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Abstract: This paper deals with the exact solutions of a Klein-Gordon system of
equations. The (G′/G)-expansion method has been employed to derive kink solutions,
solitary wave solutions and singular solutions. Solitary wave solutions have also been
derived for the Klein-Gordon system using the Weierstrass elliptic function method.

Keywords: (G′/G)-expansion method; Klein-Gordon equation; solitary wave solu-
tions; Weierstrass elliptic function.

Mathematics Subject Classification (2010): 74J35, 34G20, 93C10.

1 Introduction

The nonlinear evolution equations (NLEEs) are the most important fields of research in
applied mathematics and theoretical physics. There are several forms of NLEEs that
arise in various branches of science and engineering [1–5]. Exact solutions of NLEEs
play an important role as they provide a better insight into the various aspects of the
problem which leads to significant applications. Several methods such as the tanh method
[6–11], exponential function method [12], Jacobi elliptic function (JEF) method [13–15],
mapping methods [16–21] have been applied in the last few decades and the results
have been reported. Also, many physical phenomena have been governed by systems of
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partial differential equations (PDEs) and there have been significant contributions in this
area [22,23].

In this paper, we use the (G′/G)-expansion method [24–28] to find some exact solu-
tions for a coupled Klein-Gordon equation [29]. The paper is organized as follows. In
Section 2, we give a mathematical analysis of the (G′/G)-expansion method, in Section
3, we derive solitary wave solutions (SWSs) and kink solutions to the nonlinear Klein-
Gordon system, in Section 4, we use the Weierstrass elliptic function (WEF) method [30]
to derive SWSs of the Klein-Gordon system of equations, in Section 5 we write down the
conclusion.

2 (G′/G)-Expansion Method

Consider the nonlinear partial differential equation (PDE)

P (u, ut, ux, utt, uxt, uxx, ...) = 0, (1)

where u(x, t) is an unknown function, P is a polynomial in u = u(x, t) and its various
partial derivatives. The traveling wave variable ξ = x − ct reduces the PDE (1) to the
ordinary differential equation (ODE)

P (u,−cu′, u′,−c2u′′,−cu′′, u′′, ...) = o, (2)

where u = u(ξ) and ′ denotes differentiation with respect to ξ.

We suppose that the solution of equation (2) can be expressed by a polynomial in(
G′

G

)
as follows:

u(ξ) =

m∑
i=0

ai

(
G′

G

)i
, am 6= 0, (3)

where ai(i = 0, 1, 2, ..) are constants. Here, G satisfies the second order linear ODE

G′′(ξ) + λG′(ξ) + µG(ξ) = 0 (4)

with λ and µ being constants. The positive integer m can be determined by a balance
between the highest order derivative term and the nonlinear term appearing in equation
(2). By substituting equation (3) into equation (2) and using equation (4), we get a
polynomial in G′/G. The coefficients of various powers of G′/G give rise to a set of
algebraic equations for ai (i = 0, 1, 2, ...,m), λ and µ.

The general solution of equation (4) is a linear combination of sinh and cosh or of
sine and cosine functions if ∆ = λ2 − 4µ > 0 or ∆ = λ2 − 4µ < 0, respectively. In this
paper we consider only the first case and so,

G(ξ) = e−λξ/2

(
C1 sinh(

√
λ2 − 4µ

2
ξ) + C2 cosh(

√
λ2 − 4µ

2
ξ)

)
, (5)

where C1 and C2 are arbitrary constants.
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3 Klein-Gordon System of Equations

Consider the Klein-Gordon system of equations

uxx − utt − u− 2u3 − 2uv = 0, (6)

vx − vt − 4uut = 0. (7)

We seek TWSs of equations (6) and (7) in the form u = u(ξ), v = v(ξ), ξ = x − ct.
Then equations (6) and (7) give

(1− c2)u′′ − u− 2u3 − 2uv = 0, (8)

v′ + cv′ + 4cuu′ = 0. (9)

Integrating equation (9) with respect to ξ and using the solitary wave boundary condi-
tions, we get

v = − 2c

1 + c
u2. (10)

Substituting for v into equation (8), we obtain

(1− c)(1 + c)2u′′ − (1 + c)u− 2(1− c)u3 = 0. (11)

Assuming the expansion u(ξ) =

m∑
i=0

ai

(
G′

G

)i
, am 6= 0 in equation (11) and balancing

the nonlinear term and the derivative term, we get m+ 2 = 3m so that m = 1.
So, we assume a solution of equation (11) in the form

u(ξ) = a0 + a1

(
G′

G

)
, a1 6= 0. (12)

So, we can obtain

u′(ξ) = −a1
(
G′

G

)2

− λa1
(
G′

G

)
− µa1, (13)

u′′(ξ) = 2a1

(
G′

G

)3

+ 3a1λ

(
G′

G

)2

+ (a1λ
2 + 2a1µ)

(
G′

G

)
+ a1λµ, (14)

u3(ξ) = a31

(
G′

G

)3

+ 3a0a
2
1

(
G′

G

)2

+ 3a20a1

(
G′

G

)
+ a30. (15)

Now, substituting equations (12), (14) and (15) into equation (11) and collecting the

coefficients of

(
G′

G

)i
, i = 0, 1, 2, 3, we get

(1− c)(1 + c)2a1λµ− (1 + c)a0 − 2(1− c)a30 = 0, (16)
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a1(1− c)(1 + c)2(λ2 + 2µ)− (1 + c)a1 − 6(1− c)a20a1 = 0, (17)

3a1λ(1− c)(1 + c)2 − 6a0a
2
1(1− c) = 0, (18)

2(1− c)(1 + c)2a1 − 2(1− c)a31 = 0. (19)

From equation (19), we get

a1 = ±(1 + c). (20)

Equation (18) leads us to

a0 = ±λ
2

(1 + c) =
λ

2
a1. (21)

When µ = 0 in equation (17), we get λ = ±
√

2

c2 − 1
and when λ = 0, we get µ =

1

2(1− c2)
. In both cases, ∆ = λ2 − 4µ =

2

c2 − 1
.

Equation (17) is identically satisfied in both cases without any constraints on the
coefficients of the governing equation.

Case 1: µ = 0, λ =

√
2

c2 − 1
,

u1(x, t) = ±

√
− 1 + c

2(1− c)

1 +
(C1 − C2)(1− tanh 1

2

√
2

c2−1 (x− ct))

C1tanh 1
2

√
2

c2−1 (x− ct) + C2

 , (22)

v1(x, t) =
c

1− c

1 +
(C1 − C2)(1− tanh 1

2

√
2

c2−1 (x− ct))

C1tanh 1
2

√
2

c2−1 (x− ct) + C2

2

. (23)

Here, C1 6= ±C2 and c > 1.
Figure 1 and Figure 2 represent the solutions given by equations (22) and (23), re-

spectively.

Case 2: µ = 0, λ = −
√

2

c2 − 1
,

u2(x, t) = ±

√
− 1 + c

2(1− c)

1 +
(C1 + C2)(1− tanh 1

2

√
2

c2−1 (x− ct))

C2 − C1tanh 1
2

√
2

c2−1 (x− ct)

 , (24)

v2(x, t) =
c

1− c

1 +
(C1 + C2)(1− tanh 1

2

√
2

c2−1 (x− ct))

C2 − C1tanh 1
2

√
2

c2−1 (x− ct)

2

. (25)
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Figure 1: The solution for u1(x, t), c = 3, C1 = 0, C2 = 1.

Figure 2: The solution for v1(x, t), c = 3, C1 = 0, C2 = 1.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (3) (2019) 386–395 391

Here also, C1 6= ±C2 and c > 1.

Case 3: λ = 0, µ =
1

2(1− c2)
,

u3(x, t) = ±

√
− 1 + c

2(1− c)

C1 + C2tanh 1
2

√
2

c2−1 ξ

C1tanh 1
2

√
2

c2−1 ξ + C2

 , (26)

v3(x, t) =
c

1− c

C1 + C2tanh 1
2

√
2

c2−1 ξ

C1tanh 1
2

√
2

c2−1 ξ + C2

2

. (27)

In this case also, we have the same restrictions on c, C1 and C2.

4 Weierstrass Elliptic Function Solutions of Klein-Gordon Equation

The Weierstrass elliptic function (WEF) ℘(ξ; g2, g3) with invariants g2 and g3 satisfy

℘′
2

= 4℘3 − g2℘− g3, (28)

where g2 and g3 are related by the inequality

g32 − 27g23 > 0. (29)

The WEF ℘(ξ) is related to the JEFs by the following relations:

sn(ξ) = [℘(ξ)− e3]
−1/2

, (30)

cn(ξ) =

[
℘(ξ)− e1
℘(ξ)− e3

]1/2
, (31)

dn(ξ) =

[
℘(ξ)− e2
℘(ξ)− e3

]1/2
, (32)

where e1, e2, e3 satisfy

4z3 − g2z − g3 = 0 (33)

with

e1 =
1

3
(2−m2), e2 =

1

3
(2m2 − 1), e3 = −1

3
(1 +m2). (34)

From equation (34), one can see that the modulus m of the JEF and the e′s of the
WEF are related by

m2 =
e2 − e3
e1 − e3

. (35)



392 M. AL GHABSHI, E.V. KRISHNAN AND M. ALQURAN

We consider the ODE of order 2k given by

d2kφ

dξ2k
= f(φ; r + 1), (36)

where f(φ; r + 1) is an (r + 1) degree polynomial in φ. We assume that

φ = γQ2s(ξ) + µ (37)

is a solution of equation (36), where γ and µ are arbitrary constants and Q(2s)(ξ) is the

(2s)th derivative of the reciprocal Weierstrass elliptic function (RWEF)Q(ξ) =
1

℘(ξ)
, ℘(ξ)

being the WEF.
It can be shown that the (2s)th derivative of the RWEF Q(ξ) is a (2s + 1) degree

polynomial in Q(ξ) itself. Therefore, for φ to be a solution of equation (36), we should
have the relation

2k − r = 2rs. (38)

So, it is necessary that 2k ≥ r for us to assume a solution in the form of equation
(37). But this is in no way a sufficient condition for the existence of the PWS in the
form of equation (37).

Now, we shall search for the WEF solutions of equation (11). For a solution in the
form of equation (37), we should have r = 2 and k = 1 so that s = 0. So, our solution
will be

u(ξ) =
γ

℘(ξ)
+ µ. (39)

Substituting equation (39) into equation (11) and equating the coefficients of like
powers of ℘(ξ) to zero, we obtain

℘3(ξ) : 2γ(1− c)(1 + c)2 − µ(1 + c)− 2µ3(1− c) = 0, (40)

℘2(ξ) : −γ(1 + c)− 6γµ2(1− c) = 0, (41)

℘(ξ) : −3

2
γg2(1− c)(1 + c)2 − 6γ2µ(1− c) = 0, (42)

℘0(ξ) : −2γg3(1− c)(1 + c)2 − 2γ3(1− c) = 0. (43)

From equations (40)-(43), it can be found that

γ = ±(1 + c)
√
−g3, (44)

µ = ±

√
− 1 + c

6(1− c)
, (45)
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g2 = − 4γµ

(1 + c)2
. (46)

From equations (44), (45) and (46), one can infer that g3 < 0, |c| should be greater
than 1 and γ and µ are of opposite signs as g2 should always be positive. Equation (40)
leads us to the value of g3 given by

g3 =
1

54(1− c)3(1 + c)3
, (47)

which clearly indicates that g3 < 0 when |c| > 1. The condition g32 − 27g23 > 0 gives the
constraint relation

γµ < − 1

12(4)1/3(1− c)2
. (48)

One may observe that both sides of the inequality (48) are always negative as γ and
µ are of opposite signs.

The equations (30)–(32) will give rise to the same PWS of equation (11) which can be
obtained using equation (39) with the help of equation (34). Thus, the PWS of equation
(11) in terms of JEFs can be written as

u(ξ) =
γsn2(ξ)

1− 1
3 (1 +m2)sn2(ξ)

+ µ. (49)

As m→ 1, the SWS of the Klein-Gordon system given by equations (6) and (7) are

u(x, t) =
γtanh2(x− ct)

1− 2
3 tanh2(x− ct)

+ µ (50)

and

v(x, t) = − 2c

1 + c

[
γtanh2(x− ct)

1− 2
3 tanh2(x− ct)

+ µ

]2
, (51)

where γ and µ are given by equations (44) and (45).

5 Conclusions

The (G′/G)-expansion method has been applied to a Klein-Gordon system of equations.
The kink wave solutions and SWSs have been graphically illustrated. It was found that
there are no restrictions on the coefficients in the governing equation for the solutions in
terms of hyperbolic functions to exist. The WEF method has also been applied to the
Klein-Gordon system to derive SWSs. We intend to apply the method for higher order
and higher dimensional PDEs of physical interest.
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