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Abstract: In this paper, we give a new representation of exact solutions for nonlinear
time-fractional wave-like equations with variable coefficients using a recent and reli-
able method, namely the fractional reduced differential transform method (FRDTM).
Using the FRDTM, it is possible to find solution for this type of equations in the form
of infinite series, this series in closed form gives the exact solution. It has been proven
that the FRDTM is a convenient and effective method in its application. The accu-
racy and efficiency of the method is tested by means of three numerical examples.
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1 Introduction

The nonlinear fractional partial differential equations (NFPDEs) are increasingly used
to model many problems in mathematical physics, including electromagnetics, fluid flow,
diffusion, quantum mechanics, damping laws, viscoelasticity and other applications. Ex-
act solutions of NFPDEs are sometimes too complicated to be attained by conventional
techniques due to the computational complexities of nonlinear parts involving them.
Therefore, for the study of solution of NFPDEs there are variety of analytical and ap-
proximate methods found in literature. Among them most useful and common meth-
ods are: the Adomian decomposition method (ADM) [8], variational iteration method
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(VIM) [10], fractional difference method (FDM) [4], generalized differential transform
method (GDTM) [1], homotopy analysis method (HAM) [11], homotopy perturbation
method (HPM) [9].

Recently, an efficient analytical technique for handling different types of NFPDEs has
been developed called the fractional reduced differential transform method (FRDTM).
The FRDTM was effectively used for finding the solution of various kinds of NFPDEs [5–
7]. Further, this method does not require any discretization, linearization and therefore it
reduces significantly the numerical computations compare with the existing methods such
as the perturbation technique, differential transform method (DTM) and the Adomian
decomposition method (ADM).

In [3], we solved the nonlinear time-fractional wave-like equations with variable coef-
ficients by two different methods and compared between these two methods.

The main objective of this paper is to give a new representation of exact solutions
for this type of equations using the FRDTM.

Consider the following nonlinear time-fractional wave-like equations:

D2α
t u =

n∑
i,j=1

F1ij(X, t, u)
∂k+m

∂xki ∂x
m
j

F2ij(uxi , uxj ) (1)

+

n∑
i=1

G1i(X, t, u)
∂p

∂xpi
G2i(uxi

) +H(X, t, u) + S(X, t),

with the initial conditions

u(X, 0) = a0(X), ut(X, 0) = a1(X), (2)

where D2α
t is the Caputo fractional derivative operator of order 2α, 1

2 < α ≤ 1.
Here X = (x1, x2, ..., xn) ∈ Rn, n ∈ N∗, F1ij , G1i i, j ∈ {1, 2, ..., n}, are nonlinear

functions of X, t and u, F2ij , G2i i, j ∈ {1, 2, ..., n} , are nonlinear functions of derivatives
of u with respect to xi and xj i, j ∈ {1, 2, ..., n} , respectively. Also H,S are nonlinear
functions and k,m, p are integers.

These types of equations are of considerable significance in various fields of applied sci-
ences, mathematical physics, nonlinear hydrodynamics, engineering physics, biophysics,
human movement sciences, astrophysics and plasma physics. These equations describe
the evolution of erratic motions of small particles that are immersed in fluids, fluctuations
of the intensity of laser light, velocity distributions of fluid particles in turbulent flows.

2 Basic Definitions

In this section, we give some basic definitions and properties of the fractional calculus
theory which are used further in this paper. For more details, see [4].

Definition 2.1 A real function u(x, t), x ∈ I ⊂ R, t > 0, is considered to be in the
space Cµ(I × R+), µ ∈ R if there exists a real number p > µ, so that u(x, t) = tpf(x, t),
where f(x, t) ∈ C (I × R+), and it is said to be in the space Cnµ if u(n)(x, t) ∈ Cµ, n ∈ N.

Definition 2.2 Let u(x, t) ∈ Cµ(I ×R+), µ ≥ −1. The Riemann-Liouville fractional
integral operator of order α ≥ 0 of u(x, t) is defined as follows:

Iαt u(x, t) =

 1
Γ(α)

t∫
0

(t− ξ)α−1
u(x, ξ)dξ, α > 0, x ∈ I, t > ξ ≥ 0,

u(x, t), α = 0,

(3)
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where Γ(.) is the well-known gamma function.

Definition 2.3 The Caputo fractional derivative operator of order α of u(x, t) is
defined as follows:

Dα
t u(x, t) =

 1
Γ(n−α)

t∫
0

(t− ξ)n−α−1
u(n)(x, ξ)dξ, n− 1 < α < n,

u(n)(x, t), α = n.

(4)

For the Riemann-Liouville fractional integral and Caputo fractional derivative, we
have the following relation:

Iαt D
α
t u(x, t) = u(x, t)−

n−1∑
k=0

u(k)(x, 0+)
tk

k!
, x ∈ I, t > 0. (5)

3 Fractional Reduced Differential Transform Method (FRDTM)

In this section, we apply the fractional reduced differential transform method for (n +
1)−variable function u(x1, x2, ..., xn, t) which has been developed in [2].

On the basis of the properties of the one-dimensional differential transform, the func-
tion u(x1, x2, ..., xn, t) can be represented as

u(x1, x2, ..., xn, t) =

( ∞∑
k1=0

F1(k1)xk11

)( ∞∑
k2=0

F2(k2)xk22

)
× ...

×

( ∞∑
kn=0

Fn(kn)xknn

)
×

( ∞∑
km=0

Fm(km)tkm

)

=

∞∑
k1=0

∞∑
k2=0

...

∞∑
kn=0

∞∑
km=0

U(k1, k2, ..., kn, km)xk11 x
k2
2 ...x

kn
n tkm ,

where U(k1, k2, ..., kn, km) = F1(k1)×F2(k2)×...×Fn(kn)×Fm(km) is called the spectrum
of u(x1, x2, ..., xn, t). Next, we assume that u(X, t), X = (x1, x2, ..., xn) is a continuously
differentiable function with respect to the space variable and time in the domain of
interest.

Definition 3.1 Let u(X, t) be an analytic function, then the FRDT of u is given by

Uk(X) =

∞∑
k=0

1

Γ(kα+ 1)

[
∂kα

∂tkα
u(X, t)

]
t=t0

, (6)

where α is a parameter describing the order of time fractional derivative in the Caputo
sense. Here the lowercase u(X, t) represents the original function while the uppercase
Uk(X) stands for the fractional reduced transformed function.

Definition 3.2 The inverse FRDT of Uk(X) is defined by

u(X, t) =

∞∑
k=0

Uk(X)(t− t0)kα. (7)
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Combining equations (6) and (7), we have

u(X, t) =

∞∑
k=0

1

Γ(kα+ 1)

[
∂kα

∂tkα
u(X, t)

]
t=t0

(t− t0)kα. (8)

In particular, for t0 = 0, equation (8) becomes

u(X, t) =

∞∑
k=0

1

Γ(kα+ 1)

[
∂kα

∂tkα
u(X, t)

]
t=0

tkα. (9)

Moreover, if α = 1, then the FRDT of equation (8) reduces to the classical RDT
method. From the above definitions, the fundamental operations of the FRDTM are
given by the following theorems.

Theorem 3.1 Let Uk(X), Vk(X) and Wk(X) be the fractional reduced differential
transform of the functions u(X, t), v(X, t) and w(X, t), respectively, then

(1) if w(X, t) = λu(X, t) + µv(X, t), then Wk(X) = λUk(X) + µVk(X), λ, µ ∈ R.

(2) if w(X, t) = u(X, t)v(X, t), then Wk(X) =
k∑
r=0

Ur(X)Vk−r(X).

(3) if w(X, t) = u1(X, t)u2(X, t)...un(X, t), then

Wk(X) =

k∑
kn−1=0

kn−1∑
kn−2=0

...

k3∑
k2=0

k2∑
k1=0

U1
k1(X)U2

k2−k1(X)

×...× Un−1
kn−1−kn−2

(X)Unk−kn−1
(X).

(4) if w(X, t) =
∂nα

∂tnα
u(X, t), then

Wk(X) =
Γ (kα+ nα+ 1)

Γ (kα+ 1)
Uk+n(X), n = 1, 2, ....

4 FRDTM for Nonlinear Time-Fractional Wave-Like Equations

Theorem 4.1 Consider the nonlinear time-fractional wave-like equations (1) with
the initial conditions (2).

Then, by FRDTM the solution of equations (1)-(2) is given in the form of infinite
series as follows:

u(X, t) =

∞∑
k=0

Uk(X)tkα,

where Uk(X) is the fractional reduced differential transformed function of u(X, t).

Proof. In order to achieve our goal, we consider the following nonlinear time-
fractional wave-like equations (1) with the initial conditions (2).

Applying the FRDTM to equation (1), we obtain the following recurrence relation
formula:
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Uk+2(X) =
Γ (kα+ 1)

Γ (kα+ 2α+ 1)
[Ak(X) +Bk(X) + Ck(X) +Dk(X)] , (10)

where Ak(X), Bk(X), Ck(X) and Dk(X) are the transformed form of the nonlinear

terms,
n∑

i,j=1

F1ij(X, t, u)
∂k+m

∂xki ∂x
m
j

F2ij(uxi , uxj ),
n∑
i=1

G1i(X, t, u)
∂p

∂xpi
G2i(uxi), H(X, t, u)

and S(X, t), rerspectively.
Now, using the FRDTM under the initial conditions (2), we obtain

U0(X) = a0(X), U1(X) = a1(X). (11)

We substitute equation (11) into equation (10), we get

U0(X) = a0(X), U1(X) = a1(X),

U2(X) =
1

Γ (2α+ 1)
[A0(X) +B0(X) + C0(X) +D0(X)] ,

U3(X) =
Γ (α+ 1)

Γ (3α+ 1)
[A1(X) +B1(X) + C1(X) +D1(X)] , (12)

U4(X) =
Γ (2α+ 1)

Γ (4α+ 1)
[A2(X) +B2(X) + C2(X) +D2(X)] .

...

Then, the solution of equations (1)-(2) in the form of infinite series is given by

u(X, t) =

∞∑
k=0

Uk(X)tkα. (13)

The proof is complete.

5 Numerical Examples

In this section, we describe the method explained in Section 4. Three numerical examples
of nonlinear time-fractional wave-like equations with variable coefficients are considered
to validate the capability, reliability and efficiency of the FRDTM.

Example 5.1 Consider the 2-dimensional nonlinear time-fractional wave-like equa-
tion with variable coefficients:

D2α
t u =

∂2

∂x∂y
(uxxuyy)− ∂2

∂x∂y
(xyuxuy)− u, t > 0,

1

2
< α ≤ 1, (14)

with the initial conditions

u(x, y, 0) = exy, ut(x, y, 0) = exy, (x, y) ∈ R2. (15)

Applying the FRDTM to equations (14)-(15), we obtain the following recurrence
relation formula:

U0(x, y) = exy, U1(x, y) = exy, (16)

Uk+2(x, y) =
Γ (kα+ 1)

Γ (kα+ 2α+ 1)

[
∂2

∂x∂y
Ak(x, y)− ∂2

∂x∂y
Bk(x, y)− Uk(x, y)

]
,
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where Ak(x, y) and Bk(x, y) are the transformed form of the nonlinear terms, uxxuyy and
xyuxuy. For the convenience of the reader, the first few nonlinear terms are as follows:

A0 = U0xxU0yy,

A1 = U0xxU1yy + U1xxU0yy,

A2 = U0xxU2yy + U1xxU1yy + U2xxU0yy,

B0 = xyU0xU0y,

B1 = xyU0xU1y + xyU1xU0y,

B2 = xyU0xU2y + xyU1xU1y + xyU2xU0y.

From the relationship in (16), we obtain

U0(x, y) = exy, U1(x, y) = exy, U2(x, y) = − 1

Γ (2α+ 1)
exy,

U3(x, y) = − Γ (α+ 1)

Γ (3α+ 1)
exy, U4(x, y) =

1

Γ (4α+ 1)
exy...

So, the solution of equations (14)-(15) is given in the form of infinite series as follows:

u(x, y, t) =

(
1 + tα − 1

Γ(2α+ 1)
t2α − Γ(α+ 1)

Γ(3α+ 1)
t3α +

1

Γ(4α+ 1)
t4α + ...

)
exy.

In particular, for α = 1, the solution of equations (14)-(15) has the general pattern
form which coincides with the following exact solution in terms of infinite series:

u(x, y, t) =

(
1 + t− t2

2!
− t3

3!
+
t4

4!
+ ...

)
exy.

Therefore, the exact solution of equations (14)-(15) in a closed form of elementary
function will be given by

u(x, y, t) = (cos t+ sin t) exy,

which is the same result as those obtained by the NIM and NHPM [3].

Example 5.2 Consider the following nonlinear time-fractional wave-like equation
with variable coefficients:

D2α
t u = u2 ∂

2

∂x2
(uxuxxuxxx) + u2

x

∂2

∂x2
(u3
xx)− 18u5 + u, t > 0,

1

2
< α ≤ 1, (17)

with the initial conditions

u(x, 0) = ex, ut(x, 0) = ex, x ∈ ]0, 1[ . (18)

Applying the FRDTM to equations (17)-(18), we obtain the following recurrence
relation formula:

U0(x) = ex, U1(x) = ex, (19)

Uk+2(x) =
Γ (kα+ 1)

Γ (kα+ 2α+ 1)
[Ak(x) +Bk(x)− 18Ck(x) + Uk(x)] ,
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where Ak(x), Bk(x) and Ck(x) are the transformed form of the nonlinear terms,

u2 ∂
2

∂x2
(uxuxxuxxx), u2

x

∂2

∂x2
(u3
xx) and u5. For the convenience of the reader, the first

few nonlinear terms are as follows:

A0 = U2
0

∂2

∂x2
[U0xU0xxU0xxx] ,

A1 = 2U0U1
∂2

∂x2
[U0xU0xxU0xxx] + U2

0

∂2

∂x2
[U1xU0xxU0xxx

+U0xU1xxU0xxx + U0xU0xxU1xxx] ,

B0 = U2
0x

∂2

∂x2
U3

0xx,

B1 = 2U0xU1x
∂2

∂x2
U3

0xx + 3U2
0x

∂2

∂x2

[
U2

0xxU1xx

]
,

C0 = U5
0 , C1 = 5U4

0U1.

From the relationship in (19), we obtain

U0(x) = ex, U1(x) = ex,

U2(x) =
1

Γ(2α+ 1)
ex, U3(x) =

Γ (α+ 1)

Γ (3α+ 1)
ex...

So, the solution of equations (17)-(18) is given in the form of infinite series as follows:

u(x, t) =

(
1 + tα +

1

Γ(2α+ 1)
t2α +

Γ(α+ 1)

Γ(3α+ 1)
t3α + ...

)
ex.

In particular, for α = 1, the solution of equations (17)-(18) has the general pattern
form which coincides with the following exact solution in terms of infinite series:

u(x, t) =

(
1 + t+

t2

2!
+
t3

3!
+ ...

)
ex.

Therefore, the exact solution of equations (17)-(18) in a closed form of elementary
function will be given by

u(x, t) = ex+t,

which is the same result as those obtained by the NIM and NHPM [3].

Example 5.3 Consider the following one-dimensional nonlinear time-fractional
wave-like equation with variable coefficients:

D2α
t u = x2 ∂

∂x
(uxuxx)− x2(uxx)2 − u, t > 0,

1

2
< α ≤ 1, (20)

with the initial conditions

u(x, 0) = 0, ut(x, 0) = x2, x ∈ ]0, 1[ . (21)
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Applying the FRDTM to equations (20)-(21), we obtain the following recurrence
relation formula:

U0(x) = 0, U1(x) = x2, (22)

Uk+2(x) =
Γ (kα+ 1)

Γ (kα+ 2α+ 1)

[
x2 ∂

∂x
Ak(x)− x2Bk(x)− Uk(x)

]
,

where Ak(x) and Bk(x) are the transformed form of the nonlinear terms, uxuxx and u2
xx.

For the convenience of the reader, the first few nonlinear terms are as follows:

A0 = U0xU0xx,

A1 = U0xU1xx + U1xU0xx,

A2 = U0xU2xx + U1xU1xx + U2xU0xx,

B0 = U2
0xx,

B1 = 2U0xxU1xx,

B2 = 2U0xxU2xx + U2
1xx.

From the relationship in (22), we obtain

U0(x) = 0, U1(x) = x2, U2(x) = 0,

U3(x) = − Γ(α+ 1)

Γ(3α+ 1)
x2, U4(x) = 0...

So, the solution of equations (20)-(21) is given in the form of infinite series as follows:

u(x, t) =

(
tα − Γ(α+ 1)

Γ(3α+ 1)
t3α +

Γ(α+ 1)

Γ(5α+ 1)
t5α + ...

)
x2.

In particular, for α = 1, the solution of equations (20)-(21) has the general pattern
form which coincides with the following exact solution in terms of infinite series:

u(x, t) =

(
t− t3

3!
+
t5

5!
+ ...

)
x2.

Therefore, the exact solution of equations (20)-(21) in a closed form of elementary
function will be given by

u(x, t) = x2 sin t,

which is the same result as those obtained by the NIM and NHPM [3].

6 Numerical Results and Discussion

In this section the numerical results for all Examples 5.1, 5.2 and 5.3 are presented.
Figures 1, 3 and 5 represent the surface graph of the exact solution and the 6−term
approximate solution at α = 0.6, 0.8, 1. Figures 2, 4 and 6 represent the behavior of the
exact solution and the 6−term approximate solution at α = 0.7, 0.8, 0.95, 1 in the case
when x = y = 0.5 for Example 5.1 and x = 0.5 for Examples 5.2 and 5.3. Tables 1, 2
and 3 show the absolute errors between the exact solution and the 6−term approximate
solution at α = 1 and different values of x, y and t. The numerical results afirm that
when α approaches 1, our results obtained by the FRDTM approach the exact solutions.
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Figure 1: The surface graph of the exact solution and the 6−term approximate solution by
the FRDTM for Example 5.1 when y = 0.5: (a) u when α = 0.6, (b) u when α = 0.8, (c) u
when α = 1, and (d) u is exact.
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Figure 2: The behavior of the exact solution and the 6−term approximate solution by the
FRDTM for different values of α for Example 5.1 when x = y = 0.5.

t/x, y 0.1 0.3 0.5 0.7
0.1 1.4226× 10−9 1.5411× 10−9 1.8085× 10−9 2.2991× 10−9

0.3 1.0648× 10−6 1.1535× 10−6 1.3536× 10−6 1.7208× 10−6

0.5 2.3382× 10−5 2.5330× 10−5 2.9725× 10−5 3.7787× 10−5

0.7 1.8000× 10−4 1.9499× 10−4 2.2882× 10−4 2.9089× 10−4

0.9 8.2963× 10−4 8.9872× 10−4 1.0547× 10−3 1.3407× 10−3

Table 1: Comparison of the absolute errors for the obtained results and the exact solution for
Example 5.1, when n = 6 and α = 1.
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Figure 3: The surface graph of the exact solution and the 6−term approximate solution by
the FRDTM for Example 5.2 : (a) u when α = 0.6, (b) u when α = 0.8, (c) u when α = 1, and
(d) u is exact.
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Figure 4: The behavior of the exact solution and the 6−term approximate solution by the
FRDTM for different values of α for Example 5.2 when x = 0.5.

t/x 0.1 0.3 0.5 0.7
0.1 1.5572× 10−9 1.9019× 10−9 2.3230× 10−9 2.8373× 10−9

0.3 1.1688× 10−6 1.4276× 10−6 1.7436× 10−6 2.1297× 10−6

0.5 2.5810× 10−5 3.1525× 10−5 3.8504× 10−5 4.7029× 10−5

0.7 2.0036× 10−4 2.4472× 10−4 2.9890× 10−4 3.6507× 10−4

0.9 9.3372× 10−4 1.1404× 10−3 1.3929× 10−3 1.7013× 10−3

Table 2: Comparison of the absolute errors for the obtained results and the exact solution for
Example 5.2, when n = 6 and α = 1.
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Figure 5: The surface graph of the exact solution and the 6−term approximate solution by
the FRDTM for Example 5.3 : (a) u when α = 0.6, (b) u when α = 0.8, (c) u when α = 1, and
(d) u is exact.
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Figure 6: The behavior of the exact solution and the 6−term approximate solution by the
FRDTM for different values of α for Example 5.3 when x = 0.5.

t/x 0.1 0.3 0.5 0.7
0.1 1.9839× 10−13 1.7855× 10−12 4.9596× 10−12 9.7209× 10−12

0.3 4.3339× 10−10 3.9005× 10−9 1.0835× 10−8 2.1236× 10−8

0.5 1.5447× 10−8 1.3903× 10−7 3.8618× 10−7 7.5692× 10−7

0.7 1.6229× 10−7 1.4606× 10−6 4.0574× 10−6 7.9524× 10−6

0.9 9.3840× 10−7 8.4456× 10−6 2.3460× 10−5 4.5982× 10−5

Table 3: Comparison of the absolute errors for the obtained results and the exact solution for
Example 5.3, when n = 6 and α = 1.
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7 Conclusion

In this paper, a new representation of exact solutions for nonlinear time-fractional wave-
like equations with variable coefficients was presented by using the fractional reduced
differential transform method (FRDTM). The method was applied to three numerical
examples. In the numerical examples, our method gave us the solutions in the form
of infinite series, this series in closed form gives the corresponding exact solutions for
these equations without any transformation, discretization and any other restrictions,
therefore it reduces significantly the numerical computations compare with the existing
methods such as the perturbation technique, differential transform method (DTM) and
the Adomian decomposition method (ADM). Also, our results obtained in this paper
are in a good agreement with the exact solutions; hence, this technique is powerful and
efficient as an alternative method for finding approximate and exact solutions for many
other nonlinear fractional partial differential equations.
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