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Abstract: In this paper, by combining generalized synchronization (GS) and inverse
generalized synchronisation (IGS), new schemes for increased and reduced synchro-
nization between different dimensional discrete-time systems are proposed. Based
on the Lyapunov stability theory, two control laws are proposed to prove the co-
existence of GS and IGS between the general three-dimensional drive map and the
two-dimensional response map in 3D and 2D, respectively. Numerical simulation has
confirmed the findings of the paper.
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1 Introduction

Chaotic discrete–time systems have received a considerable attention over the last
two decades due to their many applications in secure communications [1]. One of the
most studied aspects in discrete-time chaotic systems is the synchronization of chaotic
systems. Synchronization refers to the addition of a set of control parameters to the con-
trolled chaotic system and adaptively updating the controls so that the states become
synchronized [2–4]. Throughout the years, many studies have considered the synchro-
nization of discrete–order chaotic and hyperchaotic systems including [5–7]. One of the
most exciting synchronization types is the generalized synchronization (GS). It refers
to the existence of a functional relationship between the drive states and the response
states. Instead of the conventional definition of synchronization, which stipulates that
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the difference between the drive and response trajectories tends to zero as t→ +∞, GS
forces the difference between the response states and a function of the drive states to
zero. IGS is the natural reversal of GS, i.e. the error is the difference between the master
states and a function of the slave states. The importance of GS and IGS stems from the
fact that they can enrich the behavior of chaotic systems [8].

Naturally, curiosity grew as to the possibility of multiple synchronization types being
achieved simultaneously for the states of the response system. This phenomenon is
commonly referred to as the coexistence of synchronization types [9–11]. The present
research work focuses on the coexistence of GS and IGS between chaotic and hyperchaotic
systems. The next section of this paper describes the model for the drive and response
systems. Section 3 presents the control law that guarantees the coexistence of GS and
IGS in 3D. Section 4 presents numerically the control laws that establish the coexistence
of GS and IGS in 2D. Finally, Section 5 summarizes the work carried out in this paper.

2 Drive–Response Model

We consider the following drive chaotic system:

x1(k + 1) = f1(x1(k), x2(k)), (1)

x2(k + 1) = f2(x1(k), x2(k)),

where (x1(k), x2(k))
T

is the state vector of the drive system and fi : R2 −→ R, 1 ≤ i ≤ 2.
As the response system, we consider the following hyperchaotic system:

y1(k + 1) =

3∑
j=1

b1jyj(k) + g1(y1(k), y2(k), y3(k)) + u1, (2)

y2(k + 1) =

3∑
j=1

b2jyj(k) + g2(y1(k), y2(k), y3(k)) + u2,

y3(k + 1) =

3∑
j=1

b3jyj(k) + g3(y1(k), y2(k), y3(k)) + u3,

where (y1(k), y2(k), y3(k))
T

is the state vector of the response system, (bij) ∈ R3×3 is the
linear part of the response system, gi : R3 −→ R, 1 ≤ i ≤ 3, are the nonlinear functions
and ui, 1 ≤ i ≤ 3, are the controllers to be designed.

3 Synchronization in 3D

The problem of increased synchronization in 3D between the drive system (1) and the
response system (2) is to find controllers ui, i = 1, 2, 3, and functions φ, χ : R2 −→ R,
ϕ : R −→ R, such that the synchronization errors

e1 (k) = y1(k)− φ (x1(k), x2(k)) , (3)

e2 (k) = x2(k)− ϕ (y2(k)) ,

e3 (k) = y3(k)− χ (x1(k), x2(k))

satisfy the condition lim
n→+∞

ei(k) = 0, for i = 1, 2, 3.
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Remark 3.1 From the error system (3), it is clear that y1 and (x1, x2)
T

are general-
ized synchronized, x2 and y2 are inverse generalized synchronized and y3 is in generalized
synchronization with x1 and x2 so that generalized synchronization and inverse general-
ized synchronization coexist in the synchronization of the systems (1) and (2) in 3D.

We assumed that ϕ is an invertible function and its inverse is noted by ϕ−1. Hence,
we have proved the following result.

Theorem 3.1 Increased synchronization in 3D between systems (1) and (2) is
achieved under the following controllers:

u1 = −
3∑

j=1

b1jyj(k) − g1(Y (k)) + φ (f1(X(k)), f2(X(n))) + 1
2
e1 (k) + 2

5
e2 (k) − 2

3
e3 (k) ,

u2 = −
3∑

j=1

b2jyj(k) − g2(Y (k)) + ϕ−1
(
1
2
e1 (k) + 2

5
e2 (k) + 2

3
e3 (k) − f2(X(k))

)
,

u3 = −
3∑

j=1

b3jyj(k) − g3(Y (k)) + χ (f1(X(k)), f2(X(k))) + 1
2
e1 (k) − 4

5
e2 (k) ,

(4)

where X(k) = (x1(k), x2(k))
T
and Y (k) = (y1(k), y2(k), y3(k))

T
.

Proof. The error system (3) can be derived as

e1 (k + 1) =

3∑
j=1

b1jyj(k) + g1(Y (k)) + u1 − φ (f1(X(k)), f2(X(k))) , (5)

e2 (k + 1) = f2(X(k)) − ϕ

(
3∑

j=1

b2jyj(k) + g2(Y (k)) + u2

)
,

e3 (k + 1) =

3∑
j=1

b3jyj(k) + g3(Y (k)) − χ (f1(X(k)), f2(X(k))) .

Substituting the control law (4) into (5), one can get

e1 (k + 1) =
1

2
e1 (k) +

2

5
e2 (k) − 2

3
e3 (k) , (6)

e2 (k + 1) =
1

2
e1 (k) +

2

5
e2 (k) +

2

3
e3 (k) ,

e3 (k + 1) =
1

2
e1 (k) − 4

5
e2 (k) .

We construct the Lyapunov function in the form V (e1(k), e2(k), e3(k)) = e21(k)+e22(k)+
e23(k), so

∆V = e21(k + 1) + e22(k + 1) + e23(k + 1) − e21(k) − e22(k) − e23(k)

= −
(

1

4
e21(k) +

17

25
e22(k) +

1

9
e23(k)

)
< 0.

It is immediate that all solutions of error system (6) go to zero as k → +∞. Therefore,
systems (1) and (2) are globally synchronized in 3D.

The result of the numerical simulation of the error system (6) is plotted in (Figure
1).
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Figure 1: Time evolution of the synchronization errors 6.

4 Synchronization in 2D

The problem of reduced synchronization in 2D between the drive system (1) and the
response system (2) is to find controllers ui, i = 1, 2, 3, and functions ψ : R2 −→ R,
λ, ω : R −→ R, such that the synchronization errors

e1 (k) = y1(k)− ψ (x1(k), x2(k)) , (7)

e2 (k) = x2(k)− λ (y2(k))− ω (y3(k))

satisfy the condition lim
n→+∞

ei(k) = 0, for i = 1, 2. We assume that the functions λ and

ω are invertible.

Remark 4.1 From the error system (7), it is clear that y1 is generalized synchro-
nized with x1 and x2, and x2 is inverse generalized synchronized with y2 and y3, so
that generalized synchronization and inverse generalized synchronization coexist in the
synchronization of the systems (1) and (2) in 2D.

The error system (7) can be described as

e1 (k + 1) =
3∑

j=1

b1jyj(k) + g1(Y (k)) + u1 − ψ (f1(X(k)), f2(X(k))) ,

e2 (k + 1) = f2(X(k))− λ

(
3∑

j=1

b2jyj(k) + g2(Y (k)) + u2

)

−ω

(
3∑

j=1

b3jyj(k) + g3(Y (k)) + u3

)
.

(8)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (2) (2019) 313–318 317

In this case, the controllers can be constructed as follow:

u1 = −
3∑

j=1

b1jyj(k) − g1(Y (k)) − u1 + ψ (f1(X(k)), f2(X(k))) − e1 (k) − e2 (k) , (9)

u2 = −
3∑

j=1

b1jyj(k) − g1(Y (k)) + λ−1 (e1 (k) − e2 (k)) ,

u3 = −
3∑

j=1

b3jyj(k) − g3(Y (k)) + ω−1 (f2(X(k))) ,

where λ−1 and ω−1 are the inverse functions of λ and ω, respectively. By substituting
the control law (9) into (8), the error system can be described as

e1 (k + 1) =
1

2
e1 (k) +

1

2
e2 (k) , (10)

e2 (k + 1) =
1

2
e1 (k) − 1

2
e2 (k) .

We construct a Lyapunov function in the form V (e1(k), e2(k)) = e21(k) + e22(k), so

∆V = e21(k + 1) + e22(k + 1) − e21(k) − e22(k)

= −1

2

(
e21 (k) + e22 (k)

)
< 0.

Thus, from the Lyapunov stability theory, it is immediate that lim
n→+∞

ei(k) = 0, (i = 1, 2).

Hence, we have proved the following result.

Theorem 4.1 The drive system (1) and the response system (2) are reduced syn-
chronization in 2D under the control law (9).

The result of the numerical simulation of the error system (10) is plotted in Figure
2.

Figure 2: Time evolution of the synchronization errors (10).
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5 Conclusion

In this work, we have shown that different types of synchronization can co-exist for dif-
ferent dimensional discrete-time chaotic systems. We assumed a two dimensional drive
system and a three dimensional response system. The main results of the study were
two-fold. First, we presented a control scheme whereby GS and IGS are achieved simul-
taneously in 3D. The stability of the zero solutions, and, consequently, the convergence
of the synchronization errors were established by means of the Lyapunov stability theory.
The second main result concerns the co-existence of GS and IGS in 2D. Simulations were
carried out on Matlab to ensure that the errors converge to zero subject to the proposed
control laws.

References

[1] Z. Kotulski, J. Szczepnski, K. Gorski, A. Paszkiewicz and A. Zugaj. Application of dis-
crete chaotic dynamical system in cryptography-DCC method. International Journal of
Bifurcation and Chaos 9 (6) (1999) 1121–1135.

[2] A. Y. Aguilar–Bustos, C. Cruz–Hernández, R. M. Lopez–Gutierrez, and C. Posadas–
Castillo. Synchronization of different hyperchaotic maps for encryption. Nonlinear Dynam-
ics and Systems Theory 8 (3) (2008) 221–236.
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