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Abstract: The aim of this paper is to study the uniform asymptotic stability in
probability when a nonlinear stochastic differential equation does not have a trivial
solution. For nontrivial solutions of a nonlinear stochastic differential equation, the
problem of uniform asymptotic stability in probability is reformulated for a ball of
radius R > 0. Based on this new formulation, a theorem for the uniform asymptotic
stability in probability for this ball is proposed by using a Lyapunov approach.
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1 Introduction

In this paper, we discuss a new concept of uniform asymptotic stability in probability
for stochastic systems which are described by stochastic differential equations (SDEs)
driven by multiplicative noises. These systems differ from ordinary differential equations
(ODEs) modeling deterministic processes. Unlike an ODE, a SDE contains two terms:
the drift for the evolution of time and the diffusion for the action of the Brownian motion.
These systems correspond to Itô processes, and the noises that affect them are Brownian
motions, also called the Wiener processes. This kind of equations is extensively studied
in [8, 16, 17] and references therein.

Numerous phenomena are described by this class of models when a deterministic de-
scription is not satisfactory: in finance (financial mathematics and stock prices), biology

∗ Corresponding author: mailto:barbata_asma@yahoo.fr

c© 2019 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua464

mailto: barbata_asma@yahoo.fr
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (4) (2019) 464–473 465

(geographical and population evolution), geology (earthquakes), engineering (synthesis of
control taking into account the failures that may appear randomly), computing (modeling
networks), electricity (modeling of electrical circuits taking account of noise of electri-
cal circuits), physical and mechanical processes (particle movements in a gas or ionized
medium, quantum physics), etc.

The notion of stability of the solutions of SDE was introduced by Kats and Krasovskii
[9]. Then, in the works of Kushner [11, 12], Has’minski [8], Kozin [10], Wonham [19],
Zakai [22, 23], Gikhman and Skorokhod [5] and Friedman [4], several types of stability
have been defined for the SDE and a Lyapunov-type approach to study these stabilities
has been developed and elaborated.

In the literature, the asymptotic stability in probability has been extensively studied
in many works. Without exhaustivity, we can cite the textbooks [8, 16], the survey
papers [10, 13] and the papers [6, 7, 14, 18, 20, 21, 24], with references therein. It is
the asymptotic stability in probability of the equilibrium point x = 0 which is treated in
the works mentioned above and the case where the stochastic differential equation has a
nontrivial solution x 6= 0 is not considered.

In [2], the authors consider that the equilibrium point of the stochastic differential
equation is not the origin and that the differential stochastic equation is perturbed by an
external disturbance. There is a study of the stability of nontrivial solution in [1, 3, 15].

To deal with the existence of nontrivial solutions x 6= 0 of a stochastic differential
equation, we propose to study the uniform asymptotic stability in probability for a ball
with a given radius R > 0 and the classical concepts of uniform stability in probability
and uniform asymptotic stability in probability are reformulated for this ball. Sufficient
conditions are derived by using a Lyapunov approach in order to guarantee that a solution
initialized outside of the ball converges asymptotically in probability to the border of the
ball.

The paper is organized as follows. The concepts of uniform stability in probability
and uniform asymptotic stability in probability for a ball of radius R > 0 are given in
Section 2. A new theorem guaranteeing the uniform asymptotic stability in probability
for this ball is proposed in Section 3. This theorem is illustrated by an example in Section
4.

Notations. IRn denotes the n-dimensional Euclidean space.

‖A‖ =

√∑
i,j

A2
i,j =

√
tr(ATA)

is the Euclidean norm of the matrix A, while ‖x‖ =
√
xTx is the Euclidean norm of the

vector x. a∨b is the maximum of reals a and b. a∧b is the minimum of reals a and b. The
SDE means a stochastic differential equation. The probability measure associated with
the random variable x is denoted P{x}. E{x} stands for the mathematical expectation
operator with respect to the given probability measure P{x}. Let K denote the family
of all continuous and nondecreasing functions µ : IR+ → IR+ such that µ(0) = 0 and
µ(r) > 0 if r > 0.

2 Concepts of Stability in Probability

Consider the following nonlinear stochastic differential equation (SDE):

dx = f(x) d t+ g(x) dw, (1)
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where x ∈ IRn is the state vector, w ∈ IRd is a multi-dimensional independent Wiener
processes (or Brownian motions). The initial condition is given by x0 = x(t0). We
assume that f(0) 6= 0 or g(0) 6= 0, i.e. the stochastic differential equation (1) does not
have the trivial solution x = 0.

The functions f(x) and g(x) verify the following standard assumptions for Itô calculus
[8, 16, 17] : ∫ T

0

‖f(x(s))‖ d s <∞ a.s. ∀T > 0, (2a)∫ T

0

‖g(x(s))‖2 d s <∞ a.s. ∀T > 0. (2b)

To guarantee the existence and the uniqueness of the solution x(t) of the SDE (1),
the functions f(x) and g(x) satisfy the following relations ∀x ∈ IRn and ∀x ∈ IRn

([8, 16, 17]):

‖f(x)‖2 + ‖g(x)‖2 6 k1(1 + ‖x‖2), (3a)

‖f(x)− f(x)‖ ∨‖g(x)− g(x)‖ 6 k2 ‖x− x‖ , (3b)

where k1 and k2 are given strictly positive reals.
In this paper, we study the uniform stability in probability of the solution of a SDE

when the origin is not an equilibrium point. The considered stability is characterized by
the convergence of the solution in probability to a border of a ball BR defined as follows.

Definition 2.1 Let R > 0 be a real. The ball BR is defined by

BR = {x ∈ IRn : ‖x‖ 6 R}. (4)

Definition 2.2 The ball BR is said to be uniformly stable in probability for the SDE
(1) if, for any 0 < ε < 1 and for any r > 0, there exists δ(ε, r, t0) > 0 such that

P{x(t) ∈ IRn : R < ‖x(t)‖ 6 R+ r for all t > t0} > 1− ε,
∀x0 ∈ IRn and R < ‖x0‖ 6 R+ δ(t0, ε, r). (5)

Definition 2.3 The ball BR is uniformly asymptotically stable in probability for the
SDE (1) if the ball is uniformy stable in probability and, for any 0 < ε < 1, there exists
δ(ε, t0) > 0 such that

P{x(t) ∈ IRn : lim sup
t→+∞

‖x(t)‖ = R} > 1−ε, ∀x0 ∈ IRn, R < ‖x0‖ 6 R+δ(ε, t0). (6)

3 Uniform Asymptotic Stability in Probability of Nontrivial Solution of SDE

Let V (x, t) be a function valued on IR which is continuously twice differentiable in x ∈ IRn

and once differentiable in t ∈ IR+. Applying the Itô formula to V (x, t) with SDE (1)
yields [8, 16, 17]

dV (x, t) = LV (x, t) d t+ BV (x, t) dw (7)

with

LV (x, t) = Vt(x, t) + Vx(x, t)f(x) +
1

2
tr(gT (x)Vxx(x, t)g(x)), (8a)

BV (x, t) = Vx(x, t)g(x), (8b)
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where

Vt(x, t) =
∂V (x, t)

∂t
,

Vx(x, t) =

[
∂V (x,t)
∂x1

. . . ∂V (x,t)
∂xn

]
,

Vxx(x, t) =


∂2V (x,t)
∂x1∂x1

. . . ∂2V (x,t)
∂x1∂xn

... . . . ...
∂2V (x,t)
∂xn∂x1

. . . ∂2V (x,t)
∂xn∂xn

.

In the sequel, it is assumed that Vt(x, t) = 0, so V (x, t) is replaced by V (x).
The following theorem solves the problem of the uniform asymptotic stability in

probability of SDE (1).

Theorem 3.1 Let V (x) be a positive definite Lyapunov function. If there exist three
functions µ1, µ2 and µ3 in K and a scalar γ > 0 and R > 0, such that

µ1(‖x‖) 6 V (x) 6 µ2(‖x‖), (9)

LV (x) 6 −µ3(‖x‖) + γ, (10)

−µ3(‖x‖) + γ < 0, ∀ ‖x‖ > R, (11)

µ1(R) = µ2(R), (12)

then the ball BR is uniformly asymptotically stable in probability for the SDE (1).

Proof. First step: The ball BR is uniformly stable in probability.

Fix t0 ∈ IR+. Let 0 < ε < 1 and r > 0, we define x(t) as the solution of the system
(1), we suppose that ∀t > t0, we have ‖x‖ > R.

The following stopping time

τr = inf{t > t0 such that ‖x(t)‖ > R+ r} (13)

is defined to eliminate all the solutions that go beyond R+ r.
From (7), (8a), (10) and (11), we have

dV (x) = LV (x) d t+ Vxg(x) dw(t) (14)

and
LV (x) 6 −µ3(‖x‖) + γ < 0, ∀ ‖x‖ > R. (15)

Applying the expectation to the previous inequality leads to

E

{∫ t∧τr

t0

dV (x(s))

}
= E

{∫ t∧τr

t0

(LV (x(s) d s+ Vxg(x(s)) dw(s))

}
. (16)

In view of (15) and the following relation

E

{∫ t∧τr

t0

Vxg(x(s)) dw(s)

}
= 0, (17)
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the equation (16) becomes

E

{∫ t∧τr

t0

dV (x(s))

}
= E

{∫ t∧τr

t0

LV (x(s)) d s

}
6 0. (18)

Integrating (18) gives

E{V (x(t ∧ τr))− V (x0)} 6 0. (19)

The previous inequality is equivalent to

E{V (x(t ∧ τr))− µ1(R)} 6 E{V (x0)− µ1(R)}, (20)

and, if τr 6 t, we obtain

P{τr 6 t} E{V (x(τr))− µ1(R)} 6 E{V (x0)− µ1(R)}. (21)

Condition (9) yields µ1(R+ r) 6 V (x(τr)), then we have

P{τr 6 t}(µ1(R+ r)− µ1(R)) 6 (V (x0)− µ1(R)). (22)

So, if t→ +∞, the following inequality holds true:

P{τr 6 +∞} 6 V (x0)− µ1(R)

µ1(R+ r)− µ1(R)
. (23)

Since we have µ1(R) = µ2(R) (because of the continuity at the point R of µ2), there
exists 0 < δ0(t0, ε, r) < r such that R < ‖x0‖ < R+ δ0(t0, ε, r), then we have

µ2(‖x0‖)− µ2(R) 6 ε(µ1(R+ r)− µ1(R)). (24)

Using the inequality above we have

V (x0)− µ1(R) 6 ε(µ2(‖x0‖)− µ2(R)) 6 ε(µ1(R+ r)− µ1(R)).

From (??) we can deduce that

V (x0)− µ1(R)

µ1(R+ r)− µ1(R)
6 ε. (25)

Fix x0 ∈ IRn such that R < ‖x0‖ < R+δ0(ε, r, t0). From the existence and uniqueness
of the solution x to the SDE (1) (see (2a) and (2b)), we assume that there exists x(t)
such that ‖x(t)‖ > R, ∀t > t0.

Using x0 chosen above and the inequality (25), we have

P{τr 6 +∞} 6 ε. (26)

Finally, we have ∀R < ‖x0‖ < (R+ δ0(ε, t0, r)) 6 R+ r. Then, we obtain

P{x(t) ∈ IRn : R < ‖x(t)‖ 6 R+ r for all t > t0} > 1− ε (27)

and the condition (5) in Definition 2.2 is proved.
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Second step: The ball BR is uniformly asymptotically stable in probability.

Since the ball BR is uniformly stable in probability (see step 1), ∀ ε and r with
0 < ε < 1 and r > 0, ∃ δ0(ε, r, t0) such that R < ‖x0‖ < R + δ0(ε, r, t0). From the
existence and uniqueness of the solution x to the SDE (1) (see (2a) and (2b)), we assume
that there exists x(t) such that ‖x(t)‖ > R, ∀t > t0. So, the following relation

P
{
x(t) ∈ IRn : R < ‖x(t)‖ 6 R+

r

2
, t > t0

}
> 1− ε

4
(28)

holds.
In view of the theorem of continuity on µ2(R) and since R < ‖x0‖, for all β with

R < β < ‖x0‖, there exists α such that R < α < β and

µ2(α)− µ2(R)

µ1(β)− µ1(R)
6
ε

4
. (29)

We define the stopping times as follows:

τα = inf{t > t0 such that ‖x(t)‖ 6 α}, (30)

τr = inf
{
t > t0 such that ‖x(t)‖ > R+

r

2

}
. (31)

Applying the Itô formula to V (x), we have

E{V (x(τα ∧ τr ∧ t))} = E{V (x(t0))}+ E

{∫ τα∧τr∧t

t0

LV (x(s)) d s

}
. (32)

If t < τα ∧ τr, we have ‖x(t)‖ > α and, using (10), we obtain

LV (x(t)) 6 −µ3(‖x‖) + γ 6 −µ3(α) + γ. (33)

Integrating (32) and using (33) yield

E{V (x(τα ∧ τr ∧ t))} 6 E{V (x(t0))}+ (γ − µ3(α))(t− t0)P{t < τα ∧ τr}. (34)

Since the left term in inequality (34) is positive, we obtain

(t− t0)(µ3(α)− γ)P{t < τα ∧ τr} 6 E{V (x0)}. (35)

Since the term (t − t0)(µ3(α) − γ)P{t < τα ∧ τr} is bounded and using condition (11),
we have

P{τα ∧ τr = +∞} = 0 (36)

when t→ +∞. So we deduce

P{τα ∧ τr < +∞} = 1. (37)

Also, from the beginning of the second step of the proof, we get

P{τr < +∞} 6 ε

4
. (38)

Then, using (37) and (38), the following relation

1 = P{τα ∧ τr < +∞} 6 P{τα < +∞}+ P{τr < +∞} 6 P{τα < +∞}+
ε

4
(39)
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is obtained. Finally, we deduce

P{τα < +∞} > 1− ε

4
. (40)

Now, we choose θ > 0 sufficiently large such that

P{τα < θ} > 1− ε

2
, (41)

and relations (38) and (41) lead to

P{τα < τr ∧ θ} > P{(τα < θ) ∩ (τr = +∞)}
> P{(τα < θ)}P{τr = +∞}
= P{(τα < θ)}(1−P{τr < +∞})
> P(τα < θ)−P{τr < +∞}

> 1− 3ε

4
. (42)

We define the time σ and the stopping time τβ as follows:

σ =

{
τα, if τα < τr ∧ θ,
+∞, (43)

τβ = inf{t > σ, ‖x(t)‖ > β}. (44)

Taking t > θ, applying the Itô formula to the function V (x) and using conditions
(10) and (11), the following relation

E

{∫ τβ∧t

σ∧t
dV (x(s))

}
= E

{∫ τβ∧t

σ∧t
LV (x(s)) d s

}
6 0 (45)

is obtained.
Integrating (45) gives

E{V (x(τβ ∧ t))} 6 E{V (x(σ ∧ t))}. (46)

The previous inequality is equivalent to

E{V (x(τβ ∧ t))− µ2(R)} 6 E{V (x(σ ∧ t))− µ2(R)}. (47)

If τα < τr ∧ θ, in view of (43), the inequality (47) becomes

E{V (x(τβ ∧ t))− µ2(R)} 6 E{V (x(τα ∧ t))− µ2(R)}. (48)

If τβ < t, then τα < t, and the previous inequality becomes

P{τβ < t}E{V (x(τβ))− µ2(R)} 6 E{V (x(τα))− µ2(R)}. (49)

So, using condition (9), we obtain

P{τβ < t}(µ1(β)− µ2(R)) 6 µ2(α)− µ2(R). (50)
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Then, using (29), the following inequality

P{τβ < t} 6 µ2(α)− µ2(R)

µ1(β)− µ2(R)
6
ε

4
(51)

is satisfied and, if t→ +∞, we have

P{τβ < +∞} 6 ε

4
. (52)

Then, relations (42) and (52) lead to

P{(σ < +∞) ∩ (τβ = +∞)} > P{σ < +∞}P{τβ = +∞}
= P{σ < +∞}(1−P{τβ < +∞})
> P{σ < +∞}−P{τβ < +∞}
> P{τα < τr ∧ θ} −P{τβ < +∞}

> 1− 3ε

4
− ε

4
= 1− ε, (53)

and, with (43) and (44), we obtain

P{x(t) ∈ IRn : R 6 lim
t→+∞

sup ‖x(t)‖ 6 β} > 1− ε, ∀β > R. (54)

Since β is arbitrary, if β → R, we obtain

P{x(t) ∈ IRn : lim sup
t→+∞

‖x(t)‖ = R} > 1− ε. (55)

The proof is ended.

4 Example

To illustrate Theorem 3.1, we consider the SDE (1) given by

dx = (−x+ 1) d t+ β dw. (56)

This SDE does not have the trivial solution x = 0 since f(0) = 1.
Let V (x) be the following Lyapunov function

V (x) =
1

2
x2 (57)

and the functions µ1(x), µ2(x) and µ3(x) be given by

µ1(x) = µ2(x) = µ3(x) =
1

2
x2. (58)

Applying the Itô formula to V (x) leads to

LV (x) = −x2 + x+
1

2
β2 6

−1

2
x2 +

1

2
(1 + β2).

Then we have
LV (x) < 0, ∀ |x| >

√
1 + β2. (59)

The radius of the ball BR is equal to R =
√

1 + β2.

Finally, the ball S√
1+β2 = {x ∈ IR, |x| =

√
1 + β2} is uniformly asymptotically

stable in probability as can be seen in Figure 1 with β = 0.01.
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Figure 1: State x.

5 Conclusion

In this paper, the concept of uniform asymptotic stability in probability of nontrivial so-
lutions of a SDE is studied. A new theorem is proposed to check this uniform asymptotic
stability in probability. This theorem is based on sufficient conditions to be verified for
a given Lyapunov function. An example is given to illustrate our approach.
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