions has been successfully applied to study the
existence of solutions for ordinary and fractional differential equations and inclusions.
See the monograph [13], and the papers [8, 18,19], and the references therein.

This paper deals with the existence of oscillatory and nonoscillatory solutions for
the following class of initial value problems for Caputo–Hadamard impulsive fractional
differential equations:

HcDα
tk
y(t) = f(t, y(t)), t ∈ (tk, tk+1), (1)

y(t+k ) = Ik(y(t−k )), k = 1, 2, . . . , (2)

y(1) = y∗, (3)

where HcDα
tk

is the Caputo–Hadamard fractional derivative of order 0 < α ≤ 1,
f : J × IR → IR is a given function, y∗ ∈ IR, Ik ∈ C(IR, IR), 1 = t0 < t1 < . . . < tm <
tm+1 < · · · <∞, y(t+k ) = lim

h→0+
y(tk + h) and y(t−k ) = lim

h→0+
y(tk − h) represent the right

and left limits of y(t) at t = tk, k = 1, 2, . . .
This paper initiates the study of oscillatory and nonoscillatory solutions for impulsive

fractional differential equations involving the Caputo–Hadamard fractional derivative.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that will be
used in the remainder of this paper. Let C(J, IR) be the space of all continuous functions
from J into IR.

‖y‖∞ = sup
t∈J
|y(t)|.

Let BC(J, IR) be the Banach space of all continuous and bounded functions from J into
IR with the norm

‖y‖∞ = sup
t∈J
|y(t)|,

and let L1(J, IR) be the Banach space of Lebesgue integrable functions y : J −→ IR with
the norm

‖y‖L1 =

∫ T

1

|y(t)|dt.

Denote by AC(J, IR) the space of absolutely continuous functions from J into IR.

Let us recall some definitions and properties of the Hadamard fractional integration

and differentiation. Let δ = t
d

dt
, and set

ACnδ (J, IR) = {y : J −→ IR, δn−1y(t) ∈ AC(J, IR)}.

Definition 2.1 [12] The Hadamard fractional integral of order r > 0 for a function
h ∈ L1([1,+∞), IR) is defined as

HIrh(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
h(s)

s
ds,

provided the integral exists for a.e. t > 1.
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Example 2.1 Let q > 0. Then

HIq1 ln t =
1

Γ(2 + q)
(ln t)1+q; for a.e. t ∈ [1,+∞).

Definition 2.2 [12] The Hadamard fractional derivative of order r > 0 applied to
the function h ∈ ACnδ ([1,+∞), IR) is defined as

(HDq
1h)(t) = δn(HIn−r1 h)(t),

where n− 1 < r < n, n = [r] + 1, and [r] is the integer part of r.

Definition 2.3 [10] For a given function h ∈ ACnδ ([a, b], IR), such that 0 < a < b,
the Caputo–Hadamard fractional derivative of order r > 0 is defined as follows:

HcDry(t) =H Dr

[
y(s)−

n−1∑
k=0

δky(a)

k!

(
log

s

a

)k]
(t),

where Re(α) ≥ 0 and n = [Re(α)] + 1.

Lemma 2.1 [10] Let y ∈ ACnδ ([a, b], IR) or Cnδ ([a, b], IR) and α ∈ C. Then

HIr(HcDry)(t) = y(t)−
n−1∑
k=0

δky(a)

k!

(
log

t

a

)k
.

3 Main Results

We consider the space

PC(J, IR) = {y : J → IR, y ∈ C((tk, tk+1], IR), k = 0, 1, . . . ,

and there exist y(t+k ) and y(t−k ), k = 1, 2, . . . , with y(t−k ) = y(tk)}.

This set is a Banach space with the norm

‖y‖PC = sup
t∈J
|y(t)|.

Let us start by defining what we mean by a solution of problem (1)–(3).

Definition 3.1 A function y ∈ PC ∩ C1((tk, tk+1), IR), k = 0, 1, . . ., is said to be
a solution of (1)–(3) if y satisfies the equation HcDα

tk
y(t) = f(t, y(t)) on (tk, tk+1) and

conditions y(t+k ) = Ik(y(t−k )), k=1,2,. . . , y(1) = y∗.

Definition 3.2 A function u ∈ PC ∩ C1((tk, tk+1), IR), k = 0, 1, . . . , is said to be a
lower solution of (1)–(3) if HcDα

tk
u(t) ≤ f(t, u(t)) on (tk, tk+1) and u(t+k ) ≤ Ik(u(tk)), k =

1, . . .. Similarly, a function v ∈ PC ∩C1((tk, tk+1), IR), k = 0, . . . , is said to be an upper
solution of (1)–(3) if HcDα

tk
v(t) ≥ f(t, v(t)) on (tk, tk+1) and v(t+k ) ≥ Ik(v(tk)), k =

1, 2, . . . .

For the study of this problem we first list the following hypotheses:
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(H1) The function f : J × IR→ IR is continuous;

(H2) For all r > 0 there exists a function hr ∈ C(J, IR+) such that

|f(t, y)| ≤ hr(t) for all t ∈ J and all |y| ≤ r;

(H3) There exist u and v ∈ PC ∩C1((tk, tk+1), IR), k = 0, . . ., which are the lower and
upper solutions for the problem (1)–(3) such that u ≤ v;

(H4)

u(t+k ) ≤ min
y∈[u(t−k ),v(t−k )]

Ik(y) ≤ max
y∈[u(t−k ),v(t−k )]

Ik(y) ≤ v(t+k ), k = 1, 2, . . . .

Theorem 3.1 Assume that hypotheses (H1)-(H4) hold. Then the problem (1)–(3)
has at least one solution y such that

u(t) ≤ y(t) ≤ v(t) for all t ∈ J.

Proof. The proof will be given in several steps.

Step 1: Consider the problem

HcDα
t0y(t) = f(t, y(t)), t ∈ J1 := [t0, t1], (4)

y(1) = y∗. (5)

Transform the problem (4)–(5) into a fixed point problem. Consider the following mod-
ified problem:

HcDα
t0y(t) = f1(t, y(t)), t ∈ J1, (6)

y(1) = y∗, (7)

where

f1(t, y) = f(t, τ(t, y))

τ(t, y) = max{u(t),min(y, v(t))}

and

y(t) = τ(t, y).

A solution to (6)–(7) is a fixed point of the operator N : C([t0, t1], IR) −→ C([t0, t1], IR)
defined by

y(t) = y∗ +
1

Γ(α)

∫ t

t0

(
log

t

s

)α−1
f1(s, y(s))

ds

s
.

Remark 3.1 (i) Notice that f1 is a continuous function, and from (H2) there exists
M∗ > 0 such that

|f1(t, y)| ≤M∗ for each (t, y) ∈ J1 × IR.

(ii) By the definition of τ it is clear that

u(t+k ) ≤ Ik(τ(tk, y(tk))) ≤ v(t+k ), k = 1, 2, . . . .
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In order to apply the nonlinear alternative of Leray–Schauder type, we first show that
N is continuous and completely continuous.

Claim 1: N is continuous.

Let {yn} be a sequence such that yn → y in C([t0, t1], IR). Then

|N(yn)(t)−N(y)(t)| ≤ 1

Γ(α)

∫ t

t0

(
log

t

s

)α−1
|f1(s, yn(s))− f1(s, y(s))|ds

s
.

Since f1 is a continuous function, we have

‖N(yn)−N(y)‖∞ ≤

(
log

t1
t0

)α
Γ(α+ 1)

‖f1(·, yn(·))− f1(·, y(·))‖∞.

Thus
‖N(yn)−N(y)‖∞ → 0 as n→∞.

Claim 2: N maps bounded sets into bounded sets in C([t0, t1], IR).

Indeed, it is enough to show that there exists a positive constant ` such that for each
y ∈ Bq = {y ∈ C([t0, t1], IR) : ‖y‖∞ ≤ q} one has ‖Ny‖∞ ≤ `. Let y ∈ Bq. Then for
each t ∈ J1 we have

y(t) = y∗ +
1

Γ(α)

∫ t

t0

(
log

t

s

)α−1
f1(s, y(s))

ds

s
.

By (H1) and Remark 3.1 we have for each t ∈ J1

|Ny(t)| ≤ |y∗|+
1

Γ(α)

∫ t

t0

(
log

t

s

)α−1
|f1(s, y(s))|ds

s

≤ |y∗|+
M

(
log

t1
t0

)α
Γ(α+ 1)

:= `.

Thus ‖N(y)‖∞ ≤ `.

Claim 3: N maps bounded set into equicontinuous sets of PC.

Let τ1, τ2 ∈ J1, τ1 < τ2 and Bq be a bounded set of PC as in Claim 2. Let y ∈ Bq,
then

|N(u2)−N(u1)| ≤
M

(
log

τ2
τ1

)α
Γ(α+ 1)

.

As τ2 −→ τ1 the right-hand side of the above inequality tends to zero.
As a consequence of Claims 1 to 3 together with the Arzela–Ascoli theorem we can

conclude that N : C([t0, t1], IR) −→ C([t0, t1], IR) is continuous and completely contin-
uous.
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Claim 4: A priori bounds on solutions.

Let y be a possible solution of y = λN(y) with λ ∈ [0, 1]. Then we have

y(t) = λ

[
|y∗|+

1

Γ(α)

∫ t

t0

(
log

t

s

)α−1
|f1(s, y(s))|ds

s

]
.

This implies by Remark 3.1 that for each t ∈ J1 we have

|Ny(t)| ≤ |y∗|+
1

Γ(α)

∫ t

t0

(
log

t

s

)α−1
|f1(s, y(s))|ds

s

≤ |y∗|+
M

(
log

t1
t0

)α
Γ(α+ 1)

:= M1.

Set
U = {y ∈ C([t0, t1], IR) : ‖y‖∞ < M1 + 1}.

From the choice of U there is no y ∈ ∂U such that y = λN(y) for some λ ∈ (0, 1). As a
consequence of the nonlinear alternative of Leray–Schauder type, we deduce that N has
a fixed point y in U which is a solution of the problem (6)–(7).

Claim 5: Every solution y of (6)− (7) satisfies

u(t) ≤ y(t) ≤ v(t) for all t ∈ J1.

Let y be a solution of (6)− (7). We prove that

u(t) ≤ y(t) for all t ∈ J1.

Suppose not. Then there exist τ1, τ2 with τ1 < τ2 such that u(τ1) = y(τ1) and

u(t) > y(t) for all t ∈ (τ1, τ2).

In view of the definition of τ one has

HcDαy(t) = f(t, u(t)) for all t ∈ (τ1, τ2).

An integration on (τ1, t] with t ∈ (τ1, τ2) yields

y(t)− y(τ1) =
1

Γ(α)

∫ t

τ1

(
log

t

s

)α−1
f(s, u(s))

ds

s
.

Since u is a lower solution to (4)− (5), we have

u(t)− u(τ1) ≤ 1

Γ(α)

∫ t

τ1

(
log

t

s

)α−1
f(s, u(s))

ds

s
; t ∈ (τ1, τ2).

It follows from y(τ1) = u(τ1) that

u(t) ≤ y(t); for all t ∈ (τ1, τ2),



480 M. BENCHOHRA, S. HAMANI AND J. NIETO

which is a contradiction, since u(t) > y(t) for all t ∈ (τ1, τ2). Consequently,

u(t) ≤ y(t) for all t ∈ J1.

Analogously, we can prove that

y(t) ≤ v(t) for all t ∈ J1.

This shows that
u(t) ≤ y(t) ≤ v(t) for all t ∈ J1.

Consequently, the problem (4) − (5) has a solution y satisfying u ≤ y ≤ v. Denote
this solution by y0.

Step 2: Consider the following problem:

HcDα
t1y(t) = f(t, y(t)), t ∈ J2 := [t1, t2], (8)

y(t+1 ) = I1(y0(t−1 )). (9)

Consider the following modified problem:

HcDα
t1y(t) = f1(t, y(t)), t ∈ J2, (10)

y(t+1 ) = I1(y0(t−1 )). (11)

A solution to (10)–(11) is a fixed point of the operator N1 : C([t1, t2], IR) −→
C([t1, t2], IR) defined by

N1(y)(t) =
1

Γ(α)

∫ t

t0

(
log

t

s

)α−1
f1(s, y(s))

ds

s
+ I1(y0(t−1 )).

Since y0(t1) ∈ [u(t−1 ), v(t−1 )], (H4) implies that

u(t+1 ) ≤ I1(y0(t−1 )) ≤ v(t+1 ),

that is
u(t+1 ) ≤ y(t+1 ) ≤ v(t+1 ).

Using the same reasoning as that used for problem (4)–(5), we can conclude the existence
of at least one solution y to (10)–(11). We now show that this solution satisfies

u(t) ≤ y(t) ≤ v(t) for all t ∈ J2.

Let y be the above solution to (10)–(11). We show that

u(t) ≤ y(t) for all t ∈ J2.

Let y be a solution of (6)− (7). We prove that

u(t) ≤ y(t) for all t ∈ J1.

Suppose not. Then there exist τ3, τ4 with τ3 < τ4 such that u(τ3) = y(τ4) and

u(t) > y(t) for all t ∈ (τ3, τ4).
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In view of the definition of τ one has

HcDαy(t) = f(t, u(t)) for all t ∈ (τ3, τ4).

An integration on (τ3, t] with t ∈ (τ3, τ4) yields

y(t)− y(τ3) =
1

Γ(α)

∫ t

τ3

(
log

t

s

)α−1
f(s, u(s))

ds

s
.

Since u is a lower solution to (4)− (5), we have

u(t)− u(τ3) ≤ 1

Γ(α)

∫ t

τ3

(
log

t

s

)α−1
f(s, u(s))

ds

s
; t ∈ (τ3, τ4).

It follows from y(τ3) = u(τ3) that

u(t) ≤ y(t) for all t ∈ (τ3, τ4),

which is a contradiction, since u(t) > y(t) for all t ∈ (τ3, τ4). Consequently,

u(t) ≤ y(t) for all t ∈ J2.

Analogously, we can prove that

y(t) ≤ v(t) for all t ∈ J2.

This shows that
u(t) ≤ y(t) ≤ v(t) for all t ∈ J2.

Denote this solution by y1.

Step 3: We continue this process and take into account that ym := y|[tm−1,tm] is a
solution to the problem

HcDα
tm−1

y(t) = f(t, y(t)), t ∈ Jm := [tm−1, tm], (12)

y(t+m) = Im(ym−1(t−m−1)). (13)

Consider the following modified problem:

HcDr
tm−1

y(t) = f1(t, y(t)), t ∈ Jm, (14)

y(t+m) = Im(ym−1(t−m−1)). (15)

A solution to (14)–(15) is a fixed point of the operator Nm : C([tm−1, tm], IR) −→
C([tm−1, tm], IR) defined by

Nm(y)(t) =
1

Γ(α)

∫ t

tm

(
log

t

s

)α−1
f(s, y(s))

ds

s
+ Im(y(t−m−1)).

Using the same reasoning as that used for problems (4)-(5) and (8)–(9) we can conclude
the existence of at least one solution y to (12)–(13). Denote this solution by ym−1.

The solution y of the problem (1)–(3) is then defined by
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y(t) =



y0(t), t ∈ [t0, t1],
y2(t), t ∈ (t1, t2],
.
.
.
ym−1(t), t ∈ (tm−1, tm],
.
.
.

The proof is complete.

3.1 Nonoscillation and oscillation of solutions

The following theorem gives sufficient conditions to ensure the nonoscillation of solutions
of problem (1)–(3).

Theorem 3.2 Let u and v be lower and upper solutions, respectively, of (1)–(3) with
u ≤ v and assume that

(H5) u is eventually positive nondecreasing, or v is eventually negative nonincreasing.

Then every solution y of (1)–(3) such that y ∈ [u, v] is nonoscillatory.

Proof. Assume that u is eventually positive. Thus there exists Tu > t0 such that

u(t) > 0 for all t > Tu.

Hence y(t) > 0 for all t > Tu, and t 6= tk, k = 1, . . . For some k ∈ N and t > tu, we have
y(t+k ) = Ik(y(tk)). From (H4) we get y(t+k ) > u(t+k ). Since for each h > 0, u(tk + h) ≥
u(tk) > 0, one has Ik(y(tk)) > 0 for all tk > Tu, k = 1, . . . , which means that y is
nonoscillatory. Analogously, if v is eventually negative, then there exists Tv > t0 such
that

y(t) < 0 for all t > Tv,

which means that y is nonoscillatory. This completes the proof.

The following theorem discusses the oscillation of solutions of problem (1)–(3).

Theorem 3.3 Let u and v be lower and upper solutions, respectively, of (1)–(3),
and assume that the sequences u(tk) and v(tk), k = 1, 2, . . . , are oscillatory. Then every
solution y of (1)–(3) such that y ∈ [u, v] is oscillatory.

Proof. Suppose on the contrary that y is a nonoscillatory solution of (1)–(3). Then
there exists Ty > 0 such that y(t) > 0 for all t > Ty, or y(t) < 0 for all t > Ty. In the
case when y(t) > 0 for all t > Ty we have v(tk) > 0 for all tk > Ty, k = 1, 2, . . . , which
is a contradiction since v(tk) is an oscillatory upper solution. Analogously, in the case
y(t) < 0 for all t > Ty we have u(tk) < 0 for all tk > Ty, k = 1, 2, . . . , which is also a
contradiction, since u(tk) is an oscillatory lower solution.
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3.2 An example

We consider the following impulsive fractional differential equation:

HcDαy(t) = f(t, y(t)), for each t ∈ (tk, tk+1), 0 < α < 1, k = 1, 2, . . . , (16)

y(t+k ) = Ik(y(t−k )), k = 1, 2, . . . , (17)

y(1) = y∗, (18)

where f : J × IR→ IR. Assume that there exist g1(·), g2(·) ∈ C(J, IR) such that

g1(t) ≤ f(t, y) ≤ g2(t) for all t ∈ J, and y ∈ IR,

and for each t ∈ J ∫ t

1

g1(s)
ds

s
≤ Ik

(∫ t

1

g1(s)
ds

s

)
, k ∈ IN,

∫ t

1

g2(s)
ds

s
≥ Ik

(∫ t

1

g2(s)
ds

s

)
, k ∈ IN.

Consider the functions u(t) :=

∫ t

1

g1(s)
ds

s
and v(t) :=

∫ t

1

g2(s)
ds

s
. Clearly, u and v are

lower and upper solutions of the problem (16)-(18), respectively; that is,

HcDαu(t) ≤ f(t, u(t)) for all t ∈ J,

and
HcDαv(t) ≥ f(t, v(t)) for all t ∈ J.

Since all the conditions of Theorem 3.1 are satisfied, the problem (16)-(18) has at least
one solution y on J with u ≤ y ≤ v. If g1(t) > 0, then u is positive and nondecreasing,
thus y is nonoscillatory. If g2(t) < 0, then v is negative and nonincreasing, thus y is
nonoscillatory. If the sequences u(tk) and v(tk) are both oscillatory, then y is oscillatory.

4 Conclusion

In this paper, we have provided some sufficient conditions guaranteeing the existence of
the oscillatory and nonoscillatory solutions of a class of impulsive differential equations
involving the Caputo–Hadamard fractional derivative. We use the concept of the upper
and lower solutions method combined with the nonlinear alternative of Leray–Schauder
type.
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