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1 Introduction

In recent years, the fractional calculus has become an excellent tool in modeling many
physical phenomena and engineering problems [16]. One of the very important areas
of application of fractional calculus is chaos theory. Chaos is a very interesting non-
linear phenomenon that has been intensively studied over the past two decades. The
chaos theory is found to be useful in many areas such as data encryption [14], financial
systems [13], biology [17] and biomedical engineering [2], etc. Fractional-order chaotic
dynamical systems have begun to attract a lot of attention in recent years and can be
seen as a generalization of chaotic dynamic integer-order systems. Recently, the study
of the synchronization of fractional-order chaotic systems has become an active area of
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research because of its potential applications in secure communication and cryptogra-
phy [9, 10]. The synchronization of fractional-order chaotic systems was first studied
by Deng and Li [18]. Then the idea of the synchronization is to use the output of
the master (drive) system to control the slave (response) system so that the output of
the slave system tracks asymptotically the output of the master system. In the past
twenty years, various types of synchronization have been proposed and investigated, e.g.,
complete synchronization [20], lag synchronization [4], phase synchronization [8], project
synchronization [15], generalized synchronization [6], etc. As a special case of generalized
synchronization, anti-synchronization is achieved when the sum of the states of master
and slave systems converges to zero asymptotically with time. In other words, the anti-
synchronization is the use of the output of the master system to control the slave system
so that the states of the slave system have the same amplitude but opposite signs as
the states of the master system. In this paper, we apply global synchronization theory
to synchronize two identical chaotic systems, we demonstrate the technique capability
on the synchronization of fractional-order lesser date moth model [12] and we apply ac-
tive control theory to synchronize and anti-synchronize two identical chaotic systems, we
demonstrate the technique capability on the synchronization and anti-synchronization of
fractional-order lesser date moth model.

The paper is organized as follows. In Section 2, we describe the problem statement
and our methodology. In Section 3, a fractional-order lesser date moth model is presented.
In Section 4, we discuss the chaos synchronization of two identical fractional-order lesser
date moth models using global synchronization. In Section 5, we discuss the chaos
synchronization of two identical fractional-order lesser date moth models using active
control. In Section 6, we discuss the chaos anti-synchronization of two identical fractional-
order lesser date moth models using active control. Section 7 gives the conclusion of this
paper.

2 Problem Statement and Our Methodology

Consider the chaotic system described by the dynamics

Dαx1 = Ax1 + g(x1), (1)

where x1 ∈ Rn is the state vector, A ∈ Rn×n is a constant matrix, g(x1) is a continuous
nonlinear function, and Dα is the Caputo fractional derivative. We consider the system
(1) as the master or drive system. As the slave or response system, we consider the
following chaotic system described by the dynamics

Dαx2 = Ax2 + g(x2) + u, (2)

where x2 ∈ Rn is the state vector, A ∈ Rn×n is a constant matrix, and g(x2) is a
continuous nonlinear function and u ∈ Rn is the controller of the slave system.

The global chaos synchronization problem is to design a controller which synchronizes
the states of the master system (1) and the slave system (2) for all initial conditions
x(0), y(0) ∈ Rn . The synchronization error is defined as

e = x2 − x1.

Then the synchronization error dynamics is obtained as

Dαe = Ae+ g(x2)− g(x1) + u. (3)
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Thus, the global synchronization problem is essentially to find a controller u so as to
stabilize the error dynamics (3) for all initial conditions e(0) ∈ Rn, i.e.,

limt→∞‖e(t)‖ = 0

for all initial conditions e(0) ∈ Rn.

Theorem 2.1 [3] The following autonomous system:

Dαx = Ax, x(0) = 0,

where 0 < α < 1, x ∈ Rn, A ∈ Rn×n, is asymptotically stable if and only if
|arg(eig)A| > απ2 . In this case, each component of the states decays towards 0 like t−α.
Also, this system is stable if and only if |arg(eig)A| ≥ απ2 and those critical eigenvalues
that satisfy |arg(eig)A| = απ2 have geometric multiplicity one.

3 Fractional-Order Lesser Date Moth Model

Following [12], the model of biocontrol of the lesser date moth in palm trees can be
written as follows: 

dP
dτ

= rP
(
1− P

K

)
− bPL

a+P
,

dL
dτ

= −dL+ mPL
a+P
− pLN,

dN
dτ

= −µN + qLN.

(4)

The model consists of three populations: the palm tree whose population density at time
t is denoted by P ; the pest (lesser date moth) whose population density is denoted by
L; the predator whose population density is denoted by N . Here all the parameters
r, K, b, a, d, m, p, µ, and q are positive. One can reduce the number of parameters
in system (4) by using the following transformations: P = Kx, L = Kr

b y, N =
r
pz, τ = t

r , then we have the following dimensionless system:
dx
dt

= x(1− x)− xy
β+x

,

dy
dt

= −δy + γxy
β+x
− yz,

dz
dt

= −ηz + σyz,

(5)

where β = a
K
, δ = d

r
, γ = m

r
, η = µ

r
and σ = qK

b
.

We introduce fractional order into the ODE model (5). The new system is described
by the following set of fractional-order differential equations:

Dαx = x(1− x)− xy
β+x

,

Dαy = −δy + γxy
β+x
− yz,

Dαz = −ηz + σyz,

(6)

where Dα is the Caputo fractional derivative.
The lesser date moth model is chaotic when the parameter values are taken as β =

1.15, δ = η = 1, γ = 3, σ = 3, α = 0.95. Figure 1 describes the state portrait of the
lesser date moth model.
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Figure 1: The state portrait of the lesser date moth model.

4 Synchronization of Identical Fractional-Order Lesser Date Moth Systems
by Global Synchronization

In this section, we study chaos synchronization between two identical chaotic systems of
the fractional-order lesser date moth model using the global synchronization. Thus, the
master system is described by

Dαx1 = x1(1− x1)− x1y1
β+x1

,

Dαy1 = −δy1 + γx1y1
β+x1

− y1z1,
Dαz1 = −ηz1 + σy1z1,

(7)

the equations of the slave system are
Dαx2 = x2(1− x2)− x2y2

β+x2
+ k1(x1 − x2),

Dαy2 = −δy2 + γx2y2
β+x2

− y2z2 + k2(y1 − y2),
Dαz2 = −ηz2 + σy2z2 + k3(z1 − z2).

(8)

Consider the case of the integer-order systems (when α = 1), and then by subtracting
(7) from (8), we obtain

ė1 = e1 − (x1 + x2)e1 − ( y1
β+x1

)e1 + x2y1
(β+x1)(β+x2)

e1 − x2

β+x2
e2 − k1e1,

ė2 = −δe2 + [ γy1
β+x1

− γx2y1
(β+x1)(β+x2)

]e1 − (z2 − x2

β+x2
)e2 − y1e3 − k2e2,

ė3 = −ηe3 + σ(y1e3 + z2e2)− k3e3,

(9)

where e1 = x1 − x2, e2 = y1 − y2, e3 = z1 − z2. In matrix form, (9) can be rewritten
in the form

ė = (A−K)e+Mx1,x2
e, (10)
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i.e.,

ė =

 1 0 0
0 −δ 0
0 0 −η

−
 k1 0 0

0 k2 0
0 0 k3

 e1
e2
e3

+

 −(x1 + x2)− y1
β+x1

+ x2y1
(β+x1)(β+x2)

− x2
β+x2

0
γy1
β+x1

− γx2y1
(β+x1)(β+x2)

−z2 + γx2
β+x2

−y1
0 σz2 σy2


 e1
e2
eu3

 ,
where

e = [e1, e2, e3]T , K =

 k1 0 0
0 k2 0
0 0 k3

 ,

Mx1,x2 =

 −(x1 + x2)− y1
β+x1

+ x2y1
(β+x1)(β+x2)

− x2
β+x2

0
γy1
β+x1

− γx2y1
(β+x1)(β+x2)

−z2 + γx2
β+x2

−y1
0 σz2 σy2

 , (11)

A =

 1 0 0
0 −δ 0
0 0 −η

 . (12)

From (11) and (12), we get
(A+Mx1,x2) + (A+Mx1,x2)T =−2(x1+x2)−2 y1

β+x1
+2 x2y1

(β+x1)(β+x2)
+ 2 − x2

β+x2
+ γy1

β+x1
− γx2y1

(β+x1)(β+x2)
0

γy1
β+x1

− γx2y1
(β+x1)(β+x2)

− x2

β+x2
−2z2 + 2γx2

β+x2
− 2δ −y1 + σz2

0 σz2 − y1 2σy1 − 2η

.
(13)

By selecting the feedback control gains k1, k2 and k3 that must satisfy the conditions
given in [7], the two coupled integer-order lesser date moth systems are asymptotically
synchronized, i.e., synchronization is achieved if the feedback control gains satisfy the
following inequalities:

k1 ≥ 1
2 [−2(x1 + x2)− 2y1

β+x1
+ 2x2y1

(β+x1)(β+x2)
+ 2 + |− x2

β+x2
+ γy1

β+x1
− γx2y1

(β+x1)(β+x2)
|−µ],

k2 ≥ 1
2 [−2z2 + 2γx2

β+x2
− 2δ + |− γx2y1

(β+x1)(β+x2)
− x2

β+x2
+ γy1

β+x1
|+ |−y1 + σz2| − µ],

k3 ≥ 1
2 [−2σy1 − 2η + |σz2 − y1| − µ].

(14)
Now, the coupled fractional-order lesser date moth systems (7) and (8) are integrated
numerically with the parameter values γ = 3, δ = η = 1, σ = 3, β = 1.15 and the same
fractional order α = 0.95. By selecting the feedback control gains as k1 = 1.2, k2 =
2.45, k3 = 0.7, which satisfy the inequalities (14), the drive and response lesser date moth
systems (7) and (8) are asymptotically synchronized. For the numerical simulations, we
use some documented data for some parameters like γ = 3, δ = η = 1, σ = 3, β =
1.15, h = 0.85, α = 0.95, µ = −3.5, then we have (x1, y1, z1) = (0.7, 0.3, 0.8) and
(x2, y2, z2) = (0.98, 0.35, 0.65) and k1 = 1.2, k2 = 2.45, k3 = 0.7. The simulation results
are illustrated in Figure 2.
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Figure 2: Synchronization of identical fractional-order lesser date moth model for

k1 = 1.2, k2 = 2.45, k3 = 0.7.

5 Synchronization of Identical Fractional-Order Lesser Date Moth Systems
by Active Control

In this section, we study chaos synchronization between two identical chaotic systems
of the fractional-order lesser date moth model using the technique of active control [5].
Thus, the master system is described by


Dαx1 = x1(1− x1)− x1y1

β+x1
,

Dαy1 = −δy1 + γx1y1
β+x1

− y1z1,
Dαz1 = −ηz1 + σy1z1,

(15)
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the equations of the slave system are
Dαx2 = x2(1− x2)− x2y2

β+x2
+ u1(t),

Dαy2 = −δy2 + γx2y2
β+x2

− y2z2 + u2(t),

Dαz2 = −ηz2 + σy2z2 + u3(t),

(16)

where u1(t), u2(t), u3(t) are the active controls.

Subtracting (16) from (15) gives
Dαe1 = e1 − x21 + x22 − ( y2

β+x2
)e1 +

x1y2
(β+x1)(β+x2)

e1 − x1
β+x1

e2 + u1(t),

Dαe2 = −δe2 + [ γy2
β+x2

− γx1y2
(β+x1)(β+x2)

]e1 − (z2 − x1
β+x1

)e2 − y1e3 + u2(t),

Dαe3 = −ηe3 + σ(y1e3 + z2e2) + u3(t),
(17)

where e1 = x2 − x1, e2 = y2 − y1, e3 = z2 − z1.

We introduce a Lyapunov function in terms of the squares of these variables:

V (e) =
1

2

3∑
i=1

e2i . (18)

The fractional-order derivative of the Lyapunov function is given as

DαV (e) = e1[e1 − (x2 + x1)e1 − (
y2

β + x2
)e1 +

x1y2
(β + x2)(β + x1)

e1 −
x1

β + x1
e2]

+ e2[−δe2 + (
γy2

β + x2
e1 −

γx1y2
(β + x1)(β + x2)

)e1 − (z2e2 +
γx1
β + x1

)e2 − y1e3]

+ e3[−ηe3 + σz2e2 + σy1e3] +

3∑
i=1

ui(t)ei(t). (19)

From this equation, we conclude that if the active control functions ui are chosen such
that

u1(t) = −[2e1 − (x1 + x2)e1 − (
y2

β + x2
)e1 +

x1y2
(β + x1)(β + x2)

e1 −
x1

β + x1
e2],

u2(t) = −[(
γy2

β + x2
− γx1y2

(β + x1)(β + x2)
)e1 − (z2 −

γx1
β + x1

)e2 − y1e3],

u3(t) = −[σz2e2 + σy1e3],

equation (19) becomes

DαV (e) = −(e21 + δe22 + ηe23) ≤ 0. (20)

According to the inequality (18), the system is stable. For the numerical simulations,
we use some documented data for some parameters like γ = 3, δ = η = 1, σ = 3, β =
1.15, h = 0.85, α = 0.95, then we have (x1, y1, z1) = (0.7, 0.3, 0.8) and (x2, y2, z2) =
(0.12, 0.21, 0.13). The simulation results are illustrated in Figure 3.
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Figure 3: Synchronization of identical fractional-order lesser date moth model.

6 Anti-Synchronization of Identical Fractional-Order Lesser Date Moth Sys-
tems by Active Control

In this section, we study chaos anti-synchronization between two identical chaotic systems
of the fractional-order lesser date moth model using the technique of active control. Thus,
the drive system is described by

Dαx1 = x1(1− x1)− x1y1
β+x1

,

Dαy1 = −δy1 + γx1y1
β+x1

− y1z1,
Dαz1 = −ηz1 + σy1z1;

(21)

the equations of the response system are
Dαx2 = x2(1− x2)− x2y2

β+x2
+ u1(t),

Dαy2 = −δy2 + γx2y2
β+x2

− y2z2 + u2(t),

Dαz2 = −ηz2 + σy2z2 ++u3(t),

(22)
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where u1, u2, u3 are the active controls.
The anti-synchronization error is defined as

e1 = x1 + x2,
e2 = y1 + y2,
e3 = z1 + z2.

(23)

A simple calculation gives the error dynamics
Dαe1 = e1 − x22 − x21 −

x2y2
β+x2

− x1y1
β+x1

+ u1(t),

Dαe2 = −δe2 + γx1y1
β+x1

+ γx2y2
β+x2

− z2y2 − y1z2 + u2(t),

Dαe3 = −ηe3 + σy1z1 + σy2z2 + u3(t).

(24)

We consider the active nonlinear controller defined by
u1(t) = x22 + x21 +

x2y2
β+x2

+ x1y1
β+x1

− 2e1,

u2(t) = −γx1y1
β+x1

− γx2y2
β+x2

+ z2y2 + y1z2,

u3(t) = −σy2z2 − σy1z1.
(25)

Substitution of (25) into (24) yields the linear error dynamics
Dαe1 = −e1,
Dαe2 = −δe2,
Dαe3 = −ηe3.

(26)

We consider the quadratic Lyapunov function defined by

V (e) =
1

2
eT e =

1

2
(e21 + e22 + e23), (27)

which is a positive definite function on R3. The fractional-order derivative of the Lya-
punov function is given as

DαV (e) = −e21 − δe22 − ηe23 ≤ 0. (28)

According to the inequality (27), the system is stable. For the numerical simulations,
we use some documented data for some parameters like γ = 3, δ = η = 1, σ = 3, β =
1.15, h = 0.85, α = 0.95, then we have (x1, y1, z1) = (0.7, 0.3, 0.8) and (x2, y2, z2) =
(−0.99,−0.11,−0.15). The simulation results are illustrated in Figure 4.

7 Conclusion

In this paper, we have studied the phenomenon of chaos synchronization and anti-
synchronization between two identical chaotic systems of the fractional-order lesser date
moth model. Our results demonstrate that if one uses the technique of global syn-
chronization and the technique of active control, chaos synchronization can be achieved
between two identical chaotic systems. On the other hand, if one uses the technique of
active control, chaos anti-synchronization can be achieved between two identical chaotic
systems.
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Figure 4: Anti-synchronization of identical fractional-order lesser date moth model.
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