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1 Introduction

The IMs are widely used as electromechanical actuators due to their being rugged, free of
maintenance, low cost and generally less expensive than other electrical machines [2, 5].
These motors have been utilized for more and more extensive industrial applications
such as electric railways and robots, where advanced dynamic performance is claimed.
However, the IM considered as a multivariable system has such characteristics as high-
coupling and high nonlinearity, which implies that it is very difficult to control.

In the past two decades, trajectory tracking control of the IM systems has been amply
studied due to the exigency of high performance in the context of excellent tracking accu-
racy, rejection of both structured (external disturbances) and unstructured uncertainties
(parameter variations and unmodelled dynamics) [2]. For that purpose, the field-oriented
control (FOC) scheme will be applied for the IM nonlinear system so as to achieve similar
performance characteristics of a separately excited DC motor, such fast, precise tracking,
which makes the control task easy [5]. However, some drawbacks such as the coupling
between speed and flux and unmodelled dynamics subjugate thoughtful constraints for
the FOC and effect the performance speed tracking accuracy. Further, since unknown
parametric uncertainties often exist in IM dynamics and they are source of instability, it
is meaningful to consider control problems of the corresponding nonlinear IM model [2,5].

Nowadays, practical issues narrow down the choice and give a significant advantage
to the input-output feedback linearization control (IOFLC) that is among the most pow-
erful techniques to perform an exact decoupling between both speed and flux dynamics,
and higher power efficiency [12]. Furthermore, with the developments of nonlinear con-
trol theory and methods (sliding-mode control [14,18], backstepping approach [7,16], and
nonlinear feedback linearization control [5,8,17]), the control of IMs subjected to uncer-
tainties has become an important research topic. Specifically, substantial attention has
been focused on the use of SHL NN in the system modelling and control applications due
to their advantageous features including high potential to identify nonlinear behaviors,
powerful nonlinear mapping between inputs and outputs without faithful knowledge of
the system model [20].

Moreover, the adaptive control results motivate researchers to find new structures that
do not rely on completely knowing the system nonlinearities by using approximation
property of NNs and fuzzy logic approximators [4, 9, 19]. The author in [13] presents
a new adaptive controller which rules out the effect of uncertainties in order to achieve
precise position-tracking performance of IMs using a radial basis function neural network
(RBF NN). In [6], the authors develop a new adaptive backstepping controller of a
nonlinear IM that achieves global asymptotic speed tracking for the full-order, despite
the uncertainty in rotor resistance and external disturbance (load torque). The work
presented in [16] deals the tracking control problem of IMs subject to disturbances in
practical applications, in which both fuzzy logic control scheme is involved to identify the
term of nonlinearities and an adaptive backstepping method is employed to elaborate an
adaptive term that eliminates theses nonlinarities. An adaptive fuzzy vector controller
(AFVC) is established in the paper [10] to cover the speed and torque tracking problem
of a doubly-fed IM, in which the control conception is carried thanks to an appropriate
backstepping method that ensures inherently the stability of the control system.

Motivated by the aforesaid discussion, we propose to combine SHL NNs that show
strong potentials in approximating uncertainties, with the IOFLC methodology in order
to originate a variety of control schemes within the context of NN-based adaptive input-
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output feedback control, which can be extended for an extensive class of nonlinear systems
with unmodeled dynamics. The elaborated controller takes on dynamic compensator to
stabilize the linearized system. Note that the vector that contains the measured tracking
error and compensator states is exploited to adapt the NN weights. The input vector
to the NN is composed of input/output data, and the adaptive terms adjust on-line
for high nonlinearities using nonlinearly parameterized SHL NN. The stability analysis
is presented in order to both build the NN adaptation law using only unappropriated
measurement as a training signal, and reveal boundedness of all the error signals of the
controlled system.

The rest of the paper is organized as follows. The IM model and problem statement
are presented in Section 2. Section 3 contains the FOC and IOFLC. NN augmentation
and the design control for the IM are detailed in Section 4. Section 5 describes the SHL
NN implementation. The stability analysis is detailed in Section 6. The effectiveness of
the proposed IM control system is demonstrated through simulation results in Section 7.

2 Induction Motor Modeling and Problem Statement

2.1 Mathematical model of the IM

The IM is represented by the model [12]

dw

dt
=
npLm
JLr

(
isbψra − isaψrb

)
− f

J
w − τL

J
,

dψra
dt

= −Rr
Lr
ψra − npwψrb +

Rr
Lr
Lmisa,

dψrb
dt

= npwψra −
Rr
Lr
ψrb +

Rr
Lr
Lmisb,

disa
dt

=
LmRr
σLsL2

r

ψra +
npLm
σLsLr

wψrb −
(
L2
mRr + L2

rRs
σLsL2

r

)
isa +

1

σLs
usa,

disb
dt

= − npLm
σLsLr

wψra +
LmRr
σLsL2

r

ψrb −
(
L2
mRr + L2

rRs
σLsL2

r

)
isb +

1

σLs
usb.

(1)

Notice that i, ψ, us denote current, flux linkage and stator voltage input to the machine.
The variable w denotes the speed of the rotor, while θ is the rotor position. Lr, Ls,
and Lm denote the rotor, stator, and mutual inductances, Rr and Rs are the rotor and
stator resistances, J is the rotor’s moment of inertia, f denotes the coefficient of viscous
friction, τL is the load torque, and np is the number of pole pairs; the subscripts “s”
and “r” stand for the stator and rotor; (a, b) represent vector components with respect
to a fixed stator reference frame in which σ = 1−L2

m/(LsLr). From now on we will skip
the subscripts “r” and “s” since we will only utilize the state variables of rotor fluxes
(ψra, ψrb) and stator currents (isa, isb).

Let x = (w,ψa, ψb, ia, ib)
T be the state vector, and

p = (δ1, δ2, δ3)T = (τL − τLN , Rr −RrN , Rs −RsN )T (2)

be the unknown parameter deviations from the nominal values τLN , RrN and RsN of the
load torque τL, rotor resistance Rr and stator resistance Rs. However, τL is typically
unknown, whereas Rr and Rs may have a range of variations of ±100% around their
nominal values due to ohmic heating. Let u = (ua, ub)

T be the control vector. Let α =
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RrN/Lr, β = Lm/(σLsLr), γ = (L2
mRrN/σLsL

2
r) + (RsN/σLs), µ = npLm/(JLr), G =

(σLs), be a reparameterization of the IM model, where α, β, γ, µ, G are known parameters
depending on the nominal values RrN and RsN . System (1) can be reformulated in
compact form as

ẋ = f(x) + uaga + ubgb + δ1f1(x) + δ2f2(x) + δ3f3(x), (3)

where the vector fields f, ga, gb, f1, f2, f3 are

f(x) =



µ
(
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J
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J
,
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
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.

2.2 Control problem statement

This paper focuses on the study of tracking control ((w → w∗) and (ψd =
√
ψra + ψrb →

ψ∗d)) for the field-oriented IM subject to external disturbances (load torque) and param-
eter uncertainties. For that matter, we contribute to develop an adaptive input-output
feedback linearization technique to elaborate controllers in which SHL NNs are used to
approximate terms of nonlinearity.

3 Field-Oriented and Input Output Linearization Control

3.1 Conventional field-oriented control

The control objective is to conceive a controller in which the stator voltages are choosen to
adjust the torque, speed and/or position of the motor. To achieve the field-oriented con-
trol, we perform the transformation of the vectors (ia, ib) and (ψa, ψb) in the fixed stator
frame (a, b) into vectors in a frame (d, q) which rotate along with the flux vector((ψa, ψb)).
Therefore, the stator phase currents and voltages are then expressed in this new coordi-
nates as follows [7][

id
iq

]
=

[
cos ρ sin ρ
− sin ρ cos ρ

] [
isa
isb

]
,

[
ud
uq

]
=

[
cos ρ sin ρ
− sin ρ cos ρ

] [
usa
usb

]
in which we define (ρ = arctan

(
ψb

ψa

)
), where ψd and ρ are just ”polar coordinates” for

the ordered pair(ψa, ψb). The term ”field-oriented” affects this new rotating coordinate
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system in which the angular position is ρ so that ψq ≡ 0, and id and iq are called the
direct and quadrature currents, ud and uq are called the direct and quadrature voltages,
respectively.

When we refer to the fixed stator (d, q) reference frame, the electromagnetic dynamic
model of the induction motor can be developed yielding

dw

dt
= µψdiq −

f

J
w − τL

J
,

dψd
dt

= −αψd + αLmid,

did
dt

= −γid + αβψd + npwiq + αLm
i2q
ψd

+
1

G
ud,

diq
dt

= −γiq − βnpwψd − npwid − αLm
idiq
ψd

+
1

G
uq,

dρ

dt
= npw + αLm

iq
ψd
.

(4)

Now, it is clear that the electromagnetic torque τe = Jµψdiq is just proportional to
the product of two state variables ψd and iq. Unfortunately, in the state space model of
the IM presented in (4), differential equations for id and iq nevertheless include plenty
high nonlinearities. For that, one possibility to make simpler these dynamics is to involve
the nonlinear state feedback control[

ud
uq

]
= G

[
γid − αβψd − npwiq − αLm

i2q
ψd

+ vd

γiq + βnpwψd + npwid + αLm
idiq
ψd

+ vq

]
. (5)

Then, the resulting closed-loop IM system is written as

dw

dt
= µψdiq −

f

J
w − τL

J
,

diq
dt

= vq,

dψd
dt

= −αψd + αLmid,

did
dt

= vd,

dρ

dt
= npw + αLm

iq
ψd
,

(6)

where ψd(t) and w(t) are output signals of the IM that will be controlled to achieve the
tracking accuracy.

3.2 Input-output linearization control

In the above FOC scheme, the speed w and flux ψd are only asymptotically decoupled.
Consequently, the speed is linearly related to iq only after ψd is constant. However,
field weakening (i.e., decreasing ψd) is necessary for high speeds so as not to saturate
the stator voltages. Since field-weakening depends on speed, the dynamics of ψd may
interfere with the dynamics of w, especially when the speed varies rapidly [12].
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As a solution to the presented problem, we suggest to introduce an input-output
linearization controller that will be designed for the full order (voltage command) system
model (6). Specifically, the transformation (η = µψdiq, ψd = ψd, ξ = −αψd + αLmid) is
introduced for (6), resulting in 

dw

dt
= η − f

J
w − τL

J
,

dη

dt
= µξiq + (µψd)vq,

dψd
dt

= ξ,

dξ

dt
= −αξ + (αLm)vd,

dρ

dt
= npw + αLm

η

µψ2
d

,

(7)

in which vd and vq are two new inputs, the application of the feedback
vd =

ξ

Lm
+

vd
αLm

,

vq = −µξiq
µψd

+
vq
µψd

(8)

results in the input-output linearized system

dw

dt
= η − f

J
w − τL

J
,

dη

dt
= vq + δq,

dψd
dt

= ξ,

dξ

dt
= vd + δd,

dρ

dt
= npw + αLm

µη

ψ2
d

,

(9)

where both δd and δq denote inversion errors. To explain, assuming that all parametric
uncertainties terms for each subsystem are an error signal δi (δd and δq)), we take into
account the motor parameters Rr and Rs that can vary appreciably due to the Ohmic
heating while the magnetic saturation can cause variations of Lr and Ls [6].

It is clear that the system (9) is linear from the inputs vd, vq to the outputs w,ψd.
Consequently, the IM dynamics has a straightforward structure since the conceived con-
troller is the input−output linearization controller. However, since the designed controller
relies completely on the exact values of the IM parameters with total knowledge of the
model, the robustness to parametric uncertainty cannot be ensured. Much work in the
literature on robust control have been consecrated to handle such problems. The authors
in [8,15] developed an adaptive output feedback controller augmented via a SHL NN for
highly complex nonlinear systems to eliminate the effect of unknown variations in plant
parameters and structure that can be unknown but bounded, and provided the stability
analysis of the closed loop system using the Lyapunov method.
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In the present paper, taking the advantage that the flux dynamics is decoupled from
the speed dynamics after IOFLC, and inspired by the control ideas in [8,15] that exploit
SHL NNs for their approximation ability, we aim to develop a control law that augments
the IOFLC scheme by only SHL NNs to sensibly approximate the uncertainties existing
in the IM.

4 Adaptive Controller Design

4.1 Control design

Taking advantage from the fact that the IM dynamics (9) is divided into two linear
subsystems, we contribute to synthesize adaptive control laws augmented via NN that
utilize the available measurements (ψd and w) so that the outputs (ψd(t) and w(t)) track
smooth bounded reference trajectories (ψ∗d(t) and w∗), respectively, with bounded error.
That is, the first four equations of (9) may be written as two decoupled linear subsystems,
flux dynamics 

dψd
dt

= ξ,

dξ

dt
= vd + δd

(10)

and speed dynamics 
dw

dt
= η − f

J
w − τL

J
,

dη

dt
= vq + δq,

(11)

where vd and vq are the inputs chosen to force the linear systems (10) and (11) to track
a given reference trajectories ψ∗d and w∗(t), respectively.

Note that both flux and speed subsystems are partially known, and their outputs ψd
and w have relative degrees equal to 2. Therefore, the output dynamics (yd = ψd) and
(yq = w) given by (10) and (11), respectively, will be reformulated as{

y
(2)
d = ψ̈d = vd + δd,

y(2)
q = ẅ = vq + δq,

(12)

on suggest exploit SHL NNs for their efficiency and ease of implementation in order to
deal with the effect of uncertainties (δ). Therefore, the control strategy will be improved
by adding adaptive neural network components uad, uaq in the expressions of the control
laws vd, vq in order to identify nonlinearities δd and δq, respectively. The global block
diagram of the designed control scheme is illustrated in Figure (1).

Consequently, the pseudocontrols vd and vq are chosen to have the form{
vd = ψ̈∗d +Dcd − uad,
vq = ẅ∗ +Dcq − uaq,

(13)

where y
(r)
c = (ψ̈∗d, ẅ

∗) are the second derivatives (r = 2) of the input signals generated
by the stable command filters, Dcd and Dcq denote outputs of the linear dynamic com-
pensators, uad and uaq represent the adaptive control signals designed to overcome δd
and δq, respectively.
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Figure 1: Adaptive inpout-output feedback linearization controller-based SHL NN architecture.

With (13), the dynamics in (12) reduce to{
y

(2)
d = ψ̈d = ψ̈∗d +Dcd − uad + δd,

y(2)
q = ẅ = ẅ∗ +Dcq − uaq + δq.

(14)

Accordingly, one challenge is to design adaptive input-output feedback linearization
controllers, whose adaptive terms uad and uaq adjust on-line for unknown nonlinearities
δd and δq using nonlinearly parameterized SHL NNs for the flux and speed subsystems,
respectively.

Consequently, with (14), the two subsystems (10) and (11) can be rewritten, respec-
tively, as in (15) and (16) 

dψd
dt

= ξ,

dξ

dt
= ψ̈∗d +Dcd − uad + δd,

(15)


dw

dt
= η − f

J
w − τL

J
,

dη

dt
= ẅ∗ +Dcq − uaq + δq.

(16)

The two subsystems are almost identical, for the rest of the paper we will treat only
the dynamics of the flux subsystem to simplify writing

dψd
dt

= ξ,

dξ

dt
= ψ̈∗d +Dcd − uad + δd.

(17)
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4.2 Design of the dynamic compensator and error dynamics

The output tracking errors is defined as (ψ̃d = ψ∗d −ψd). Then the dynamics in (14) can
be rewritten as

¨̃
ψd = −Dcd + uad − δd. (18)

The following linear compensator is introduced to stabilize the dynamics in the ideal
case (δd = 0, uad = 0) {

η̇d = αdηd + βdψ̃d,

Dcd = χdηd + %dψ̃d,
(19)

where ηd needs to be at least of dimension (r− 1 = 1) [1,3,11], while the gains αd, βd, χd
and %d should be designed such that A is Hurwitz.

Notice that the tracking error dynamics is formed from the combination of the vector

ed = [ψ̃d
˙̃
ψd]

T mutually with the compensator state ηd{
Ėd = AEd + b[uad − δd],
zd = CEd,

(20)

where Ed = [eTd ηTd ]T , A =

[
A− %dbc −bχd
βdc αd

]
, b =

[
b
0

]
, c =

[
c 0
0 I

]
, A =[

0 1
0 0

]
, b =

[
0
1

]
, c =

[
1
0

]T
, and zd is the vector of available measurements.

4.3 Design and analysis of an observer for the error dynamics

A minimal-order observer of dimension (r − 1 = 1) may be designed for the dynamics
in (20). However, to streamline the subsequent stability analysis, in what follows, we
consider the case of a full-order observer of dimension (2r − 1 = 3) [4, 15,21].

To this end, consider the following linear observer for the tracking error dynamics in
(20): { ˙̂

Ed = AÊd +K(zd − ẑd),

ẑd = CÊd,
(21)

where K is a gain matrix, and should be chosen such that Ã = (A−KC) is asymptotically

stable. Then, introduce the observer error signal Ẽd = (Êd−Ed) and write the observer
error dynamics { ˙̃

Ed = ÃẼd − b[uad − δd],

z̃d = CẼ,
(22)

where z̃d = (ẑd − zd).
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5 SHL NN Approximation of the Inversion Error

5.1 Neural network approximation

Assume that there exists a neural network with only one single hidden layer that approx-
imates the term of uncertainties δd. This NN has an output given by

yi =

N2∑
j=1

[
mijΦ

( N1∑
k=1

njkxk + θnj

)
+ θmi

]
, x ∈ <N1 , i = 1, ..., N3, (23)

where Φ(.) is an activation function, njk are the first-to-second layer interconnection
weights, mij are the second to third layer interconnection weights, N2 is associated with
the number of neurons in the hidden layer, θnj and θmi denote bias terms.

Theorem 5.1 Given ε∗ > 0, there exists a set of bounded weights Ψ and N such that
the model inversion error δ(x, u) can be approximated over a compact set D ⊂ ΩXR, by
an SHL NN

δ(ξd, vd) = ΨTΦ(NTµd) + ε(d, µd), |ε| < ε∗, (24)

using the input vector

µd(t) = [νTd (t) ψTd (t)]T ∈ D, ‖µd‖ ≤ µ∗d, µ∗d > 0. (25)

5.2 Adaptive element

The output of an SHL NN defines the adaptive signal

uad = Ψ̂TΦ(NTµd) + ε(d, µd), (26)

where Ψ̂ and N̂ are estimates of Ψ and N that are updated as follows:

˙̂
Ψ = −Fd[2(Φ̂− Φ̂′NTµd)Ê

T
d Pb+ kd(Ψ̂−Ψ0)],

˙̂
N = −Gd[2µdÊTd PbΨ̂T Φ̂′ + kd(N̂ −N0)]

(27)

in which Ψ0 is the initial value of Ψ, N0 is the initial value of the hidden layer weights
vector N , Φ̂ = Φ(NTµd), Φ̂′ denotes the Jacobian matrix, P is the solution of the
Lyapunov equation

A
T
P + PA = −Q (28)

for some Q > 0, kd > 0, and Fd, Gd are adaptation gain matrices.
Using (24) and (26), the error dynamics in (20) can be reformulated as{

Ėd = AEd + b[Ψ̂TΦ(N̂Tµd)−ΨTΦ(NTµd)− ε],
zd = CEd.

(29)

Define

Ψ̃ = Ψ̂−Ψ, Ñ = N̂ −N,Zd =

[
Ψ 0
0 N

]
, Z̃d =

[
Ψ̃ 0

0 Ñ

]
(30)
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and note that ||Ψ̂|| < ||Ψ̃||+Ψ∗, ||Ψ|| < Ψ∗, ||N̂ ||F < ||Ñ ||F +N∗, ||N ||F < N∗, where Ψ∗

and N∗ are the upper bounds for the weights in (24), and the subscript F denotes the
Frobenius norm. Therefore, the mismatch between the adaptive signal and the inversion
errors

uad − δd = Ψ̂TΦ(N̂Tµd)−ΨTΦ(NTµd)− ε (31)

allows for the following upper bound for some computable αa, αb

|uad − δd| ≤ αa||Z̃d||F + αb, αa > 0, αb > 0. (32)

Since the weights are adjusted online, we will need the following representation for
the stability proof : Ψ̂TΦ(N̂Tµd) − ΨTΦ(NTµd) = Ψ̃T (Φ̂ − Φ̂′N̂Tµd) + ϑb + ϑ, where

ϑ = Ψ̃T Φ̂′NTµd −ΨTO(ÑTµd)
2, and ϑb = Ψ̂T Φ̂′ÑTµd.

Such a representation is achieved via the Taylor series expansion of Φ(NTµd) around

the estimates N̂Tµd. Taking account of the bound in (25), a bound for (ϑ − ε) over a
compact can be expressed as follows [1, 4, 15]

|ϑ− ε| ≤ γa||Z̃d||F + γb, γa > 0, γb > 0, (33)

where γa and γb are computable constants, γa depends upon unknown constant µ∗d, and
γb upon ε∗. Thus, the forcing term in (17) can be written

uad − δd = Ψ̃T (Φ̂− Φ̂′N̂Tµd) + Ψ̂T Φ̂′ÑTµd + ϑ− ε. (34)

6 Stability Analysis

We confirm through Lyapunov’s direct method that if the initial errors of the variables
ETd , Ẽ

T
d , Ψ̃ and Ñ belong to the presented compact set, then the composite error vector

ζd =
[
ETd ẼTd Z̃Td

]T
is ultimately bounded. Notice that ζd can be viewed as a function

of the state variables ξd, ηd, Ẽd, Z̃d, the command vector yc = [ψ∗d ψ̇∗d]T , and a constant
vector Zd

ζd = F
(
ξd, ηd, Êd, Ẑd, yc, Zd

)
. (35)

The relation in(35) represents a mapping from the original domains of the arguments
to the space of the error variables

F : Ωξd × Ωyc × Ωηd × ΩÊd
× ΩẐd

× ΩZd
−→ Ωζd . (36)

Recall that (25) introduces the compact set D over which the NN approximation is
valid. From (25), it follows that

µd ∈ D ⇐⇒ ξd ∈ Ωξd , vd ∈ Ωvd . (37)

Also, notice that, since the observer in(21) is driven by the output tracking error

ψ̃d = ψ∗d − ψd and compensator state ηd, having ξd ∈ Ωξd , yc ∈ Ωyc , ηd ∈ Ωηd implies

that Êd ∈ ΩÊd
, the latter being a compact set.

According to (13)

vd = Fvd
(
ηd, Êd, Ẑd, yc

)
, (38)

where Fvd : Ωηd × ΩÊd
× ΩẐd

× Ωyc −→ Ωvd . Thus, (38), (37) and (35) ensure that Ωζd
is a bound set. Introduce the largest ball, which is included in Ωζd in the error space

BR =
{
|ζd|‖ζd‖ ≤ R

}
, R > 0. (39)

For every ζd ∈ BR, we have µd ∈ D, Zd ∈ ΩZd
, where both D and ΩZd

are bounded sets.
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Assumption 6.1 Assume

R > γ

√
TM
Tm
≥ γ, (40)

where TM and Tm are the maximum and minimum eigenvalues of the following matrix

T =


2P 0 0 0

0 2P̃ 0 0
0 0 F−1

d 0
0 0 0 G−1

d

 (41)

and

Υ = max(

√
‖Pb‖2γ2

b+k22+Zd

λmin(Q)−2 ,

√
‖Pb‖2γ2

b+k22+Zd

λmin(Q̃)−2
,

√
‖Pb‖2γ2

b+k22+Zd

k
2−k

2
1−
[
γa‖Pb‖

]2 ), where Zd = kd
2

[
‖Ψ −

Ψ0‖
]2

, kd > 2

[
k2

1 +γ2
a‖Pb‖2

]
, k1 = Θαa+‖Pb‖γa, k2 = Θαb+‖Pb‖γb,Θ = ‖Pb‖+‖P̃ b‖

and P̃ satisfies ÃT P̃+P̃ Ã = −Q̃ for some Q̃ > 0 with minimum eigenvalues λmin(Q̃) > 2.

Theorem 6.1 Let the assumption (6.1) hold, and let λmin(Q) > 2 for Q introduced
in (28). Then, if the initial errors belong to the compact set Ωα, defined in (43), the
feedback control law given by (5) and (13), along with (27), guarantees that the signals

Ed, Ẽd, Ñ and Ψ̃ in the closed-loop system are ultimately bounded.

Proof. Consider the following Lyapunov function for the system in (22) and (29):

V = ETd PEd + ẼTd P̃ Ẽd +
1

2
Ψ̃TF−1

d Ψ̃ +
1

2
tr(ÑTG−1

d Ñ). (42)

The derivative of V along (22), (29), (34), and with the definition of Ẽd = Êd −Ed, can
be written as

V̇ = −ETd PEd − ẼTd Q̃Ẽd + 2ÊTd Pb[ϑ− ε]− 2ẼTd (P̃ b+ Pb)[uad − δd]

− kdΨ̃T (Ψ̂−Ψ0)− kdtr[ÑT (N̂ −N0)].

Using upper bounds from (32) and (33), the following property for vectors tr[ÑT (N̂−
N0)] = 1

2‖Ñ‖
2
F + 1

2‖N̂ −N0‖2F − 1
2‖N −N0‖2F , and completing squares twice, the upper

bound reduces to [15]

V̇ ≤ −(λmin(Q)− 2)‖Ed‖2 + 2γ2
b ‖Pb‖2 − (λmin(Q̃)− 2)‖Ẽd‖2 + k2

2

−
(kd

2
− k2

1 −
[
γa‖Pb‖

]2)‖Z̃d‖2F + Zd.

Either of the following conditions:

‖Ed‖ >
√
‖Pb‖2γ2

b+k22+Zd

λmin(Q)−2 , ‖Ẽd‖ >
√
‖Pb‖2γ2

b+k22+Zd

λmin(Q)−2 , ‖Z̃d‖F >

√
‖Pb‖2γ2

b+k22+Zd

kd
2 −k

2
1−
[
γa‖Pb‖

]2 will

render V̇ < 0 outside a compact set: BΥ =
{
ζd ∈ BR, ‖ζd‖ ≤ Υ

}
.

Note from (40) that BΥ ⊂ BR. Then, consider the Lyapunov function candidate in
(42) and write it as V = ζTd Tζd. Let Γ be the maximum value of the Lyapunov function
V on the edge of BΥ: Γ = max‖ζd‖=Υ V = Υ2TM .
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Introduce the level set ΩΥ = {ζd, V = Γ}. Let αv be the minimum value of the
Lyapunov function V on the edge of BR: αv = min‖ζd‖=R V = R2Tm. Define the level
set

Ωα =
{
ζd ∈ BR, V = αv

}
. (43)

The condition in (40) ensures that ΩΥ ⊂ Ωα, and thus ultimate boundedness of ζd.

7 Simulation Results

In this section, computer simulations inquire the performances of the proposed con-
trol scheme in the presence of structured and unstructured uncertainties. The phys-
ical and electrical parameters of the two-phase IM under investigation are: Lm =
0.0117H,Rr = 3.9Ω, Rs = 1.7Ω, Lr = 0.014H,Ls = 0.014H, f = 0.00014N.m/rad/sec
and J = 0.00011kg.m2 [12].

One has chosen the design parameters for the dynamic compensators as follows: αd =
−85, βd = 10, χd = −18005 and %d = 2376, αq = −105, βq = 1, χq = −324090 and
%q = 3376 in order to place the poles of both closed-loop error dynamics at (−35,−25∓j)
and (−15,−45∓j), respectively (refer to [1,3] for more details). The observer dynamics in
(29) was designed so that its poles are five times faster than those of the error dynamics.
We implement ten neurons in the hidden layer of the neural network that approximate
δd, while we employ eight neurons in the hidden layer of the NN that approximate δq.
For the neural network, we use the following sigmoidal basis function Φ(x) = 1

1+e−ax

with a = 1. The adaptation gains were set to Fd = Gd = 2I, with sigma modification
gains kd = 0.365.

7.1 Test of robustness of the adaptive control

To demonstrate that the proposed approach is successfully applicable for the nonlinear
IM system in the presence of high uncertainties, the rate of (δ) will be varied with (±50%
then ±100%) of its norm value. Once again, our perspective is to develop an adaptive
controller for each subsystem of the decoupled dynamics of the IM using only one SHL
NN, in which the adaptive terms (uad and uaq) overcome the effects of inversion errors
(δd and δq), what bring to force the system measurements (ψd) and (w) to track reference
trajectories (ψ∗d) and (w∗), respectively, with bounded errors.

The simulation results depicted in Figures 2 illustrate the performance comparison
of the considered control systems for the case (δ is varied) without and with NN. In
these figures, we illustrate clearly that the adaptive control augmented via only SHL NN
works well, and excellent tracking accuracy is obtained. To explain, the tracking of the
speed signal to its reference is close enough so that they are indistinguishable in Figure
2(b), which proves that the NN augmentation (uaq) identifies successfully the inversion
error (δq), as illustrated in Figure 3(a). Furthermore, Figure 2(d) reports that the flux
response is compatible with respect the imposed flux reference trajectory. This is due
essentially to the ability of a the SHL NN (uad) to model nonlinearities (δd) on-line, as
presented in Figure 3(b). Moreover, from Figures 3(c) and 3(d) it is worth noticing that
the proposed approach has achieved excellent responses both at transient and steady
state process.

The proposed control system is able to achieve flux and speed tracking high accu-
racy with an admissible regulation performance with respect to load disturbances and
adequate robustness against parameter variations.
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(b) W and W ∗ with SHL NN.
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d without NN.
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(d) ψd and ψ∗
d with SHL NN.
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Figure 2: Simulation results with variation of uncertainties: without NN
((a), (c), (e), (g)), and with NN ((b), (d), (f), (h)).
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(c) NN weights history of speed subsystem.
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(d) NN weights history of flux subsystem.

Figure 3: ((a), (b)) Identification of uncertainties (δ) by NN. ((c), (d)) NN
weight history.

8 Summary

The fundamental goal of this paper consisted in realizing a tracking accuracy for multi-
inputs multi-outputs nonlinear induction motor in the presence of high uncertainties.
First, an appropriate input-output feedback linearizing controller is applied to decou-
ple the speed dynamics from the flux. Then, the nonlinear state feedback controller is
involved as a linearizing control. After, the adaptive control augmented via only non-
linearly parameterized SHL NNs is introduced to cancel the uncertainties existing in
the induction motor. A linear observer is introduced to estimate the derivatives of the
tracking errors. These estimates are used as inputs to the NN and in the adaptation
laws as an error signal. Of particular interest, ultimate boundedness of error signals is
shown using Lyapunov’s direct method. Finally, computer simulations are undertaken
to highlight the effectiveness of the proposed adaptive controller. As a future research
we will propose to add other NN structures for sensorless control.
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