Nonlinear Dynamics and Systems Theory, 19(3) (2019) 405-415

State Estimation of Rotary Inverted Pendulum Using HOSM Observers: Experimental Results

F. A. Haouari¹, Q. V. Dang², J.-Y. Jun³, M. Djemai^{2*} and B. Cherki¹

¹ Department of Electrical Engineering and Electronics, Tlemcen University, Algeria ² LAMIH, UMR CNRS 8201; UVHC, 59313 Valenciennes, France

³ Sorbonne University, UPMC Univ Paris 06, UMR 7222, ISIR, F-75005, Paris, France

Received: December 23, 2018; Revised: June 26, 2019

Abstract: This paper presents the observer design for the state estimation of the rotary inverted pendulum (RIP) system. A Takagi-Sugeno (T-S) fuzzy descriptor approach is used for modeling the nonlinear dynamic system. Two higher-order sliding mode (HOSM) observers, based on the super-twisting algorithm, are proposed and applied to the RIP with real-time implementation. The experimental results illustrate the finite-time convergence and accuracy of the state estimates of the designed observers.

Keywords: rotary inverted pendulum; T-S fuzzy descriptor model; super-twisting algorithm; higher-order sliding mode observer.

Mathematics Subject Classification (2010): 93B07, 93C10, 93C42, 93C85.

1 Introduction

Recently, sliding mode techniques have been widely used for the problems of dynamic systems control and observation due to their finite-time convergence and robustness against various kinds of uncertainties such as parameter perturbations and external disturbances [1]. In particular, higher-order sliding mode (HOSM) based observers can be considered as a successful technique for the state observation of perturbed systems, due to their high precision and robust behavior with respect to parametric uncertainties [13]. In [7], the step-by-step first-order sliding mode observers are designed for a class of systems in triangular input form. Nevertheless, the realization of first-order sliding mode implies the undesirable chattering phenomena.

Many observers, based on the high-order sliding mode technique, have been developed

^{*} Corresponding author: mailto:mohamed.djemai@univ-valenciennes.fr

^{© 2019} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua405