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Abstract: Topological degree theory is a useful tool for studying systems of dif-
ferential equations. In this work, a biological model is considered. Speci�cally, we
prove the existence of positive T -periodic solutions of a system of delay di�erential
equations for a model with feedback arising on circadian oscillations in the drosophila
period gene protein.

Keywords: di�erential equations with delay; periodic solutions; models with feed-
back; topological degree; drosophila; circadian cycle.

Mathematics Subject Classi�cation (2010): 34K13, 92B05.

1 Introduction

The study of cellular control has been developed in many papers on mathematical analysis
to determine the existence of stable oscillations in mRNA regulatory processes, see [5]
and to understand circadian cycles and, in particular, of the cellular machinery that
produces them, see [7].

In all cases, search for conditions on the parameters of the proposed systems has been
carried out with the purpose of determining conditions for the existence of stable cycles
and the cycles when the system solution may be even chaotic.

Let us consider a model proposed by Goldbeter [3], who showed the variation on PER:
the period of messenger of Ribo-Nucleic Acid (mRNA) in Drosophila (often called \fruit

ies") related to circadian rhythms. Our model does not consider temperature variation
as shown in [6]. Here, a nonautonomous version of the model is considered with the
aim of proving the existence of periodic solutions by means of a powerful topological
tool: the Leray-Schauder degree (see [1] and [2]). In the original model, the existence
of a positive steady state can be shown, under appropriate conditions, by the use of the
Brouwer degree. As we shall see, when the parameters are replaced by periodic functions,
essentially the same conditions yield the existence of positive periodic solutions.

� Corresponding author: mailto:calliera@dm.uba.ar
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2 C.H.D. ALLIERA

Figure 1 : Model for the circadian variation in PER.

2 The Model

The following simpli�ed model was proposed in [3]. Some more complex alternative
models have been studied with light interaction and timeless (TIM) proteins (see [4]).

2.1 General features

1. This negative feedback will be described by an equation of Hill type in whichn
denotes the degree of cooperativity, andK (t) is the threshold repression function.

2. To simplify the model, we consider that PN behaves directly as a repressor.

3. The constantsK s; K i and Vj denote the maximum rate and Michaelis constant of
the kinase(s) and the phosphatase(s) involved in the reversible phosphorylation of
P0 into P1, and of P1 into P2 are not negative.

4. Maximum accumulation rate of cytosol is denoted byVs.

5. Cytosol is degraded enzymically, in a Michaelian manner, at a maximum rateVm .

6. Functions of this system are:

(a) Cytosolic concentration is denoted byM .
(b) We consider only three states of the protein: unphosphorylated (P0),

monophosphorylated (P1) and bisphosphorylated (P2).
(c) Fully phosphorylated form of PER ( P2) is degraded in a Michaelian man-

ner, at a maximum rate Vd, and also transported into the nucleus, at a rate
characterized by the apparent �rst-order rate constant k1.
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7. The rate of synthesis of PER, proportional to M , is characterized by an apparent
�rst-order rate constant K s.

8. Transport of the nuclear, bisphosphorylated form of PER (PN ) into the cytosol is
characterized by the apparent �rst-order rate constant k2.

9. The model could be readily extended to include a larger number of phosphorylated
residues.

With this in mind, our non-autonomous version of Goldbeter’s system reads:

dM
dt

=
VS (t)K 1(t)n

K n
1 (t) + PN (t)n �

Vm (t)M (t)
K m 1 (t) + M (t)

;

dP0

dt
= K s(t)M (t) +

V2(t)P1(t)
K 2(t) + P1(t)

�
V1(t)P0(t)

K 1(t) + P0(t)
;

dP1

dt
=

V1(t)P0(t)
K 1(t) + P0(t)

+
V4(t)P2(t)

K 4(t) + P2(t)
� P1(t)

�
V2(t)

K 2(t) + P1(t)
+

V3(t)
K 3(t) + P1(t)

�
;

dP2

dt
=

V3(t)P1(t)
K 3(t) + P1(t)

+ k2(t)PN (t) � P2(t)
�

k1(t) +
V4(t)

K 4(t) + P2(t)
+

Vd(t)
K d(t) + P2(t)

�
;

dPN

dt
= k1(t)P2(t) � k2(t)PN (t);

(1)
where K i ; i = 1 ; 2; 3; 4; d; m1; s, k1; k2 and Vj ; j = 1 ; 2; 3; 4; S; m; d are strictly positive,
continuous T -periodic functions. We shall prove that, under accurate assumptions to be
speci�ed below, the system admits at least one positiveT -periodic solution.

3 Existence of Positive Periodic Solutions

In order to apply the topological degree method to problem (1), let us consider the space
of continuous T -periodic vector functions

CT := f u 2 C(R; R5) : u(t) = u(t + T ) for all tg;

equipped with the standard uniform norm, and the positive cone

K := f u 2 CT : uj � 0; j = 1 ; : : : ; 5g:

Thus, the original problem can be written as Lu = Nu , where L : C1 \ CT ! C is given
by Lu := u0 and the nonlinear operator N : K ! CT is de�ned as the right-hand side of
system (1). For convenience, the average of a functionu shall be denoted byu, namely
u := 1

T

RT
0 u(t) dt. Also, identifying R5 with the subset of constant functions of CT , we

may de�ne the function � : [0; + 1 )5 ! R5 given by � (x) := Nx .
For the reader’s convenience, let us summarize the basic properties of the Leray-

Schauder degree which, roughly speaking, can be regarded as an algebraic count of the
zeros of a mappingF : 
 ! E , where E is a Banach space and 
 � E is open and
bounded. In more precise terms, assume thatF = I � K , where K is compact and
F 6= 0 on @
. The degree degLS (F; 
 ; 0) is de�ned as the Brouwer degreedegB of its
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restriction F jV : 
 \ V ! V , whereV is an accurate �nite-dimensional subspace ofE . In
particular, if the range of K is �nite dimensional, then one may take V as the subspace
spanned by Im(K ). If degLS (F; 
 ; 0) is di�erent from 0, then F vanishes in 
; moreover,
the degree is invariant over a continuous homotopyF� := I � K � with K � being compact
and F� 6= 0 over @
. Finally, we recall that if � : Rn ! Rn is a di�eomorphism and
0 2 �( A) for some open boundedA � Rn , then degB (� ; A; 0) is just the sign of the
Jacobian determinant of � at the (unique) pre-image of 0. The following continuation
theorem is a direct consequence of the standard topological degree methods (see e.g. [1]).

Theorem 3.1 Assume there exists
 � K � being open and bounded such that:

a) The problem Lu = �Nu has no solutions on@
 for 0 < � < 1.

b) � (u) 6= 0 for all u 2 @
 \ R5.

c) degB (�; 
 \ R5; 0) 6= 0 .

Then (1) has at least one solution in
 .

3.1 A priori bounds

Firstly, we shall �nd appropriate bounds for the solution of the problem Lu = �Nu with
� 2 (0; 1). For convenience, let us �x the following notation for the minima and maxima
of all the functions involved in the model, namely

0 < vi � Vi (t) � V i ; 0 < � j � K j (t) � K j ; 0 < k̂l � kl (t) � | l ; 8 i; j; l:

Now assume that u 2 K � satis�es Lu = �Nu for some 0< � < 1. Let us �rstly
consider a valuet � at which M achieves an absolute maximum, thenM 0(t � ) = 0 and
hence

VS (t � )K 1(t � )n

K n
1 (t � ) + PN (t � )n =

Vm (t � )M (t � )
K m 1 (t � ) + M (t � )

�
vm M (t � )

Km 1 + M (t � )
:= bM (M (t � )) ;

where the increasing function
bM (x) :=

vm x
Km 1 + x

has inverse such that
b� 1

M (y) :=
Km 1 y
vm � y

:

If

Hypothesis 3.1
vm > VS ;

then
M (t � ) = b� 1

M

�
VS (t � )K 1(t � )n

K n
1 (t � ) + PN (t � )n

�
< b � 1

M (VS (t � )) �
VSKm 1

vM � V S
:= M :

Next, suppose that P0 achieves its absolute maximum at some point, denoted againt � ,
then

K s(t � )M (t � ) +
V2(t � )P1(t � )

K 2(t � ) + P1(t � )
=

V1(t � )P0(t � )
K 1(t � ) + P0(t � )

�
v1P0(t � )

K1 + P0(t � )
:= b0(P0(t � )) :
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Again, we de�ne an increasing and invertible function:

b0(x) :=
v1x

K1 + x
! b� 1

0 (y) :=
K1y

v1 � y
:

Thus, under the condition

Hypothesis 3.2
KSM + V2 < v 1

we deduce that

P0(t � ) = b� 1
0

�
K s(t � )M (t � ) +

V2(t � )P1(t � )
K 2(t � ) + P1(t � )

�
<

KSM + V2

v1 � (KSM + V2)
K1 := P0:

Next, an upper bound P1 for P1 is readily obtained in the following way. Let us denote
again by t � a value at which P1 achieves its absolute maximum, then

V1(t � )P0(t � )
K 1(t � ) + P0(t � )

+
V4(t � )P2(t � )

K 4(t � ) + P2(t � )
= P1(t � )

�
V2(t � )

K 2(t � ) + P1(t � )
+

V3(t � )
K 3(t � ) + P1(t � )

�
:

When P1(t � ) � 0, the right-hand side gets close toV2(t � ) + V3(t � ), while the left-hand
side is always less than or equal toV1 P 0

� 1 + P 0
+ V4 because P2

K 4 ( t � )+ P4
� 1 and x

� 1 + x increase
when x = P0.

Thus, the existence ofP1 is guaranteed by the condition

Hypothesis 3.3

V1P0

� 1 + P0
+ V4 < min

t 2 R
f V2(t) + V3(t)g:

The remaining upper bounds are obtained as follows. In the �rst place, de�ne a new
variable Q := PN + P2 which satis�es the equation:

dQ
dt

=
V3(t)P1(t)

K 3(t) + P1(t)
� P2(t)

�
V4(t)

K 4(t) + P2(t)
+

Vd(t)
K d(t) + P2(t)

�
:

If Q achieves its absolute maximum att � , then

V3P1

� 3 + P1
�

V3(t � )P1(t � )
K 3(t � ) + P1(t � )

� P2(t � )
�

V4(t � )
K 4(t � ) + P2(t � )

+
Vd(t � )

K d(t � ) + P2(t � )

�
:

As before, if the condition

Hypothesis 3.4
V3P1

� 3 + P1
< min

t 2 R
(V4(t) + Vd(t))

is assumed, thenP2(t � ) � ~P for some ~P . Moreover, from the fourth equation of the

system we deduce the existence of a constantC such that
dP2

dt
� � CP2(t). Hence we

obtain, for all t, that P2(t) � eCT ~P := P2. Then Q0(t) is bounded. Besides, there exist
t̂ critical point of PN , in consequence

k1( t̂)P2( t̂) = k2( t̂)PN ( t̂);
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then PN ( t̂) veri�es:

PN ( t̂) �
k�

1
k2�

P2;

thus
Q( t̂) = PN ( t̂) + P2( t̂) � Q0 :=

�
k�

1
k2�

+ 1
�

P2:

In this way, knowing that Q0 � Q1, by integrating up to a certain t in the interval
J := [ t̂; t̂ + T ] follows:

Q(t) = Q( t̂) +
Z t

t̂
Q0(t) � Q0 + Q1 (t � t̂)

| {z }
� T

; t 2 J

in this way, there is also aPN of PN (t), then

PN (t) � Q(t) � Q0 + Q1T := PN :

After upper bounds are established, we proceed with the lower bounds as follows.
Assume that M achieves its absolute minimum at somet � , then we use again the fact
that M 0(t � ) = 0 to obtain:

Vm (t � )M (t � )
K m 1 (t � ) + M (t � )

=
VS (t � )K 1(t � )n

K n
1 (t � ) + PN (t � )n �

vS � n
1

� n
1 + Pn

N
:

As we did before:
Vm (t � )M (t � )

K m 1 (t � ) + M (t � )
�

vm M (t � )
� m 1 + M (t � )

lets de�ne the increasing and bijective function

b̂M (x) :=
vm x

� m 1 + x
; b̂� 1

M (y) :=
� m 1 y

vm � y

this inverse is increasing too, thus:

M (t � ) � b̂� 1
M

�
vS � n

1
Kn

1 + Pn
N

�
:= m:

This shows that M 1(t) � m for some positive constantm. In the same way, we �nd a
lower bound p0 for P0 using the fact that

V1(t � )P0(t � )
K 1(t � ) + P0(t � )

= K s(t � )M (t � ) +
V2(t � )P1(t � )

K 2(t � ) + P1(t � )
� � sm:

We know that
V1(t � )P0(t � )

K 1(t � ) + P0(t � )
�

v1P0(t � )
� 1 + P0(t � )

;

this function is increasing and its inverse is also increasing:

b̂1(x) :=
v1x

� 1 + x
! b̂� 1

1 (y) :=
� 1y

v1 � y
;

therefore, it is de�ned p0 := b̂� 1
1 (� sm).
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Next, suppose that P1 achieves its absolute minimum att � , then

P1(t � )
�

V2(t � )
K 2(t � ) + P1(t � )

+
V3(t � )

K 3(t � ) + P1(t � )

�
>

V1(t � )P0(t � )
K 1(t � ) + P0(t � )

�
v1p0

K1 + p0
> 0

which yields the existence of a positive lower boundp1 := v1 p0
K 1 + p0

. Finally, positive lower
bounds for P2 and PN are obtained by means of the functionQ = P2 + PN . Indeed, if
Q achieves its absolute minimum at somet � , then

P2(t � )
�

V4(t � )
K 4(t � ) + P2(t � )

+
Vd(t � )

K d(t � ) + P2(t � )

�
�

v3p1

K3 + p1

and we deduce thatP2(t � ) cannot be arbitrarily small. As before, using the fact that
P0

2 � � CP2 it is seen that P2(t) � e� CT P2(t � ) and the conclusion follows. This, in turn,
yields a lower boundpN > 0 for PN .

4 Main Theorem

We are already in conditions of de�ning the open set 
 � K � as


 := f (M; P0; P1; P2; PN ) 2 CT : m < M (t) < M ; p0 < P 0(t) < P0;

p1 < P 1(t) < P1; p2 < P 2(t) < P2; pN < P N (t) < PN g:

Theorem 4.1 Assume that the previous conditions (3.1), (3.2), (3.3) and (3.4) hold.
Then problem (1) has at least one positiveT � periodic solution.

Proof. In the previous section, the �rst condition of the continuation theorem was
veri�ed. It remains to prove that b) and c) are ful�lled as well. With this aim, set
Q := 
 \ R5 and recall that the function � : Q ! R5 is de�ned by � (x) = Nx . We claim
that each coordinate � j has di�erent signs at the corresponding opposite faces ofQ.

Indeed, compute for example� 1(M ; P0; P1; P2; PN ) and � 1(m; P0; P1; P2; PN ) for pj �
Pj � P j :

� 1(M ; P0; P1; P2; PN ) =
1
T

Z T

0

�
VS (t)K 1(t)n

K n
1 (t) + PN

�
Vm (t)M

K m 1 (t) + M

�
dt

< VS �
vm M

Km 1 + M
= 0 ;

� 1(m; P0; P1; P2; PN ) =
1
T

Z T

0

�
VS (t)K 1(t)n

K n
1 (t) + PN

�
Vm (t)m

K m 1 (t) + m

�
dt

>
vS � n

1
Kn

1 + Pn
N

�
Vm m

� m 1 + m
� 0

provided that m is small enough. In the same way, making the lower bounds smaller if
necessary, we deduce that

� 2(M; P0; P1; P2; PN ) < 0 < � 2(M; p0; P1; P2; PN );

� 3(M; P0; P1; P2; PN ) < 0 < � 3(M; p0; p1; P2; PN );
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� 4(M; P0; P1; P2; PN ) < 0 < � 4(M; p0; p1; p2; PN );

� 5(M; P0; P1; P2; PN ) < 0 < � 5(M; p0; p1; p2; pN ):

Thus, condition b) of the continuation theorem is veri�ed. Moreover, we may de�ne a
homotopy as follows. Consider the center ofQ given by

} :=
�

M + m
2

;
P0 + p0

2
;

P1 + p1

2
;

P2 + p2

2
;

PN + pN

2

�

and the function H : Q � [0; 1] ! R5 given by

H (x; � ) = (1 � � )( } � x) + ��:

We need to verify that H does not vanish at@Q. To this end, suppose, for example, that
H (M ; P0; P1; P2; PN ) = 0 for some �̂ 2 [0; 1], then

0 = H 1(M ; �̂ ) = (1 � �̂ )
�

M + m
2

� M
�

| {z }
< 0

+ �̂ � 1(M ; P0; P1; P2; PN )
| {z }

< 0

< 0;

which is a contradiction. All the remaining cases follow in an analogous way. By the
homotopy invariance of the Brouwer degree, it follows that

degB (�; Q; 0) = degB (} � I; Q; 0) = ( � 1)5 6= 0 :

This proves the third condition of the continuation theorem and, therefore, the existence
of a T -periodic solution is deduced.

5 Conclusion

Topological degree was used for proving existence of stable equilibrium in a generic model
of circadian cycle. This theory allowed to demonstrate the existence of positive periodic
solutions when parameters are replaced by �xed periodic functions. The relevance of
�nding periodic solutions in biological models relies mainly on the fact that periodic
functions represent natural cycles, such as hormonal processes.

We show that topological degree can be successfully applied to �nd positive periodic
orbits for some of these models in the non-autonomous case. It is worthy mentioning
that, for diverse biological cycles, the behaviour is characterized by models with periodic
parameters; thus, the present paper provides a useful mathematical tool to understand
such models.

For future work, it would be interesting to consider a more general situation, in
which the parameters are not periodic but almost-periodic functions, which attracted the
attention of many researchers in the last decades. Here, the topological degree cannot
be used anymore because of the lack of compactness of the associated operator; thus, a
di�erent approach is required, such as the use of �xed points in cones under monotonicity
conditions that avoid the compactness assumption.
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Abstract: In this paper, we construct a new two-dimensional Bernstein polynomials
operational matrix for solving 2-dimensional fractional order Volterra integral equa-
tions (2DFOVIE). By using this operational matrix, we reduce the original problem
to a linear or nonlinear system of algebraic equations. We present some numerical
examples to show the e�ciency of the proposed method.
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1 Introduction

In the last few decades, various engineering and scienti�c problems involving fractional
calculus were discussed. For example, electrochemical process [1, 2], earthquakes [3],
economics [4], bioengineering [5], orthogonal splin collocation [6] and fractional optimal
control problems [7, 8]. There are several analytical and numerical methods for solving
one-dimensional and two-dimensional di�erential and integral equations of fractional or-
der such as the Adomian decomposition [9], Variational iteration method [10,11], Trans-
form method [12], Homotopy perturbation method [13], and the methods of Harr and
Chebyshev wavelet [14,15] and Bernstein polynomials [16,17].

The Bernstein polynomials play a conspicuous role in several areas of mathematics.
These polynomials have been commonly used in the solution of di�erential equations,
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integral equations, fractional optimal control problems and approximation theory [7, 8,
17{23]. In this work, we consider the following type of 2DVIEFO

u(x; y) � I q
0 up(x; y) = g(x; y); q = ( �; � ) 2 (0; 1 ) � (0; 1 ); (1)

whereg(x; y) is a known function and I q
0 u(x; y) is the left-sided mixed Riemann-Liouville

integral of order q which is de�ned as [24]

(I q
0 u)(x; y) =

1
�( � )�( � )

Z x

0

Z y

0
(x � � ) � � 1(y � � ) � � 1u(�; � ) d� d�: (2)

Note: For � > 0, the Riemann-Liouville integral ( I � ) on the Lebesgue spaceL 1[a; b]
is de�ned as

(I �
0 u)( t) = ( I � u)( t) =

1
�( � )

Z t

0
(t � � ) � � 1u(� ) d� : (3)

In particular, for (2), we have

1. (I 0
0 u)(x; y) = u(x; y),

2. (I �
0 u)(x; y) =

Z x

0

Z y

0
u(�; � ) d� d�; (x; y) 2 J; � = (1 ; 1),

3. (I r
0 u)(x; 0) = ( I r

0 u)(0; y) = 0 ; x 2 [0; a]; y 2 [0; b],

4. I r
0 x � y! = �(1+ � )�(1+ ! )

�(1+ � + � )�(1+ ! + � ) x � + � y! + � ; (x; y) 2 J; �; ! 2 (� 1; 1 ).

We are looking for u 2 L 1(J ); J := [0 ; a] � [0; b]. The existence and uniqueness of (1) is
investigated in [25].

We want to obtain the numerical solution of (1) by using two-dimensional Bern-
stein polynomials and block pulse functions. The rest of this paper is organized as
follows. First, we brie
y review some general concepts concerning one-dimensional and
two-dimensional Bernstein polynomials, block pulse functions and derive the Bernstein
polynomials operational matrix of two-dimensional integration of fractional order. In Sec-
tion 3, the method is applied to solve linear or nonlinear 2DVIEFO. Section 4 exhibits
an error estimation for the presented method. Section 5 illustrates several numerical
examples to show the convergence and accuracy of the proposed method.

2 Bernstein Polynomials and Block Pulse Functions

2.1 One dimensional Bernstein polynomials (1D-BPs)

The nth degree Bernstein polynomials (BP s) on the interval [0; 1] are de�ned as

B i;n (� ) =
�

n
i

�
� i (1 � � )n � i ; 0 � i � n: (4)

The BP s on [0; 1] have the following properties [7]:

1. B i;n (� ) � 0; i = 0 ; 1; : : : ; n; � 2 [0; 1],

2.
nX

i =0

B i;n (t) = 1,
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3. B i;n (� ) = (1 � � )B i;n � 1(� ) + �B i � 1;n � 1(� ); i = 0 ; 1; : : : ; n,

4. B i;n (� ) =
n � iX

k=0

(� 1)k
�

n
i

� �
n � i

k

�
� i + k ; i = 0 ; 1; : : : ; n.

Theorem 2.1 [26] Suppose thatH = L 2[0; 1] is a Hilbert space with the inner
product and X = Spanf B0;n (t); B1;n (t); : : : ; Bn;n (t)g is a closed subspace with �nite
dimensions, therefore X is a complete subspace ofH . So, if u 2 H is an arbitrary
element, it has a unique best approximation out ofX such asx0, that is

9 x0 2 Y s.t. 8x 2 X; k u � x0 k2�k u � x k2; (5)

where k u k2=
p

< u; u > , < u; v > =
Z 1

0
u(� )v(� ) d� .

Thus, there exist unique coe�cients c0; c1; : : : ; cn such that

u(t) ’ x0 =
nX

i =0

ci B i;n (t) = cT ’ (t); (6)

where cT = [ c0; c1; : : : ; cn ] , ’ (� ) = [ B0;n (� ); B1;n (� ); : : : ; Bn;n (� )]T .

Lemma 2.1 If ’ n (� ) = [ B0;n (� ); B1;n (� ); : : : ; Bn;n (� )]T is a complete basis, then
’ n (t) = ATn (t); where A is an (n + 1) � (n + 1) upper triangular matrix with

ai +1 ;j +1 =

8
<

:
(� 1)j � i

�
n
i

� �
n � i
j � i

�
; i 6 j;

0; i > j;
(7)

for i; j = 0 ; 1; : : : ; n and Tn (� ) = [1 ; �; � 2; : : : ; � n ]T .

2.2 BPF and operational matrix

A set of BPF on [0; 1) is de�ned as follows:

bi (t) =
�

1; i
m � t < i +1

m ; i; j = 0 ; 1; : : : ; m � 1;
0; otherwise: (8)

The above functions are orthogonal and disjoint, i.e.

bi (t)bj (t) =
�

bi (t) i = j;
0 i 6= j; and

R1
0 bi (t)bj (t) dt =

1
m

� ij , where � ij is the Kronecker

delta.
If Bm (� ) = [ b0(� ); b1(� ); : : : ; bm � 1(� )]T , the block pulse operational matrix of the

fractional order integration F � is [27]

I � Bm (� ) = F � Bm (� );

where

F � =
1

m�
1

�( � + 2)

2

66666664

1 � 1 � 2 � 3 : : : � m � 1
0 1 � 1 � 2 : : : � m � 2
0 0 1 � 1 : : : � m � 3
...

...
. . . . . . . . .

...
0 0 : : : 0 1 � 1
0 0 : : : 0 0 1

3

77777775

; (9)

with � s = ( s + 1) � +1 � 2s� +1 + ( s � 1)� +1 .
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2.3 Operational matrix for fractional integral equation(1D)

If
’ (� ) = ’ n (� ) = [ B0;n (� ); B1;n (� ); : : : ; Bn;n (� )]T ;

then for the fractional integral equation (3), we have

I � ’ n (� ) = P � ’ n (� ); (10)

with n = m � 1, the Bernstein polynomial might be expanded into anm-term BPF as

’ m (� ) = � m � m Bm (� ); (11)

now
I � ’ m (� ) = I � � m � m Bm (� ) = � m � m I � Bm (� ) = � m � m F � Bm (� ): (12)

From equations (11) and (12), we have

I � ’ m (� ) = � m � m F � Bm (� ) = � m � m F � � � 1
m � m ’ m (� ): (13)

Therefore,
P �

m � m = � m � m F � � � 1
m � m : (14)

P � is called an operational matrix for fractional integration based on the Bernstein
polynomials [28].

2.4 Two-dimensional Bernstein polynomials (2D-BPs)

The Bernstein polynomials of degreemn on the interval [0; 1] � [0; 1] are de�ned by

B ( i;m )( j;n ) (�; � ) =
�

m
i

� �
n
j

�
� i (1 � � )m � i � j (1 � � )n � j (15)

for i = 0 ; 1; : : : ; m, j = 0 ; 1; : : : ; n.

Similar to the 1D case, we have [19]:
1. B ( i;m )( j;n ) (�; � ) � 0,
2. B ( i;m )( j;n ) (�; � ) = B ( i;m ) (� )B ( j;n ) (� ),

3. B ( i;m )( j;n ) (�; � ) =
m � iX

k=0

n � jX

t =0

(� 1)r + t
�

m
i

� �
n
j

� �
m � i

k

� �
n � j

t

�
� i + k � j + t ,

4. Q = < B ( i;m )( j;n ) (�; � ); B (k;m )( t;n ) (�; � ) >

=
Z 1

0

Z 1

0
B ( i;m )( j;n ) (�; � )B (k;m )( t;n ) (�; � ) d�d� =

�
m
i

� �
n
j

� �
m
k

� �
n
t

�

(2m + 1)(2 n + 1)
�

2m
i + k

� �
2n

j + t

� ,

for i; k = 0 ; 1; : : : ; m, j; t = 0 ; 1; : : : ; n.
Now, if we de�ne (m + 1) � (n + 1)-vector

’ mn (�; � ) = [ B (0 ;m )(0 ;n ) (�; � ); : : : ; B (0 ;m )( n;n ) (�; � );

: : : ; B (m;m )(0 ;n ) (�; � ); : : : ; B (m;m )( n;n ) (�; � )]T ; (16)

where (�; � ) 2 [0; 1] � [0; 1], then ’ mn (�; � ) is a complete basis.
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2.5 Function expansion with 2D-BPs

We expand u(�; � ) 2 L 2([0; 1] � [0; 1]) by 2D-BPs as

u(�; � ) =
1X

i =0

1X

j =0

uij ’ ij (�; � ) ’
mX

i =0

nX

j =0

uij ’ ij (�; � ) = UT ’ (�; � ) = ’ T (�; � )U; (17)

where ’ (�; � ) and U are (m + 1)( n + 1) vectors. Components uij of U are obtained as

uij = < u (�; � ); ’ (�; � ) > =
Z 1

0

Z 1

0
u(�; � )B ( i;m )( j;n ) (�; � ) d� d�: (18)

Similarly, let k(�; �; s; t ) be de�ned on [0; 1] � [0; 1] � [0; 1] � [0; 1]: It can be expanded
with respect to 2D-BPs as

k(�; �; s; t ) ’ ’ T (�; � )K (s; t); (19)

where ’ (�; � ) and  (s; t) are 2D-BPs vectors of dimension (m1 + 1)( n1 + 1) and ( m2 +
1)(n2 +1), respectively, and K is the (m1 +1)( n1 +1) � (m2 +1)( n2 +1) two-dimensional
Bernstein polynomials coe�cient matrix.

2.6 Operational matrix for fractional integral equation(2D)

SupposeB ( i;m ) (� ) = A1Tm (� ) and B ( j;n ) (� ) = A2Tn (� ). Then

’ mn (�; � ) = MTmn (�; � );

where

Tmn (�; � ) = [1 ; �; � 2; : : : ; � n ; �; ��; : : : ; �� n ; : : : ; � m ; � m �; : : : ; � m � n ]T ;

and M = A1 
 A2 and 
 denotes the Kronecker product.
Now, we present two-dimensional Bernstein polynomials operational matrices of frac-
tional mode. Let ’ mn (�; � ) be de�ned as in (16). The fractional integration of the
’ mn (�; � ) can be approximately obtained as

1
�( � )�( � )

Z x

0

Z y

0
(x � � ) � � 1(y � � ) � � 1’ mn (�; � ) d� d� ’ P r ’ mn (�; � ); (20)

whereP r is a (m + 1)( n + 1) � (m + 1)( n + 1) matrix and is called an operational matrix.
Let operational matrices P � and P � satisfy (14), i.e.

I � ’ m (� ) = P � ’ m (� ) = � m � m F � � � 1
m � m ’ m (� );

I � ’ n (� ) = P � ’ n (� ) = � n � n F � � � 1
n � n ’ n (� ): (21)

From the disjointness property of two-dimensional Bernstein polynomials, we get

1
�( � )�( � )

Z x

0

Z y

0
(x � � ) � � 1(y � � ) � � 1’ mn (�; � ) d� d� =

1
�( � )

Z x

0
(x � � ) � � 1’ m (� ) d�

�
1

�( � )

Z y

0
(y � � ) � � 1’ n (� ) d�:

By using (21), we have
P r = P � 
 P � : (22)
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2.7 Product operational matrix

In view of (1), we have up(x; y). So, we need to evaluate the product of’ ( x; y) and
’ T (x; y), which is called the product matrix.

Lemma 2.2 Suppose thatC(m +1)( n +1) is an arbitrary vector. The operational matrix
of product Ĉ(m +1)( n +1) � (m +1)( n +1) using BPs can be given as follows [29] :

’ (x; y)’ T (x; y)C ’ ĈT ’ (x; y): (23)

Corollary 2.1 Supposeu(x; y) = UT ’ (x; y) = ’ T (x; y)U and Û is the operational
matrix of product. Then

(u(x; y)) k = ’ T (x; y)Uk ; (24)

where k 2 N and Uk = Ûk � 1U.

Proof. By using Lemma 2:2, for k = 2, we get

(u(x; y))2 = UT ’ (x; y)’ T (x; y)U = ’ T (x; y)ÛU = ’ T (x; y)U2:

Also, if k = 3 ,

(u(x; y))3 = UT ’ (x; y)’ T (x; y)ÛU = ’ T (x; y)Û2U = ’ T (x; y)U3:

So, by induction we have

(u(x; y)) k = UT ’ (x; y)’ T (x; y)Ûk � 2U = ’ T (x; y)Ûk � 1U = ’ T (x; y)Uk :

3 Solving 2DFOVIE

In this section, two-dimensional Bernstein polynomials are applied to solve equation(1).
Using the procedures mentioned in Section 2, we approximate functions (u(x; y))p,
k(x; y; s; t ) and f (x; y) as follows:

(u(x; y))p = ’ T (x; y)Up = UT
p ’ (x; y);

f (x; y) = ’ T (x; y)F = F T ’ (x; y); (25)
k(x; y; s; t ) = ’ T (x; y)K’ (x; y);

where the (m + 1)( n + 1) � 1 vectorsUp, F and (m + 1)( n + 1) � (m + 1)( n + 1) matrix
K are 2D-BPs coe�cients of (u(x; y))p, f (x; y) and k(x; y; s; t ) respectively. Substituting
equations(25) in equation(1), we have:

’ T(x; y)U�
1

�( � )�( � )

Z x

0

Z y

0
(x� s) � � 1(y� t) � � 1’ T(x; y)K’ (s; t)’ T(s; t)Up dt ds= ’ T(x; y)F:

By using (23), we get

’ T (x; y)U �
’ T (x; y)K Û

T

p

�( � )�( � )

Z x

0

Z y

0
(x � s) � � 1(y � t) � � 1’ (s; t) dt ds = ’ T (x; y)F:
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From equation(20) and the above equation, we obtain

’ T (x; y)U � ’ T (x; y)K Û
T

p P r ’ (x; y) = ’ T (x; y)F;

or

U � K Û
T

p P r ’ (x; y) = F: (26)

Now, we collocate equation(26) in (m + 1)( n + 1) Newton-Cotes nodes as

x i =
2i � 1

2(m + 1)
; yj =

2j � 1
2(n + 1)

; i = 1 ; 2; : : : ; m + 1 ; j = 1 ; 2; : : : ; n + 1 :

So, we have a linear(p = 1) or nonlinear( p � 1) algebraic system

U � B = F; (27)

where B = K Û
T

p P r , and

 = [ ’ (x1; y1); ’ (x1; y2); : : : ; ’ (x1; yn +1 ); : : : ’ (xm +1 ; y1); : : : ; ’ (xm +1 ; yn +1 )]T :

4 Error analysis

Theorem 4.1 Supposeu(x; y) is an exact solution of the equation(1) and û(x; y)
shows its approximate solution by Bernstein polynomials, and

1. j (x � � ) � � 1(y � � ) � � 1k(x; y; �; � ) j< C ,

2. (u(x; y))p is a Lipschitz continuous function, i.e.

j(u(x; y))p � (û(x; y))p j � L ju(x; y) � û(x; y)j;

where L is a Lipschitz constant
3. m1= m2 = m.

Then û(x; y) converges tou(x; y), if 0 <
LC

�( � )�( � )
< 1:

Proof.
k u(x; y) � û(x; y) k1 = max

0� x;y � 1
ju(x; y) � û(x; y)j

= max
0� x;y � 1

j
1

�( � )�( � )

Z x

0

Z y

0
(x � � ) � � 1(y � � ) � � 1k(x; y; �; � )(( u(�; � ))p � (û(�; � ))p)d�d� j

� max
0� x;y � 1

1
�( � )�( � )

Z x

0

Z y

0
j(x � � ) � � 1(y � � ) � � 1k(x; y; �; � )jj (u(�; � ))p � (û(�; � ))p jd�d�

� max
0� x;y � 1

CL
�( � )�( � )

Z x

0

Z y

0
ju(�; � ) � û(�; � )j d�d�

�
CLxy

�( � )�( � )
k u(�; � ) � û(�; � ) k1 �

CL
�( � )�( � )

k u(�; � ) � û(�; � ) k1 :
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Therefore we get

k u(x; y) � û(x; y) k1 �
CL

�( � )�( � )
k u(�; � ) � û(�; � ) k1 : (28)

Equation (28) shows that if 0 < LC
�( � )�( � ) < 1, then k u(�; � ) � û(�; � ) k1 �! 0:

5 Numerical Examples

To demonstrate the validity and applicability of this scheme, we use the present
method for the following four examples. In view of (2), we rewrite (1) in the following
form of 2DFOVIE:

u(x; y) �
1

�( � )�( � )

Z x

0

Z y

0
(x � � ) � � 1(y � � ) � � 1k(x; y; �; � ) up(�; � ) d� d� = g(x; y) (29)

Now, for di�erent values of �; �; k (x; y; �; � ); p and g(x; y), we solve (29).

Example 5.1 Let � = 5
3 ; � = 7

3 ; k(x; y; �; � ) = �� p xy; p = 1 and g(x; y) = x3(y2 �

y) � x
17
3 y

13
3

p xy (9y � 16)
5000 The exact solution isu(x; y) = x3(y2 � y). We applied the proposed

method to solve this example for various values ofm and n. Also, we compare the
numerical results with the exact solution. The results are tabulated in Table 1.

x = y m = n =1 m = n =2 m = n =3
0.0 6.292 � 10� 6 3.091 � 10� 6 7.394 � 10� 6

0.1 7.702 � 10� 5 3.942 � 10� 4 4.401 � 10� 5

0.2 1.261 � 10� 3 2.814 � 10� 3 9.460 � 10� 5

0.3 5.645 � 10� 3 4.417 � 10� 3 1.492 � 10� 4

0.4 1.533 � 10� 2 3.212 � 10� 3 2.022 � 10� 4

0.5 3.121 � 10� 2 1.926 � 10� 4 2.515 � 10� 4

0.6 5.180 � 10� 2 3.579 � 10� 3 2.919 � 10� 4

0.7 7.198 � 10� 2 4.819 � 10� 3 3.020 � 10� 4

0.8 8.187 � 10� 2 2.975 � 10� 3 2.257 � 10� 4

0.9 6.556 � 10� 2 5.010 � 10� 4 5.289 � 10� 5

Table 1 : The maximum absolute errors in Example 5.1.

Example 5.2 Let � = � = 5
2 ; k(x; y; �; � ) =

p
xy�; p = 2 and f (x; y) = xp y �

1
420

x 11
2 y4 with the exact solution u(x; y) = xp y. The maximum absolute errors are

shown in Table 2.

Example 5.3 Let � = 5
2 ; � = 7

2 ; k(x; y; �; � ) = ( y + � )e� 2� ; p = 2 and

f (x; y) = xey �
1024x 9

2 y 7
2 (6x + 11y)

1091475�
with the exact solution u(x; y) = xey . The

maximum absolute errors are shown in Table 3.
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x = y m = n =1 m = n =2 m = n =3
0.0 5.603 � 10� 5 2.592 � 10� 6 1.327 � 10� 5

0.1 3.064 � 10� 3 1.273 � 10� 3 1.611 � 10� 3

0.2 4.032 � 10� 3 4.748 � 10� 3 1.497 � 10� 3

0.3 1.220 � 10� 2 4.694 � 10� 3 1.253 � 10� 3

0.4 1.818 � 10� 2 1.276 � 10� 3 3.797 � 10� 3

0.5 2.009 � 10� 2 3.948 � 10� 3 4.052 � 10� 3

0.6 1.666 � 10� 2 8.789 � 10� 3 1.451 � 10� 3

0.7 6.937 � 10� 3 1.070 � 10� 2 2.806 � 10� 3

0.8 9.786 � 10� 3 6.921 � 10� 3 5.652 � 10� 3

0.9 3.410 � 10� 2 5.490 � 10� 3 2.132 � 10� 3

Table 2 : The maximum absolute errors in Example 5.2.

x = y m = n =1 m = n =2 m = n =4
0.0 9.890 � 10� 5 3.578 � 10� 4 7.921 � 10� 4

0.1 6.034 � 10� 3 6.324 � 10� 4 9.468 � 10� 4

0.2 1.666 � 10� 3 3.307 � 10� 4 1.104 � 10� 3

0.3 9.537 � 10� 3 1.114 � 10� 3 1.266 � 10� 3

0.4 2.339 � 10� 2 8.532 � 10� 4 1.424 � 10� 3

0.5 3.514 � 10� 2 6.995 � 10� 4 1.566 � 10� 3

0.6 3.935 � 10� 2 3.095 � 10� 3 1.673 � 10� 3

0.7 2.987 � 10� 2 5.105 � 10� 3 1.675 � 10� 3

0.8 3.150 � 10� 4 4.622 � 10� 3 1.370 � 10� 3

0.9 5.916 � 10� 2 1.445 � 10� 3 2.511 � 10� 4

Table 3 : The maximum absolute errors in Example 5.3.

Example 5.4 As the last example, let � = 3
2 ; � = 5

2 ; k(x; y; �; � ) = p xy� ; p = 2 and
f (x; y) = p y( � 1

180 x3y 7
2 +

p x
3 ) The exact solution of this example isu(x; y) =

p
3xy
3 . The

maximum absolute errors are shown in Table 4. Also, the obtained numerical results
are compared with the method of block pulse operational matrix (BPOM) proposed
in [23,30].

6 Conclusion

A new approach to obtain numerical solution of 2DFOVIE based on the operational
matrices of Bernstein polynomials has been presented. With the help of the operational
matrix of fractional integration P r and the collocation method, the given 2DFOVIE is
reduced to a linear or nonlinear system of algebraic equations. Illustrative examples show
that the proposed method can be a suitable method for solving these equations. All of
computations are done byMathematica 9.
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x = y m = n =1 m = n =2 m = n =3 m 1 = m 2 =32
BP OM

0.0 4.091 � 10� 2 1.701 � 10� 2 9.354 � 10� 3 9.386 � 10� 3

0.1 1.171 � 10� 2 4.572 � 10� 3 5.766 � 10� 3 1.561 � 10� 2

0.2 1.017 � 10� 2 1.183 � 10� 2 3.740 � 10� 3 8.812 � 10� 3

0.3 2.472 � 10� 2 9.513 � 10� 3 2.911 � 10� 3 1.630 � 10� 2

0.4 3.196 � 10� 2 1.934 � 10� 3 7.428 � 10� 3 8.239 � 10� 3

0.5 3.186 � 10� 2 7.003 � 10� 3 7.270 � 10� 3 1.410 � 10� 2

0.6 2.444 � 10� 2 1.382 � 10� 2 2.893 � 10� 3 7.665 � 10� 3

0.7 9.702 � 10� 3 1.545 � 10� 2 3.149 � 10� 3 1.430 � 10� 2

0.8 1.236 � 10� 2 9.258 � 10� 3 6.781 � 10� 3 7.091 � 10� 3

0.9 4.176 � 10� 2 6.980 � 10� 3 2.666 � 10� 3 1.260 � 10� 2

Table 4 : The maximum absolute errors in Example 5.4.
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Abstract: In this paper we have considered the system of six coupled non-linear
ordinary di�erential equations (ODEs), which arose in the reduction of uniformly
strati�ed 
uid contained in a rotating rectangular box of dimension L � L � H which
is completely integrable if the Rayleigh number Ra = 0. In our investigations, we
have shown that there exits a regular mirror system near movable singularities of these
integrable ODEs. Moreover, we have used the mirror system to prove the convergence
of Laurent series solutions obtained by the Painlev�e method.

Keywords: mirror transformation; mirror system; Painlev�e test.

Mathematics Subject Classi�cation (2010): 37K10, 34M55.

1 Introduction

In general, we believed that the di�erential system is integrable due to some sort of un-
derlying linear structure(s). But, when it comes to this concept, it is never clear what
does it mean. On the other hand the integrability of nonlinear system is quite ambigu-
ous. In this connection many mathematicians started to work over the investigation of
integrability of nonlinear system. In 1889, Sophie Kowalevski [12] proved the complete
integrability of the system of ordinary di�erential equations (ODEs) governing the mo-
tion of a spinning top moving under the in
uence of gravity. In her study, she was seeking
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analytic solutions whose singularities are movable poles. This was done by substituting
a Frobenius series into the system of ODEs. Then, few years later, that is in 1897,
Paul Painlev�e [6] classi�ed �rst and second order algebraic di�erential equations whose
solutions exist in the complex domain and are devoid of movable essential singularities
or movable branch points. ODEs possessing this property are said to be of the Painlev�e
type. Painlev�e test in view of partial di�erential equations is generally known as WTC
(Weiss-Tabor-Carnevale, [7]) test, which is further modi�ed by S. Kichenassamy and G.
K. Srinivasan [3]. So far various properties are considered as indicator of integrability:
solitons, the Lax pair, the B�acklund transformations, the underlying Hamiltonian formu-
lations, Hirota’s bilinear representation, etc. The relation between these properties has
yet to be understood.

In 1999{2000, Hu J. and Yan M. [8, 9] introduced the mirror transformation, which
is a new tool used in the singularity analysis of ODEs. With the help of this method
we constructed the mirror system of given PDEs or ODEs successfully; we could focus
commonly at the singularity structure and symplectic structure of the Hamiltonian sys-
tem for each principle balance in the Painlev�e test. Further to this study, Hu et al [11]
proved that the mirror transformation is canonical for �nite-dimensional Hamiltonian
systems. Furthermore, in 2001 Yee [13] showed that linearization of the mirror systems
near movable poles provides the possibility to construct the associated Backlund trans-
formations. In continuous development of mirror transformations in 2011, Tat-Leung
Yee [14] extended the mirror method with perturbations which was utilized for �ner
analysis of certain nonlinear equations possessing negative Fuchsian indices.

In connection with the basin scale dynamics, Maas [5] has considered the 
ow of

uid contained in a rectangular basin of dimension L � L � H , which is temperature
strati�ed with �xed zeroth order moment of mass and heat. The container is assumed
to be steady, uniform rotation of an f-plane. With this assumption Maas [5] reduces
the rotating strati�ed Boussinesq equation to a beautiful six coupled system of ODEs.
Srinivasan et al. [4] extended this work and gave a detail mathematical analysis of the
reduced system of six coupled ODEs. Furthermore, Desale and Patil [2] tested the system
of six coupled ODEs (5) for complete integrability using the Painlev�e test. Also, they
investigated the case of non-integrability for Ra 6= 0 and thereby they have obtained
weak solutions (in the form of logarithmic psi-series) in the di�erent branches of leading
order.

In this paper we have successfully implemented the mirror transformations and con-
structed the mirror system of (5) for Ra = 0 which is regular near movable singularity.
Further, with the help of mirror transformation, we have proved that the Laurent series
obtained by using the Painlev�e test are convergent. In the following section we imploy
the mirror transformation to �nd the mirror system of ideal rotating strati�ed Boussinesq
equations.

2 Mirror System of Six Coupled Non-Linear ODEs

Consider the rotating strati�ed Boussinesq equations (see Majda [1], p. 1)

D~v
Dt

+ f (ê3 � ~v ) = �r p + � (� ~v ) �
g~�
� b

ê3 ;

div ~v = 0 ;
D ~�
Dt

= � �~�;

(1)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1) (2019) 21{35 23

where~v denotes the velocity �eld, � is the density which is the sum of constant reference
density � b and perturbation density ~� , p is the pressure,g is the acceleration due to gravity
that points in � ê3 direction, f is the rotation frequency of earth, � is the coe�cient of
viscosity, � is the coe�cient of heat conduction and D

Dt = @
@t + ( ~v � r ) is a convective

derivative. For more about the rotating strati�ed Boussinesq equations one may see
Majda [1]. Maas [5] reduces the system of equations (1) to the following system of six
coupled ODEs:

P r � 1 d~w
dt

+ f 0ê3 � ~w = ê3 � ~b � (w1; w2; rw3) + T̂ ~T ;

d~b
dt

+ ~b � ~w = � (b1; b2; �b 3) + Ra~F :
(2)

In these equations,~b = ( b1; b2; b3) is the center of mass,~w = ( w1; w2; w3) is the basin
averaged angular momentum vector,~T is the di�erential momentum, ~F are buoyancy

uxes, f 0 = f=2r h is the earth rotation, r = r v =rh is the friction ( r v;h are Rayleigh
damping coe�cients), Ra is the Rayleigh number, P r is the Prandtl number, � is the
di�usion coe�cient and T̂ is the magnitude of the wind stress torque.

Neglecting di�usive and viscous terms, Maas [5] considers the dynamics of an ideal
rotating, uniformly strati�ed 
uid in response to forcing. He assumes this to be due
solely to di�erential heating in the meridional ( y) direction. ~F = (0 ; 1; 0), the wind
e�ect is neglected, i.e. ~T = 0. For the Prandtl number P r , equal to one, the system of
equations (2) reduces to the following ideal rotating, uniformly strati�ed system of six
coupled ODEs

d~w
dt

= � f 0ê3 � ~w + ê3 � ~b;

d~b
dt

= � ~b � ~w + Ra~F :
(3)

The system of ODEs (3) can be written component wise as

_w1 = f 0w2 � b2; _w2 = � f 0w1 + b1; _w3 = 0 ;
_b1 = w2b3 � w3b2; _b2 = w3b1 � w1b3 + Ra; _b3 = w1b2 � w2b1: (4)

Since _w3 = 0, this gives w3 = constant = k1. Consequently, we have the following system
of ODEs:

_w1 = f 0w2 � b2; _w2 = � f 0w1 + b1;
_b1 = w2b3 � k1b2; _b2 = k1b1 � w1b3 + Ra; _b3 = w1b2 � w2b1: (5)

In our earlier study [2], we have shown that the system of ODEs (5) is completely
integrable provided that Ra = 0 and we have determined the solutions in the form of
Laurent series with the help of the Painlev�e method. Now our aim is to determine the
mirror system of (5) and its solutions in the following form:

w1(t) = � � m 1 ; � 0 = l0 + l1� + l2� 2 + l3� 3 + l4� 4 + � � � ;

w2(t) = � � m 2
�

w20 + w21� + w22� 2 + w23� 3 + w24� 4 + � � �
�

;

b1(t) = � � m 3
�

b10 + b11� + b12� 2 + b13� 3 + b14� 4 + � � �
�

;

b2(t) = � � m 4
�

b20 + b21� + b22� 2 + b23� 3 + b24� 4 + � � �
�

;

b3(t) = � � m 5
�

b30 + b31� + b32� 2 + b33� 3 + b34� 4 + � � �
�

;

(6)
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where � = t � t0 and t0 is an arbitrary position of singularity. We found that there
were several possible cases of dominant balance of the system (5) similar to those in the
Painlev�e test. Among the several possible cases of principle dominant balance we have
obtained the singular solution only in the following case of principle dominant balance:

_w1 = � b2; _w2 = b1; _b1 = w2b3; _b2 = � w1b3; _b3 = w1b2 � w2b1; (7)

and the exponent with this principle dominant balance are as follows:

m1 = m2 = � 1; m3 = m4 = m5 = � 2: (8)

Since w1, w2 are of order 1 near the movable singularity, we can introduce the indicial
normalization w1(t) = � � 1 and try to calculate the formal � � series of (6) with m2 =
� 1; m3 = m4 = m5 = � 2. Since the system (5) is autonomous, the coe�cients appearing
in the series given by (5) are to be constant. Substituting the values of exponents from
(8) into the equations (6) and then substituting these series into the system (5) and hence
equating the like powers of� on both sides, we obtain the following equations in leading
order coe�cients:

l0 = b20; � w20 l0 = b10; � 2b10 l0 = w20b30;

2b20 l0 = b30; � 2b30 l0 = b20 � w20b10:
(9)

Solving equations (9), we �nd two possible branches of leading order coe�cients which
are as follows:

l0 = r 0
1; w20 = �

q
� 1 � 4r 02

1 ; b10 = � r 0
1

q
� 1 � 4r 02

1 ; b20 = r 0
1; b30 = 2 r 02

1 ; (10)

where r 0
1 is an arbitrary constant.

De�nition 2.1 The leading exponentsm1; m2; m3; m4; m5 for system of ODEs (5)
are Fuchsian, if the m� -weighted degree of the right-hand side of (5) is� mi + 1.

The m� -weighted degree of polynomial inw1; w2; b1; b2; b3 is found by taking the
degree ofw0

i s, i = 1 ; 2, b0
i s, i = 1 ; 2; 3 to be mi ; i = 1 ; 2; 3; 4; 5. And we veri�ed that the

exponentsmi ’s, i = 1 ; 2; 3; 4; 5 are Fuchsian for the system (5).

Remark 2.1 Since all leading order coe�cients given by (10) are nonzero, the selec-
tion of leading exponents is natural and these exponents satisfy the Fuchsian condition.

So far in the employment of mirror transformations we have completed the two steps
of algorithm, that is, we have determined leading order coe�cients in principle dominant
balance and exponents. Now, in the following section we will implement the third step
of the algorithm and determine the resonances in the following way.

2.1 Resonances

Now we substitute the assumed� -series (6) with the values of exponents given by (8)
into the system of ODEs (5) and after doing some algebraic calculations we specify the
following recursive relations to determine the coe�cients w1j ; w2j ; b1j ; b2j and b3j for
j = 1 ; 2; 3; : : : which are valid for j � 2:

M (j )

0

BBBB@

l j
w2j
b1j
b2j
b3j

1

CCCCA
=

0

BBBB@

A j
B j
Cj
D j
E j

1

CCCCA
; (11)
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where

A j = f 0w2( j � 1) ; B j = �
j � 1X

k=1

lk w2( j � k ) ;

Cj = � k1b2( j � 1) +
j � 1X

k=1

w2k b3( j � k ) �
j � 1X

k=1

lk b1( j � k ) ;

D j = k1b1( j � 1) �
j � 1X

k=1

lk b2( j � k ) ;

E j = �
j � 1X

k=1

w2k b1( j � k ) �
j � 1X

k=1

lk b3( j � k ) ;

(12)

and matrix M (j ) is

M (j ) =

0

BBBB@

� 1 0 0 1 0
� w20 (j � 1)l0 � 1 0 0
� 2b10 � b30 (j � 2)l0 0 � w20
� 2b20 0 0 (j � 2)l0 1
� b30 b10 w20 � 1 (j � 2)l0

1

CCCCA
: (13)

The above recursive relations (11, 12) determine the unknown expansion coe�cients
uniquely unless the determinant of matrix M (j ) is zero. Those values ofj at which
the determinant of matrix M (j ) vanishes are called theresonances. Here, we observe
that for both possible branches of leading order coe�cients given in equations (10), the
resonances arej = 0 ; 2; 3; 4. Since j = 0 is the resonance, one of the variable in (10)
appears to be a resonance parameter, sayl0 = r 0

1, and we should replace it by �r 1 (where
�r 1 =

p
� 4 � k2

2 , the arbitrary constant k2 is the resonance parameter in the Painlev�e
test [2]), which satis�es the condition �r 1

� m 1 = r 0
1, that is, �r 1

� 1 = r 0
1. Let us denote by

k2 = r 1 the resonance parameter, and hence we have �r 1 =
p

� 4 � r 2
1 . Now, we refresh

the leading order coe�cients given by (10) as follows:

l0 = (
p

� 4 � r 2
1) � 1; w20 = �

r 1p
� 4 � r 2

1
; b10 = �

r 1

(
p

� 4 � r 2
1)2

;

b20 = (
p

� 4 � r 2
1) � 1; b30 =

2
(
p

� 4 � r 2
1)2

:
(14)

2.2 Compatibility conditions

Further, we need to check the compatibility conditions for each resonancej = 2 ; 3; 4.
We will do this for the �rst branch.
Case I: Consider the leading order coe�cients

l0 = (
p

� 4 � r 2
1) � 1; w20 =

r 1p
� 4 � r 2

1
; b10 = �

r 1

(
p

� 4 � r 2
1)2

;

b20 = (
p

� 4 � r 2
1) � 1; b30 =

2
(
p

� 4 � r 2
1)2

:
(15)

� Compatibility condition at j = 1.
As j = 1 is not resonance, we get the unique solution. Since the recursion relations
(11, 12) remain valid when j � 2, we directly substitute the equations (15) into the
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equations (6) and then into (5). After that, equating the like powers of � on both sides
of the resulting expansion, we obtain the system of linear equations which determine the
coe�cients l1; w21; b11; b21 and b31 uniquely as

l1 =
(� f 0+ k1)r 1p

� 4 � r 2
1

; w21 =
2(f 0 � k1)
p

� 4 � r 2
1

;

b11 =
4f 0+ k1r 2

1
r 2

1 + 4
; b21 =

k1r 1p
� 4 � r 2

1
; b31 =

2(f 0 � k1)r 1

4 + r 2
1

:
(16)

� Compatibility condition at the resonance j = 2.
Now j = 2 is a resonance so that one of the coe�cients in the computation of the system
(11) at this level is independent. Let b32 be independent and letb32 = r 2 (the arbitrary
coe�cient), where r 2 is the second resonance parameter so that the values of coe�cients
are given in terms of r 2, which are as follows:

l2 =
(r 2 � f 0k1)

2

q
� 4 � r 2

1 ; w22 = 0 ;

b12 =
r 1

2
(f 0k1 � r 2); b22 =

1
2

"

r 2

q
� 4 � r 2

1 +
f 0(4f 0+ k1r 2

1)
p

� 4 � r 2
1

#

; b32 = r 2:
(17)

� Compatibility condition at the resonance j = 3.
To check the compatibility condition at j = 3, we substitute the equations (15, 16, 17)
into the system of ODEs (5), then we obtain a system of linear equations. While solving
that linear system, we found the variableb23 to be independent. Now assign the arbitrary
value to b23, say b23 = r 3, and solving the corresponding system we obtain the following
solution. At this level of resonance, we have the third resonance parameterr 3:

l3 = r 3; w23 =
� r 3

r 1
; b13 = �

1
p

� 4 � r 2
1

�
r 1r 3 +

2r 3

r 1

�
;

b23 = r 3; b33 =
r 3p

� 4 � r 2
1

:
(18)

� Compatibility condition at the resonance j = 4.
Now j = 4 is the fourth resonance and solving the system (11) forj = 4 involves the
resonance parameter, sayr 4. Solving the system (11) for this value of j , we obtain the
following solution with b24 as an arbitrary constant with value r 4:

l4 = r 4 +
f 0r 3

r 1
; w24 = ( k1 � f 0)r 3;

b14 =
1

p
� 4 � r 2

1
[� r 1r 4 + ( � 2f 0+ k1)r 3]; b24 = r 4;

b34 =
(f 0 � k1)(2 + r 2

1)r 3

r 1
p

� 4 � r 2
1

:

(19)
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Substituting all the values of coe�cients l j ; w2j ; b1j ; b2j and b3j for j = 0 ; 1; 2; 3; 4 : : :
into the equations (6), we get

� 0 =
1

p
� 4 � r 2

1
+

(� f 0+ k1)r 1p
� 4 � r 2

1
� +

1
2

q
� 4 � r 2

1(r 2 � f 0k1)� 2 + r 3� 3

+ ( r 4 +
f 0r 3

r 1
)� 4 + � � � ;

w2(t) = � � 1
h r 1p

� 4 � r 2
1

+
2(f 0 � k1)
p

� 4 � r 2
1

� �
r 3

r 1
� 3 + ( k1 � f 0)r 3� 4 + � � �

i
;

b1(t) = � � 2
h

�
r 1

(
p

� 4 � r 2
1)2

+ (
4f 0+ k1r 2

1
r 2

1 + 4
)� +

r 1

2
(f 0k1 � r 2)� 2 �

1
p

� 4 � r 2
1�

r 1r 3 +
2r 3

r 1

�
� 3 +

1
p

� 4 � r 2
1

(� r 1r 4 + ( � 2f 0+ k1)r 3) � 4 + � � �
i
;

b2(t) = � � 2
h 1

p
� 4 � r 2

1
+ (

k1r 1p
� 4 � r 2

1
)� +

1
2

 

r 2

q
� 4 � r 2

1 +
f 0(4f 0+ k1r 2

1)
p

� 4 � r 2
1

!

� 2

+ r 3� 3 + r 4� 4 + � � �
i
;

b3(t) = � � 2
h 2

(
p

� 4 � r 2
1)2

� (
2(f 0 � k1)r 1

4 + r 2
1

)� + r 2� 2 +
r 3p

� 4 � r 2
1

� 3

+
(f 0 � k1)(2 + r 2

1)r 3

r 1
p

� 4 � r 2
1

� 4 + � � �
i
:

(20)
We have just �nished the primary calculations of the system (11) and we have determined
the resonance parameters, sayr 1; r 2; r 3 and r 4. In the following subsection we obtain
the mirror transformations and consequently, we determine the mirror system of (5).

2.3 Mirror system

In this subsection we will develop the mirror transformations by which we transform the
system (5) to its mirror system. Thereby, we discuss the regularity of it.

Now the important step towards determining the mirror system is to introduce a
new variable in which we develop the mirror system. Let us introduce the new variables
� 1; � 2; � 3 and � 4 in the Laurent � -series ofw2; b1; b2 and b3 by successively truncating
the expansion at the free parameters (resonance parameters)r 1; r 2; r 3 and r 4. Now we
begin to truncate the � -series ofw2 at the �rst resonance parameter r 1 by introducing
the variable � 1 as

w2(t) = � � 1� 1; (21)

where

� 1 =
r 1p

� 4 � r 2
1

+
2(f 0 � k1)
p

� 4 � r 2
1

� �
r 3

r 1
� 3 + ( k1 � f 0)r 3� 4 + � � � : (22)

We convert this into

r 1 = � 1 �r 1 � 2(f 0 � k1)� +
r 3

� 1
� 3 � r 3(f 0 � k1)(

2
� 2

1 �r 1
+ �r 1)� 4 + � � � : (23)
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Upon substituting the value of r 1 in b1, we get

b1(t) = �
� 1

�r 1
� � 2 +

� � 2f 0 � 2k1

�r 1
2 � k1� 1

2
�

� � 1 +
h1

2
(f 0k1 � r 2)� 1 �r 1

+
4k1� 1(f 0 � k1)

�r 1

i
+

h� 3r 3

� 1 �r 1
2 �

4k1(f 0 � k1)2

�r 1
2 � (f 0k1 � r 2)( f 0 � k1)

� � 1r 3

i
� +

h� 2r 3(f 0 � k1)
� 1

2 �r 1
3

� � 1r 4 +
(f 0r 3 � 4k1r 3)

�r 1

i
� 2:

(24)

Next we proceed to cut the � -series ofb1 at r 2 by introducing the second variable, say
� 2:

b1(t) = �
� 1

�r 1
� � 2 +

� � 2f 0 � 2k1

�r 1
2 � k1� 1

2
�

� � 1 + � 2; (25)

where

� 2 =
h1

2
(f 0k1 � r 2)� 1 �r 1 +

4k1� 1(f 0 � k1)
�r 1

i
+

h� 3r 3

� 1 �r 1
2 �

4k1(f 0 � k1)2

�r 1
2

� (f 0k1 � r 2)( f 0 � k1) � � 1r 3

i
� +

h� 2r 3(f 0 � k1)
� 1

2 �r 1
3

� � 1r 4

+
(f 0r 3 � 4k1r 3)

�r 1

i
� 2 + � � � :

(26)

From the � -series of� 2, we have

r 2 = f 0k1 �
2� 2

� 1 �r 1
+

8k1(f 0 � k1)
�r 1

2 +
2

� 1 �r 1

h� 3r 3

� 1 �r 1
2 +

4k1(f 0 � k1)2

�r 1
2 �

2� 2(f 0 � k1)
� 1 �r 1

� � 1r 3

i
� �

2
� 1 �r 1

h 8r 3

� 2
1 �r 1

3 (f 0 � k1) �
8k1(f 0 � k1)3

� 1 �r 1
3 +

4� 2(f 0 � k1)2

� 2
1 �r 1

2

+
(f 0+ 2k1)r 3

�r 1
+ � 1r 4

i
� 2 + � � � :

(27)
Now, we substitute the value of r 2 into � -series ofb2 and consequently, we update it.
And then after cutting this series at the third resonance parameter r 3, we obtain the
� -series ofb2 as follows:

b2(t) =
1
�r 1

� � 2 + k1� 1� � 1 +
h2k1(f 0 � k1)

�r 1
+

1
2

f 0k1 �r 1 +
1
2

f 0k1� 2
1 �r 1 +

2f 02

�r 1

�
� 2

� 1

i
+ � 3�;

(28)

where

� 3 =
h � 3r 3

� 2
1 �r 1

2 +
4k1(f 0 � k1)2

� 1 �r 1
2 �

2� 2(f 0 � k1)
� 2

1 �r 1
� 2f 0k1� 1(f 0 � k1)

i
+

h� 8r 3(f 0 � k1)
� 3

1 �r 1
3

+
8k1(f 0 � k1)3

� 3
1 �r 1

3 �
4� 2(f 0 � k2

1)
� 3

1 �r 1
2 �

(f 0+ k1)r 3

� 1 �r 1
+

2f 0k1(f 0 � k2
1)

�r 1

i
� + � � � :

(29)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1) (2019) 21{35 29

From the � -series of� 3 we have

r 3 = �
� 2

1 �r 1
2� 3

3
+

4
3

k1(f 0 � k1)2� 1 �
2
3

� 2 �r 1(f 0 � k1) �
2
3

f 0k1� 3
1 �r 1

2(f 0 � k1)

�
h

�
8
9

(f 0 � k1)� 1� 3 �r 1 +
8k1(f 0 � k1)3

9 �r 1
�

4� 2(f 0 � k1)2

9� 1
�

22
9

(f 0 � k1)2f 0k1� 2
1 �r 1

�
1
9

(f 0+ k1)� 3
1 � 3 �r 1

3 +
4
9

(f 0+ k1)( f 0 � k1)2k1� 2
1 �r 1

�
2
9

(f 0+ k1)( f 0 � k1)� 1� 2 �r 1
2 �

2
9

f 0k1(f 0+ k1)( f 0 � k1)� 4
1 �r 1

3
i
� + � � � :

(30)
Similarly, we truncate the � series ofb3 at the resonance parameterr 4 and we obtain the
following � -series:

b3(t) =
2
�r 1

2 � � 2 �
2(f 0 � k1)� 1

�r 1
� � 1 +

h4(f 0 � k1)( f 0+ k1)
�r 1

2 �
2� 2

� 1 �r 1
+ f 0k1

i

+
h 2

�r 1
� 3 +

4f 0k1� 1(f 0 � k1)
�r 1

+
� 2

1 � 3 �r 1

3
�

4k1� 1(f 0 � k1)2

3 �r 1
+

2
3

� 2(f 0 � k1)

+
2
3

f 0k1� 3
1 �r 1(f 0 � k1)

i
� + � 4� 2:

(31)
Hence, we have

� 4 =
2
9

� 1� 3(7k1 � 4f 0) �
4k1

9 �r 1
2 (f 0 � k1)2(7f 0+ 8k1) +

4
9� 1 �r 1

(f 0 � k1)

(4k1 � f 0)� 2 +
4
9

(f 0 � k1)2(� 10f + k1)k1� 2
1 �

2
9

(2f 0 � k1)� 3
1 � 3 �r 1

2

�
2
9

(f 0 � k1)(2f 0 � k1)� 1� 2 �r 1 �
4
9

f 0k1� 4
1 �r 1

2(f 0 � k1)(2f 0 � k1) �
2
�r 1

r 4

+
4
3

k1� 2
1 (f 0 � k1)( f 02 � 2f 0k1 + k2

1) + � � � :

(32)

Using (21), (25), (28) and (31) with w1 = � � 1, we get the change of variables
(w1; w2; b1; b2; b3)  ! (�; � 1; � 2; � 3; � 4): The following is the conversion of given system
into the mirror system in terms of the new variables � , � 1, � 2, � 3 and � 4:

� 0 =
1
�r 1

+ ( k1 � f 0)� 1� +
h2(k1f 0 � k2

1 + f 02)
�r 1

+
1
2

f 0k1 �r 1(1 + � 2
1 ) �

� 2

� 1

i
� 2

+ � 3� 3;

� 1
0 =

h
� (1 + � 2

1 )f 0 �
2(f 0+ k1)

�r 1
2

i
+

h2(k1f 0 � k2
1 + f 02)

�r 1
+

1
2

f 0k1 �r 1� 1(1 + � 2
1 )

i
�

+ � 1� 3� 2;

� 2
0 =

h(� 1 � � 2
1 )( f 0+ k1)
�r 1

�
4(f 0+ k1)

�r 1
3

i
� � 2 +

h2� 1

�r 1
2 (2f 02 � 4k2

1 � 3k1f 0)

�
f 0k1� 1

2
(3 + 5 � 2

1 ) � k2
1 � 1 � (k1 � f 0)k1� 3

1

i
� � 1 +

h
�

4k1� 2
1 (f 0 � k1)2

3 �r 1
�

f 0k2
1 � 4

1 �r 1

6

+
� 1� 3 + 5 f 02� 2

1k1 � 3f 0k2
1 � 2

1 � 3k2
1 f 0 � 3f 02k1 + 2k3

1(1 � � 2
1 )

�r 1
�

f 0k2
1 �r 1

2
+

k1� 2

� 1

+
1
3

(� 3
1 � 3 �r 1 + � 1� 2(2f 0+ k1) + 2 f 02k1� 4

1 �r 1) �
4(f 0+ k1)(k1f 0 � k2

1 + f 02)
�r 1

3

+
2� 2(f 0+ k1)

� 1 �r 1
2

i
+

h
� 1� 4 + k1� 3(� 2

1 � 1) �
2� 3(f 0+ k1)

�r 1
2

i
�;

(33)
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� 3
0 =

h(� 1 � � 2
1 )( f 0+ k1)
� 1 �r 1

�
4(f 0+ k1)

� 1 �r 1
3

i
� � 3 +

h� 2k1f 0 � 8k2
1 + 4 f 02

�r 1
2 � k2

1(� 2
1 + 1)

�
1
2

f 0k1(� 2
1 + 1)

i
� � 2 +

h� 3 + 3 f 02k1� 1 + 3 f 0k2
1 � 1

�r 1
+ k1� 2 +

1
2

f 0k2
1 � 3

1 �r 1 � � 3

+ f 02k1� 1 �r 1(� 2
1 + 1) �

3k2
1 f 0+ 3 f 02k1 � 2k3

1(1 � � 2
1 )

� 1 �r 1
�

f 0k2
1 �r 1

2� 1
+

k1� 2+(1+ � 2
1 )f 0� 2

� 2
1

�
4(f 0+ k1)(k1f 0� k2

1 + f 02)
� 1 �r 1

3 +
4� 2(f 0+ k1)

� 2
1 �r 1

2

i
� � 1 +

h� 2f 0k1� 2
1 �r 1(k1f 0� k2

1 + f 02)
�r 1

�
1
2

f 02k2
1 �r 1

2� 2
1 (1 + � 2

1 ) +
k1� 3(� 2

1 � 1)
� 1

�
2� 3(f 0+ k1)

� 1 �r 1
2 �

2� 2

� 1 �r 1
(k1f 0 � k2

1 + f 02)

�
f 0k1 �r 1� 2(1 + � 2

1 )
2� 1

i
+

h
� f 0k1� 2

1 � 3 �r 1 �
� 2� 3

�r 1

i
�;

� 4
0 =

h� 2
1 + 1

�r 1
+

4
�r 1

3

i
� � 5 +

h
k1� 1(1 + � 2

1 ) +
4� 1

�r 1
2 (� f 0+ 2k1) +

4� 1

3 �r 1
2 (f 0+ k1)

+
� 1(� 2

1 + 1)( f 0+ k1)
3

i
� � 4 +

hf 0k1 �r 1

2
+

2f 0k1� 2
1 �r 1

3
�

� 2

� 1
+

4
�r 1

3 (f 02 � k2
1)

+
1
�r 1

(4f 0k1 � 2k2
1 + 2k2

1 � 2
1 � 2f 0k1� 2

1 ) �
4� 2

� 1 �r 1
2 +

1
6

f 0k1� 4
1 �r 1 +

8(f 02 � k2
1)

3 �r 1
3

+
1

3 �r 1
(2k1f 0� 2

1 + 6k2
1 � 2

1 � 2f 02� 2
1 � 2(k2

1 � f 02)) +
� 2

1 �r 1k2
1

3
(� 2

1 + 1)
i
� � 3

+
h2

3
f 0k2

1 � 1(1 + � 2
1 �r 1 � 4� 2

1 ) �
1
6

f 0k2
1 � 1 �r 1

2(� 4
1 � 1) �

2
3

f 02k1� 3
1 (1 + �r 1)

�
1
3

f 02k1� 3
1 �r 1

2(1 + � 2
1 ) �

1
3

f 0� 2(2 + �r 1) +
1
3

k1� 2(2 � �r 1) �
1
3

� 2
1 � 2 �r 1(f 0+ k1)

+
1
�r 1

2 (4� 3 + 4 f 02k1� 1 � 12f 0k2
1 � 1) +

1
�r 1

(2� 2(f 0 � 2k1) � 4f 0k1� 1(f 0 � k1))

+
1

3 �r 1
2 (20f 0k1� 1(f 0+ k1) � 28k3

1 � 1 � 4� 1f 03) +
1
3

(� 2
1 � 3 � 4k3

1 � 1)

+
1

3 �r 1
(� 2k1� 2 + 4k1� 1(f 0 � k1)2)

i
� � 2 +

h
2f 03� 2

1k1 �r 1(1 + � 2
1 )

� f 02k2
1 � 2

1 �r 1(1 +
1
9

� 2
1 ) +

1
�r 1

(� 8f 0k3
1 � 2

1 + 12f 03k1� 2
1 + 4 f 03k1 � 4f 02k2

1)

�
4� 2(f 02 � k2

1)
3� 1 �r 1

2 �
2(f 0 � k1)k1� 2

3� 1
+

8f 0k1(f 02 � k2
1)

�r 1
3 +

1
9

f 0k1� 4
1 �r 1(� 7k2

1 + 4 f 02)

+
1
6

f 02k2
1 � 4

1 �r 1
3(1 + � 2

1 ) +
1
3

� 3
1 � 3 �r 1(f 0 �

1
3

k1) + � 1� 3 �r 1(2 +
1
3

k1)

+
4
3

k1� 1� 2(2f 0 � k1) +
2
3

f 02� 1� 2 +
1
2

f 0k1 �r 1
2� 1(� 2 + � 2

1 � 3) + 2 � 4� 3 �r 1

+ f 0k2
1 �r 1(f 0 � k1) +

1
3 �r 1

(4� 1� 3(f 0+ 2k1) + 2 f 03k1(1 �
17
3

� 2
1 ) + 2 f 0k3

1(� 7 + � 2
1 )

+ 8 f 02k2
1(1 + 2 � 2

1 ) + 4 k4
1(1 �

5
3

� 2
1 ) +

8f 02(f 02 � k2
1)

3 �r 1
3 )

i
� � 1 +

h 1
�r 1

2 (2� 2� 3

� 8f 0k1� 1(f 0 � k1)(k1f 0 � k2
1 + f 02)) +

1
3 �r 1

2 (8k1(k1f 0 � k2
1 + f 02)( f 0 � k1)2� 1

+ 4 � 3(f 0� k2
1)) +

1
3

(� f 0k1� 2
1 � 3 �r 1

2 + 2k2
1 f 0� 1(f 0 � k1)2(1 + � 2

1 ) � � 3(� 2
1 � 1)

� 2(f 0 � k1)� 1� 4) �
� 2� 3

� 1
+ 2 � 2

1 � 3(f 0k1 + � 2) � f 02k2
1 � 1(f 0 � k1)(1 + � 2

1 )

(2 + � 2
1 �r 1

2) � 4� 2
1 (k1f 0 � k2

1 + f 02)( � 3 + f 0k1� 1(f 0 � k1)) � 2� 1� 4(f 0 � k1)
i

+
h

�
2� 2

1 � 3 �r 1

3
+

4k1� 1� 3(f 0 � k1)( � 2f 0 � k1)
3 �r 1

�
4� 4(k1f 0 � k2

1 + f 02)
�r 1

� 2f 0k1� 3
1 � 3 �r 1 � f 0k1� 4 �r 1(1 + � 2

1 ) +
2� 2� 4

� 1

i
� � 2� 3� 4� 2:

(34)
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By similar calculations, we can �nd the mirror system for the following branch of leading
order coe�cients:

l0 = (
q

� 4 � r 2
1) � 1; w20 = �

r 1p
� 4 � r 2

1
;

b10 =
r 1

(
p

� 4 � r 2
1)2

; b20 = (
q

� 4 � r 2
1) � 1; b30 =

2
(
p

� 4 � r 2
1)2

:
(35)

The mirror system obtained so far for the present case of leading order coe�cient is
regular if and only if the following condition are satis�ed:

� 1 =
p

� 4 � �r 1
2

�r 1
; � 2 = �

26k2
1 � 1

9 �r 1
; f 0 = k1; � 3 = 0 : (36)

The most prominent thing for the singularity analysis is that the system is regular near
� = 0, which corresponds to movable singularity of the system of six coupled ODEs (5).

3 Alternative Approach of the Convergence of Laurent Series in Painlev�e
Test

The convergence of Laurent series solution obtained by the Painlev�e test is guaranteed
by Kichenassamy and Littman [4]. But here we are going to present an alternative
approach of the convergence of these series by making use of the mirror system and the
Cauchy-Kowalevski theorem.

An ideal rotating, uniformly strati�ed system of six coupled ODEs (5) is completely
integrable for the Rayleigh number Ra = 0. For Ra = 0, the Painlev�e test produces the
following formal solution of ODEs (5) for the �rst case of leading order coe�cients:

w1(t) =
q

� 4 � k2
2 � � 1 +

(f 0 � k1)k2

2
+

p
� 4 � k2

2
2

(� k3 + f 0k1)�

+
h

�
k4

2
+

f 0k2

4
(� k3 + f 0k1)

i
� 2

+ f�
k5

3
+

f 0
p

� 4 � k2
2

12k2

h
f 0k2(k3 � f 0k1) + 2 k4

i
g� 3

+
1X

j =5

w1j � j � 1;

w2(t) = k2� � 1 +
hp

� 4 � k2
2

2

�
� f 0+ k1

�i
+

(� k3k2 + f 0k2k1)
2

�

+
q

� 4 � k2
2

h k4

2k2
+

f 0

4

�
k3 � f 0k1

�i
� 2

+
h � k5k2

3
p

� 4 � k2
2

+
f 0

12

�
f 0k2k3 + 2k4 � f 02k2k1

�i
� 3 +

1X

j =5

w1j � j � 1;
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b2(t) =
q

� 4 � k2
2 � � 2 + f 0k2� � 1 +

hp
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2
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(k3 � f 02)
i
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(38)

The above Laurent series contains the �ve arbitrary constant w30 = k1; k2; k3; k4 and
k5. Here � = t � t0 and t0 is an arbitrary position of singularity in complex domain.
As we see, the above Laurent series has a movable pole type singularity, and using the
Painlev�e method we conclude that the above Laurent series (37) and (38) are convergent
for small � ; and this convergence is guaranteed by Kichenassamy and Littman [4]. But
for an alternative approach, we convert these series into an initial value problem for the
mirror system (33) and (34). For this purpose we substitute the formal Laurent series
(37) and (38) into the mirror transformation w1 = � � 1, (21), (25), (28) and (31). After
simpli�cation, we obtain the following formal power series for � , � 1, � 2, � 3 and � 4:
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Thus, we have the mirror system (33) and (34) with the following initial data
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(41)
Now we are ready to show the convergence of (37)and (38) by using the Cauchy

theorem [10, p.150-151]. From the di�erential equations (33) and (34) and the initial
conditions (41) we see that the coe�cients of variable in (33), (34) and initial value
conditions (41) are analytic functions provided that r 1 = k2 6= � 2i . Thus, the initial
value problem (33) and (34) with initial conditions (41) has unique analytic solutions
which are convergent in the neighbourhood of� = 0.

Substituting the series (39) and (40) back intow1 = � � 1, (21), (25), (28) and (31), we
obtain the convergent power series forw1; w2; b1; b2 and b3 which was not just formal.
Furthermore, with some computation we see that these series are exactly (37) and (38).
Therefore, we come to the conclusion that the Laurent series (37) and (38) are convergent.
Thus, we summarise these results in terms of the following theorem.

Theorem 3.1 For the principal Laurent series solution of the ideal rotating, uni-
formly strati�ed system of six coupled ODEs (3), there is a change of variables of the
form (6) such that the system of ODEs (3) is transformed into a regular system of ODEs
(33) and (34) for the new variables(�; � 1; � 2; � 3; � 4). Further, the Laurent series (37)
and (38) in the principle dominant balance are converted into the power series (39) and
(40) with initial data (41) which are the analytic functions in terms of new variables and
thus, the series solutions (39)with (40) are convergent in the neighbourhood of� = 0 .

4 Conclusion

The reduced system of ODEs (3) which arose in the reduction of uniformly strati�ed

uid contained in the rotating box of dimension L � L � H is completely integrable if the
Rayleigh number Ra = 0. By taking Ra = 0, we have obtained the mirror system for
both possible branches of leading ordered coe�cients of system (3). The main feature in
the singularity analysis is that the mirror system is regular near � = 0, which corresponds
to the movable singularity of the system (3) provided (36) holds. Also, we have shown
that the formal Laurent series solutions arising from successful application of the Painlev�e
test to the system of ODEs (3) are convergent.
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Abstract: This paper deals with stationary and independent increments processes
in real time initiated in [14] embellishing it to a two-dimensional signed random mea-
sure with position dependent marking. The real-valued component of the associated
marked point process is non-monotone presenting an analytical challenge. We man-
age to investigate various characteristics of that component, including the nth drop
or a sharp surge that �nd applications to �nance (like option trading) and risk theory.
The need for time sensitive feature of our study (i.e., an analytical association with
real time parameter t) allows stochastic control implementation in sharp contrast
with time insensitive analysis in the present literature. We proceed with the classical
approach of 
uctuation analysis of a particle running through a random grid of a
convex set that the particle is trying to escape. We �nd the distribution of the �rst
passage time and its location in space.

Keywords: random walk; independent and stationary increments processes; 
uctua-
tions of stochastic processes; marked point processes; �rst passage time; signed marked
random measures; time sensitive analysis.
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1 Introduction

In many scienti�c, �nancial, and game theoretic processes, timing is of at most impor-
tance and a main strategic issue. Several studies have been done on the �rst passage time
in 
uctuation theory and their applications to queuing, stochastic games, seismology, and
�nance (cf. [1,2,8-10,11,12,13,15,16,19,22-24,27,30]). Fluctuation theory pertains to the
behavior of an underlying process around a critical threshold and more generally, when a
process escapes from a �xed manifold. The time when that passage takes place is referred
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to as the �rst passage time. Another critical value of that situation is the new location
of the process upon its escape. Besides the original topics mentioned above, 
uctua-
tion theory has become a stand-alone subject in numerous articles appeared through the
decades of intense research, cf. [3-7,17,20,21,29,31].

In our most recent paper [15], we worked with time sensitive functionals of the same
entities but under real time observation of a monotone process. We dealt with non-
negative random measures and increment processes. In this paper we study a class of
signed marked random measures (A ; �; T ) =

P 1
n =0 (X n ; � n ) " t n with position dependent

marking, on a �ltered probability space (
 ; F ; F t ; P ). Marks X n ’s are non-negative, while
marks � n ’s are real-valued, with the support counting random measure

P 1
n =0 " t n . This

is a signi�cant upgrade from [15], because not only is yet another component added, but
it is non-monotone. Studies of non-monotone components are very few in the literature
on 
uctuations. Most prominent of them was by Lajos Tak�acs [30]. However, the results
in [30] were not tractable.

As in the theory of 
uctuations, we focus on the behavior of (A ; �; T ) around a
�xed threshold M > 0 with respect to its �rst component A , referred to as an active
component. With

An = X 0 + X 1 + : : : + X n (1.1)

we havef An g monotone non-decreasing, whereas

Pn = � 0 + � 1 + : : : + � n (1.2)

is non-monotone, as� k ’s are real-valued marks. Our interest is in an extreme behavior
of the marginal process (�; T ) =

P 1
n =0 � n " t n that is di�cult to analyze due to the

non-monotone nature of its marks. For that reason we introduce active markX n being
nonnegative and integer-valued that is to oversee� n . For instance, we might be curious
when the process (�; T ) changes its monotonicity or when it experiences its �rst extreme
drop or a surge. For example, we setX 0 = X 1 = : : : = X n � 1 = 0 ; X n = 1 ; if � 0 >
a; � 1 > a; : : : ; � n � 1 > a; and � n � a. In the general case, the incrementsX i ’s need not
be constant, but they can be random variables with particular marginal distributions.
For a �xed positive integer M; we de�ne the exit index as

� := inf f n = 0 ; 1; : : : : An � M g : (1.3)

Then, t � is called the �rst passage time of process (A ; �; T ). It is the �rst epoch when
the crossing ofM occurs. Obviously, t � is a stopping time relative to �ltration F t . The
respective excess values ofA � and P� representing active and passive components,A
and � , respectively, are also of interest. We further assume thatA1 the increments
f X n ; � n ; � n = tn � tn � 1g for n = 0 ; 1; 2; : : :, t � 1 = 0, of the process (A ; �; T ) are
independent (position dependent marking), that is, X n and � n are dependent only on
� n . A2 for n = 1 ; 2; : : : ; f X n ; � n ; � n g are identically distributed.

Associated with (A ; �; T ) is the \time sensitive counting" process

(N t ; � t ) = ( A ; � ) [0; t] =
1X

n =0

(X n ; � n ) " t n [0; t] ; t � 0: (1.4)

We will be interested in the value of (N t ; � t ) of some t enclosed betweent � � 1 and t �
providing us with the information about ( A ; �; T ) between two key reference points as
well as (N t ; � t ) for t 2 [0; � � ) (that we will discuss later on, in Section 5).
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So we target the joint Laplace- and Fourier-Stieltjes transform of the above r.v.’s:

� � (t) = EzN t e� i�� t e� i’P � � 1 uA � � 1 e� i�P � vA � e� # 0 t � � 1 � #t � 1[t � � 1 ;t � ) (t) ;
kzk � 1; kuk � 1; kvk � 1; Re#0 � 0; Re# � 0; � 2 R; ’ 2 R; � 2 R:

(1.5)

Note that because we manage to observe the process in real time, i.e., upon
t0; t1; t2; : : : (meaning that there are no changes between those epochs), it raises a ques-
tion about a need in the continuous time interpolation. Indeed, in some past work (cf.
Dshalalow and White [17]) when a process was observed over arbitrary time epochs (i.e.,
unrelated to t0; t1; t2; : : :), its continuous revival made perfect sense. In our case, how-
ever, it is more about associating the point processt0; t1; t2; : : :, especially the reference
points t � � 1; t � ; with time t; than anything else. Its very obvious bene�t is to know about
the process over time related intervals like [0; t] which was impossible with time insen-
sitive versions. From a practical stand point, observing the process over arbitrary time
epochs is more realistic than in real time. However, whenever it is possible to render, its
second bene�t lies in far more tractable results compared to delayed observations that
additionally require the named point process to be Poisson or alike. Furthermore, we also
obtain explicit characteristics of the continuous time parameter process in interval [0; t � )
giving us a broad spectrum of information about processN t . The associated functional
will read

EzN t e� i�� t e� i�P � vA � e� #t � 1[0;t � ) (t) ; kzk � 1; kvk � 1; Re# � 0; � 2 R; � 2 R: (1.6)

Back to the random measure (A ; �; T ) ; we recall that the passive component� is real-
valued making this random measure signed. Studies related to signed random measures
have previously been done in various topological and stochastic analysis contexts. In
[19] Hellmund extended the idea of completely random measures to completely random
signed measure and gave a characterization of this class of signed random measures. He
demonstrated that the classes of L�evy random measures (utilized in L�evy adaptive regres-
sion kernel models) and L�evy bases (utilized in spatio-temporal modeling) are natural
extensions of completely random signed measures and that independence is a fundamen-
tal concept in de�ning L�evy random measures and L�evy bases. Other concepts related
to signed random measures are in the work by Smorodina and Faddeev [29] who studied
symmetric stable signed measures and showed that they are limit measures of sums of
independent random variables.

Various applications of 
uctuation theory that we explore can also be found in stochas-
tic signals such as time continuous readings for automated seizure detection and quan-
ti�cation using EEGs, heart attack activity monitoring through detection by EKGs, real
time blood pressure monitoring, and the stock market. In this paper, we illustrate the
applicability of our study by expounding on the case of stock prices. We are able to
predict the time of the �rst drop of a stock (or �rst increase if we short it) at t � and
thus, the highest price at t � � 1 at which we can sell it at that point in time.

Our model also applies to the classical risk problem originally posed by Filip Lundberg
(see [27]). Assume that an insurance company starts at zero with the initial capitalu
and let the premium be a linear function with a constant premium rate c, so that the
premium income of the company at time t is u + ct. Assume that the aggregate claims
form a marked point processY =

P 1
k=0 Yk " t k ; with tk being the time of the kth claim

and Yk - the amount of claim. Now Lundberg postulated that Y was a marked Poisson
process with position independent marking. We relax either condition by assuming that
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neither is Y Poisson, nor is it with position independent marking. If � k = tk � tk � 1;we
have c� k premiums’ increase fromtk � 1 to tk . The mark � k = c� k � Yk is the change of
company’s asset fromtk � 1 to tk . Now,

� =
1X

k=0

� k " t k

is a purely signed marked random measure and

Pt = � [0; t]

is the process describing the asset changes of the insurance company on interval [0; t].
Notice that Pt does not give us the true value of the company’s asset at timet; because
Pt is a piecewise constant interpolation of the true asset value process

Rt = u + ct �
1X

k=0

Yk " t k [0; t]

known as the risk process. They coincide upon timest0; t1; t2; : : : which is exactly what
we need. Our process (A ; �; T ) is de�ned through the active component

X k =
�

0; � k > 0;
1; � k � 0:

So we are interested in the moment whenPk becomes negative or zero for the �rst time
(which would trigger X k = 1). Thus, � 0; � 1; : : : ; � � � 1 are positive, while � � is negative
or zero. f t � n g is the embedded sequence of consecutive drops ofPt . Then obviously, the
risk processRt will become negative or zero only upon one of the epochsf t � n g ; known
as the ruin time of Rt .

Let F t be the natural �ltration with respect to the risk process Rt . Then, f t � n g is a
sequence of stopping times relativeF t that are also locally strong Markov points, that is
either Rt and Pt have a locally strong Markov property at each point t � n . Therefore, Rt
and Pt conditionally regenerate upon these epochs. We can slightly modifyPt to make
it semi-regenerative with respect to f t � n g.

While a further discussion on the risk process and its study as a semi-regenerative
process is beyond the scope of this paper, the time of the �rst or the second or thenth
drop of the risk process is of interest for statistics purposes and it is often raised by
insurance companies.

We continue this paper in Section 2 through a further formalism of our model and
introduce basics of discrete operational calculus earlier developed by Dshalalow [6,7] and
Dshalalow and Iwezulu [13]. In Section 3, we use the method of stochastic decomposition
previously developed in Dshalalow and Nandyose [15] and Dshalalow and White [17,18],
only now embellished for non-monotone components. We establish a key formula for the
functional � � (t) of (1.5) that we claim is analytically tractable. This claim is justi�ed
throughout Section 4 in a number of examples and special cases. We conclude our paper
in Section 5 with time sensitive analysis where timet runs interval [0; � � ) and �nd the
joint transform of N t ; Pt ; N � ;and the �rst passage time t � in a fully closed form.
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2 Formalism and Notation

We now return to the functional � � . Note that we do not know the distribution of the
random vector (A � � A � � 1; t � � t � � 1) nor is the latter independent of (A � � 1; t � � 1). The
remedy for this predicament is the use of stochastic expansion that will include several
steps. In the �rst step, we introduce the auxiliary sequencef � (p)g of exit indices relative
to the sequencef 0; 1; : : :g of thresholds to be crossed byAn ; of which � = � (M � 1) was
introduced in (1.3). Namely, let

� (p) = inf f n = 0 ; 1; : : : : An > p g ; p = 0 ; 1; : : : (2.1)

With p �xed, we have the sequence of functionals

� � (p) (t)= EzN t e� i�� t e� i’P � ( p ) � 1 uA � ( p ) � 1 e� i�P � ( p ) vA � ( p ) e� # 0 t � ( p ) � 1 � #t � ( p ) 1[t � ( p ) � 1 ;t � ( p ) ) (t) :
(2.2)

In our second step, we apply to� � (p) of (2.2) the transformation Dp de�ned as

Dpf f (p)g (x) :=
1X

p=0

xpf (p)(1 � x); jjx jj < 1; (2.3)

where f is a real-valued function with the domain N0 = f 0; 1; : : :g. The inverse ofDp is
the so-calledD-operator previously introduced in Dshalalow [6,7]:

Dk
x ’ (x; y) =

(
lim x ! 0

1
k !

@k

@xk

h
1

1� x ’ (x; y)
i

; k � 0
0; k < 0:

(2.4)

From � � (p) (t) =
P 1

n =0 � � (p) (t) 1f v (p)= n g; we have

� (t; x ) := Dp
�
� � (p) (t)

�
(x) =

1X

n =0

� � (p) (t) Dp1f � (p)= n g (x)

=
1X

n =0

� � (p)= n (t) Dp1f � (p)= n g (x) ;

with

� � (p)= n (t) = EzN t uA n � 1 e� i�� t e� i’P n � 1 vA n e� i�P n e� # 0 t n � 1 � #t n 1f t n � 1 � t<t n g = Fn (t) :
(2.5)

From 1f v (p)= n g = 1f A n � 1 � pg1f A n >p g;

Dp1f v (p)= n g (x) = (1 � x)
1X

p=0

xp1f A n � 1 � pg1f A n >p g

= (1 � x)
A n � 1X

p= A n � 1

xp

= (1 � x)

0

@
A n � 1X

p=0

xp �
A n � 1 � 1X

p=0

xp

1

A = (1 � x)

 
1 � xA n

1 � x
�

1 � x
A n � 1

1 � x

!

= xA n � 1 � xA n
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that yields

� (t; x ) =
1X

n =0

Fn (t)
�
xA n � 1 � xA n

�

=
1X

n =0

[Fn (ux; v; z; #0; #; t ) � Fn (u; vx; z; #0; #; t )] ; whereA� 1 = 0 : (2.6)

Finally, applying the Laplace transform to � (t; x ) of (2.6) we have

� � (�; x ) =
Z 1

t =0
e� �t � (t; x ) dt =

1X

n =0

[F �
n (ux; v; z; #0; #; t ) � F �

n (u; vx; z; #0; #; t )] : (2.7)

Now functionals Fn and their transforms F �
n are subject to our scrutiny in Section 3.

3 Analysis of Fn

With n = 1 ; 2; : : : ; we work on

Fn (t) = EzN t uA n � 1 e� i�� t e� i’P n � 1 vA n e� i�P n e� # 0 t n � 1 � #t n 1f t n � 1 � t<t n g; (3.1)

(de�ned in (2.5)). (3.1) can be brought to the expression

Fn (t) = E [(zuv)A n � 1 e� i ( � + ’ + � )Pn � 1 e� (# 0 + # ) t n � 1 vA n � A n � 1

� e� i� (Pn � Pn � 1 ) e� # ( t n � t n � 1 ) 1f t n � 1 � t<t n g]

= E (zuv)A n � 1 e� i ( � + ’ + � )Pn � 1 e� (# 0 + # ) t n � 1 vX n e� i�� n e� # � n 1f t n � 1 � t<t n g; n = 1 ; 2 : : :
(3.2)

The Laplace transform of Fn with the expectation unfolded reads

F �
n (� ) =

Z 1

t =0
e� �t Fn (t) dt

=
1X

k=0

(zuv)k
1X

j =0

vj
Z 1

p= �1
e� i ( � + ’ + � )p

Z

s� 0
e� (# 0 + # )se� �s

�
Z 1

q= �1
e� i�q

Z

� � 0
e� #�

Z �

t � s=0
e� � ( t � s) dt

� PA n � 1 
 Pn � 1 
 t n � 1 
 X n 
 � n 
 � n (k; j; dp; ds; dq; d� )

=
1
�

1X

k=0

(zuv)k
1X

j =0

vj
Z 1

p= �1
e� i ( � + ’ + � )p

Z

s� 0
e� (# 0 + #+ � )s

Z 1

q= �1
e� i�q

Z

� � 0
e� #�

� PA n � 1 
 Pn � 1 
 t n � 1 
 X n 
 � n 
 � n (k; j; dp; ds; dq; d� )

�
1
�

1X

k=0

(zuv)k
1X

j =0

vj
Z 1

p= �1
e� i ( � + ’ + � )p

Z

s� 0
e� (# 0 + #+ � )s

Z 1

q= �1
e� i�q

Z

� � 0
e� (#+ � ) �

� PA n � 1 
 Pn � 1 
 t n � 1 
 X n 
 � n 
 � n (k; j; dp; ds; dq; d� )

due to independence ofAn � 1 
 Pn � 1 
 tn � 1 and X n 
 � n 
 � n

=
1
�

E [(zuv)A n � 1 e� i ( � + ’ + � )Pn � 1 e� (# 0 + #+ � ) t n � 1 ]
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�
h
EvX n e� i�� n e� # � n � EvX n e� i�� n e� (#+ � )� n

i

=
1
�

� n � 1 (zuv; � + ’ + �; # 0 + # + � ) [
 (v; �; # ) � 
 (v; �; # + � )] ; (3.3)

where
� n � 1(zuv; � + ’ + �; # 0 + # + � )

= 
 0 (zuv; � + ’ + �; # 0 + # + � ) 
 n � 1 (zuv; � + ’ + �; # 0 + # + � ) for n � 1 (3.4)

and


 0 (u; ’ , #) = EuX 0 e� i’� 0 e� #t 0 ; 
 (u; ’ , #) = EuX k e� i’� k e� # � k ; k = 1 ; 2; : : : : (3.5)

Summing up Fn for all n = 1 ; 2; : : : ; with (3.3-3.4) in mind, we formally arrive at the
expression

1X

n =1

F �
n (� ) =

1
�


 0 (zuv; � + ’ + �; # 0 + # + � )

� [
 (v; �; # ) � 
 (v; �; # + � )]
1

1 � 
 (zuv; � + ’ + �; # 0 + # + � )
: (3.6)

To warrant the convergence of the geometric series
P 1

n =1 F �
n (� ), in the proposition below,

we show that the norm k
 (zuv; � + ’ + �; # 0 + # + � )k < 1.

Proposition 3.1 The series

1X

n =1

F � (� ) =
1X

n =1

Z 1

t =0
e� �t E [(zuv)A n � 1 e� i ( � + ’ + � )Pn � 1

� e� (# 0 + # ) t n � 1 vX n e� i�� n e� # � n 1f t n � 1 � t<t n g]dt

converges to
1X

n =1

F �
n (� ) =

1
�


 0 (zuv; � + ’ + �; # 0 + # + � )

� [
 (v; �; # ) � 
 (v; �; # + � )]
1

1 � 
 (zuv; � + ’ + �; # 0 + # + � )
;

with
k
 (zuv; � + ’ + �; # 0 + # + � )k < 1;

provided one of the following conditions is met:

Re#0 > 0; orRe# > 0; orRe � > 0or kuk < 1; or kvk < 1; or kzk < 1:

Proof. The �rst part of the proposition is due to the above steps that formally ended
in formula (3.6). Inequality (3.7) holds due to the following arguments:



 
 (uvz; � + ’ + �; # 0 + # + � )


 � E




 (uvz)X 1 e� i ( � + ’ + � ) � n e� (# 0 + #+ � )� 1






=
1X

k=0



 uvz


 k

Z 1

t =0
e� Re( # 0 + #+ � ) t PX 1 
 � 1 (k; dt)

=
Z 1

t =0
e� Re( # 0 + #+ � ) t PX 1 
 � 1 (0; dt) +

1X

k=1



 uvz


 k

Z 1

t =0
e� Re( # 0 + #+ � ) t PX 1 
 � 1 (k; dt)
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=
Z 1

t =0
e� Re( # 0 + #+ � ) t PX 1 
 � 1 (0; dt) +

Z 1

t =1
e� Re( # 0 + #+ � ) t PX 1 
 � 1 (0; dt)

+
1X

k=1



 uvz


 k

Z 1

t =0
e� Re( # 0 + #+ � ) t PX 1 
 � 1 (k; dt)

+
1X

k=1



 uvz


 k

Z 1

t =1
e� Re( # 0 + #+ � ) t PX 1 
 � 1 (k; dt)

�
Z 1

t =0
PX 1 
 � 1 (0; dt) + e� Re( # 0 + #+ � )

Z 1

t =1
PX 1 
 � 1 (0; dt)

+


 uvz




1X

k=1

Z 1

t =0
PX 1 
 � 1 (k; dt) +



 uvz




1X

k=1

e� Re( # 0 + #+ � )
Z 1

t =1
PX 1 
 � 1 (k; dt) ;

since


 uvz



 �


 uvz



 k for


 uvz



 � 1 and k > 1. Let

a :=
Z 1

t =0
PX i 
 � i (0; dt) ; b :=

Z 1

t =1
PX i 
 � i (0; dt)

c :=
1X

k=1

Z 1

t =0
PX i 
 � i (k; dt) ; d :=

1X

k=1

Z 1

t =1
PX i 
 � i (k; dt) :

Then clearly, a + b+ c + d = 1 and thus,

a + e� Re( # 0 + #+ � ) b+


 uvz



 c +


 uvz



 e� Re( # 0 + #+ � ) d < 1

whenever


 uvz



 < 1 or Re(#0 + # + � ) > 0 and we are done with the proof. �

We continue with Fn for n = 0. F0 is the functional of the underlying process on
interval [0 ; t0). With N t = � t = A � 1 = P� 1 = t � 1 = 0 we have

F0 (t) = EzN t uA n � 1 e� i�� t e� i’P n � 1 vA n e� i�P n e� # 0 t n � 1 � #t n 1f 0� t<t 0 g

= EvA 0 e� i�P 0 e� #t 0 1[0;t 0 ) (t) :

The following is easy to prove.

Proposition 3.2 Let F0 (t) = EvA 0 e� i�P 0 e� #t 0 1[0;t 0 ) (t). Then

F �
0 (� ) =

1
�

[
 0 (v; �; # ) � 
 0 (v; �; # + � )] : (3.7)

With Proposition 3.2, we can augment the series
P 1

n =1 F �
n of formula (3.6) to include

F �
0 :

1X

n =0

F �
n (� ) =

1
�

[
 0 (v; �; # ) � 
 0 (v; �; # + � )] +
1
�


 0 (zuv; � + ’ + �; # 0 + # + � )

� [
 (v; �; # ) � 
 (v; �; # + � )]
1

1 � 
 (zuv; � + ’ + �; # 0 + # + � )
: (3.8)
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From (2.7) and (3.8) we arrive at

� � (�; x ) =
1X

n =0

[F �
n (ux; v; z; #0; #; t ) � F �

n (u; vx; z; #0; #; t )]

=
1
�

[
 0 (v; �; # ) � 
 0 (v; �; # + � )] �
1
�

[
 0 (vx; �; # ) � 
 0 (vx; �; # + � )]

+
1
�


 0 (zuvx; � + ’ + �; # 0 + # + � )
1

1 � 
 (zuvx; � + ’ + �; # 0 + # + � )

� [
 (v; �; # ) � 
 (vx; �; # ) + 
 (vx; �; # + � ) � 
 (v; �; # + � )] : (3.9)

The Laplace transform � �
� (� ) =

R1
t =0 e� �t � � (t) dt of the functional

� � (t) = EzN t e� i�� t e� i’P � � 1 uA � � 1 e� i�P � vA � e� # 0 t � � 1 � #t � 1[t � � 1 ;t � ) (t)

can be extracted from � � (�; x ) of (4.9) using the D-operator.
The entire e�ort in this section can be reduced to the following.

Theorem 3.1 Let � � (� ) denote the Laplace transform of the functional

� � (t) = EzN t e� i�� t e� i’P � � 1 uA � � 1 e� i�P � vA � e� # 0 t � � 1 � #t � 1[t � � 1 ;t � ) (t) (3.10)

kzk � 1; kuk � 1; kvk � 1; Re#0 � 0; Re# � 0; �; ’; � 2 R;

T hen; with kuk < 1; or kvk < 1; or kzk < 1; or Re#0 > 0; or Re# > 0; or Re � > 0;
(3.11)

� �
� (� )

= DM � 1
x

(
1
�

[
 0 (v; �; # ) � 
 0 (v; �; # + � )] �
1
�

[
 0 (vx; �; # ) � 
 0 (vx; �; # + � )]

+
1
�


 0 (zuvx; � + ’ + �; # 0 + # + � )
1

1 � 
 (zuvx; � + ’ + �; # 0 + # + � )

� [
 (v; �; # ) � 
 (vx; �; # ) + 
 (vx; �; # + � ) � 
 (v; �; # + � )]

)

: (3.12)

4 Applications to Option Trading

For an illustration, consider the following special case. Suppose that we observe a con-
stantly 
uctuating stock price of some company over the times t0 = 0 ; t1; t2; : : : that
starts o� at time zero with a price � 0.
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Case 1. Observation of process P i upon the �rst drop.

1a. Suppose we are interested in the characteristics of the process around the period
when the stock price drops for the �rst time. Because the stock prices cannot be modeled
by a monotone process, we have the observed prices upont ’s as the passive component,
and introduce the active component

X n =
�

0; � n � 0;
1; � n < 0: (4.1)

Suppose� 0 is a nonnegative r.v. with some speci�ed distribution and let X 0 = � 0 = 0.
So, 
 0 (z; �; � ) = Ee� i�� 0 (innotation ) = 
 0 (� ) :
Next, with M = 1 according to our assumption about the �rst drop, formula (3.12)

further reduces to

�� �
� (� ) = 
 0 (� + ’ + � )

1
1 � 
 (0; � + ’ + �; # 0 + # + � )

� [
 (v; �; # ) � 
 (0; �; # ) + 
 (0; �; # + � ) � 
 (v; �; # + � )] : (4.2)

Because the active component is merely auxiliary, we are less interested in any information
about N t ; A � � 1; A � ; as well asP� � 1; t � � 1; so we setz = u = v = 1 and ’ = #0 = 0
restricting the Laplace transform of � � to the marginal transform

Z 1

t =0
e� �t Ee� i�� t e� i�P � e� #t � 1[t � � 1 ;t � ) (t) dt

=
1
�


 0 (� + � )
1

1 � 
 (0; � + �; # + � )
� [
 (1; �; # ) � 
 (0; �; # ) + 
 (0; �; # + � ) � 
 (1; �; # + � )] ; (4.3)

where


 (z; �; � ) = EzX 1 e� i�� 1 e� � 1 � and
 (0; �; � ) = EzX 1 e� i�� 1 e� � 1 � ��
z=0 :

From

EzX 1
��
z=0 = P f X 1 = 0g + zP f X 1 = 1g

��
z=0 = P f X 1 = 0g = E1f X 1 =0 g = E1f � 1 � 0g

we have

 (0; �; � ) = E1f � 1 � 0ge� i�� 1 e� � 1 � :

Suppose now that �’s and � ’s are independent, that is, the observation epochs and
stock price changes are independent. This may not always apply, but it would simplify
establishing of 
 . Then


 (0; �; � ) = E1f � 1 � 0ge� i�� 1 Ee� � 1 � = E1f � 1 � 0ge� i�� 1




 + �
;

if the observation epochs occur according to a Poisson point process of intensity
 . Our
next assumption is that the marginal distribution of � 1 is Laplace with parameter � and
zero shift. That being said, the PDF of � 1 is

f � 1 (x) =
1
2

�e � � jx j ; x 2 R: (4.4)
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Then

 (0; �; 0) = E1f � 1 � 0ge� i�� 1 =

Z 1

x =0
e� i�x 1

2
�e � �x dx =

1
2

�
� + i�

:

BecauseEe� i�� 1 = Ee� i�� 1
�
1f � 1 � 0g + 1f � 1 < 0g

�
;we have

Ee� i�� 1 =
1
2

�
� + i�

+
Z 0

x = �1
e� i�x 1

2
�e �x dx

=
1
2

�
� + i�

+
1
2

�
� � i�

=
1
2

�
2�

� 2 + � 2 =
� 2

� 2 + � 2 :

Thus,


 (1; �; � ) = Ee� i�� 1 Ee� � 1 � = Ee� i�� 1




 + �
=

� 2

� 2 + � 2




 + �
:

Next the following two further marginals are of interest.
(i ) With � = � = 0 in (4.3) ;the functional

Z 1

t =0
e� �t Ee� #t � 1[t � � 1 ;t � ) (t) dt

=
1
�

1
1 � 
 (0; 0; # + � )

[
 (1; 0; #) � 
 (0; 0; #) + 
 (0; 0; # + � ) � 
 (1; 0; # + � )] (4.5)

represents the Laplace transform of the �rst passage timet � ’s marginal functional at the
�rst drop with the time t falling between the pre-�rst passage timet � � 1 and t � . Here


 (1; 0; # + � ) =




 + # + �


 (0; �; � ) = E1f � 1 � 0ge� i�� 1 Ee� � 1 � =
1
2

�
� + i�




 + �


 (0; 0; #) =
1
2




 + #

:

Therefore, Z 1

t =0
e� �t Ee� #t � 1[t � � 1 ;t � ) (t) dt

=
�

1 +




 + 2( # + � )

�


2

1
(
 + #) ( 
 + # + � )

(4.6)

implying that the inverse of the Laplace transform is

Ee� #t � 1[t � � 1 ;t � ) (t) = L � 1
�

� Z 1

t =0
e� �t Ee� #t � 1[t � � 1 ;t � ) (t) dt

�
=



2 (
 + #)

e� t
2 ( 
 +2 # ) :

(4.7)
(ii ) With � = # = 0 in (4.3) ; we have the Laplace transform of theP� ’s marginal
functional upon the �rst passage time t � jointly with the time t running between t � � 1
and t � . Z 1

t =0
e� �t Ee� i�P � 1[t � � 1 ;t � ) (t) dt

=
1
�


 0 (� )
1

1 � 
 (0; �; � )
[
 (1; �; 0) � 
 (0; �; 0) + 
 (0; �; � ) � 
 (1; �; � )] : (4.8)
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Because

 0 (� ) = e� i�p 0

(assuming the initial price � 0 = p0 a.s. wherep0 is a constant)
and


 (1; �; � ) =
� 2

� 2 + � 2




 + �
;


 (0; �; � ) = E1f � 1 � 0ge� i�� 1 Ee� � 1 � =
1
2

�
� + i�




 + �

;

1 � 
 (0; �; � ) =
2 (� + i� ) ( 
 + � ) � �


2 (� + i� ) ( 
 + � )
;

and
1

1 � 
 (0; 0; # + � )
= 1 +

�

2 (� + i� ) ( 
 + � ) � �


;

we have that Z 1

t =0
e� �t Ee� i�P � 1[t � � 1 ;t � ) (t) dt

=
1
�

e� i�p 0

�
1 +

�

2 (� + i� ) ( 
 + � ) � �


�

�
�

� 2

� 2 + � 2 �
1
2

�
� + i�

+
1
2

�
� + i�




 + �

�
� 2

� 2 + � 2




 + �

�

= e� i�p 0

�
� 2

� 2 + � 2 �
1
2

�
� + i�

� �
1 +

�

2 (� + i� ) ( 
 + � ) � �


�
1


 + �
: (4.9)

Thus,

Ee� i�P � 1[t � � 1 ;t � ) (t) = L � 1
�

� Z 1

t =0
e� �t Ee� i�P � 1[t � � 1 ;t � ) (t)

�

=
�

� 2

� 2 + � 2 �
1
2

�
� + i�

�
e� ( 
t

2 ( � +2 i�
� + i� )+ i�p 0 ) (4.10)

and

EP� 1[t � � 1 ;t � ) (t) = i lim
� ! 0

@
@�

Ee� i�P � 1[t � � 1 ;t � ) (t) =
1

2�

�

t
2

+ �p 0 � 1
�

e� 
t
2 (4.11)

EP 2
� 1[t � � 1 ;t � ) (t) = � lim

� ! 0

@2

@�2
Ee� i�P � 1[t � � 1 ;t � ) (t)

=
1

2� 2

 

2 +
�


t
2

� 2

+ ( �p 0)2 + 2 �p 0

t
2

� 2�p 0

!

e� 
t
2 : (4.12)

So

E1[t � � 1 ;t � ) (t) = P f t � � 1 � t < t � g = L � 1
�

� Z 1

t =0
e� �t E1[t � � 1 ;t � ) (t) dt

�
=

e� 

2 t

2
: (4.13)

1b. One could be interested in when the passive component drops lower thanR; for
someR < 0. Thus the active component reads now

X n =
�

0; � n � R;
1; � n < R: (4.14)
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With M = 1 assumed and because

EzX 1
��
z=0 = P f X 1 = 0g + zP f X 1 = 1g

��
z=0 = P f X 1 = 0g = E1f X 1 =0 g = E1f � 1 � R g;

we have

 (0; �; � ) = E1f � 1 � R ge� i�� 1 e� � 1 � = E1f � 1 � R ge� i�� 1




 + �

;


 (0; �; 0) = E1f � 1 � R ge� i�� 1 =
Z 0

x = R
e� i�x 1

2
�e �x dx +

Z 1

x =0
e� i�x 1

2
�e � �x dx

=
1
2

�
� � i�

h
1 � e( � � i� )R

i
+

1
2

�
� + i�

:

Since
Ee� i�� 1 = Ee� i�� 1

�
1f � 1 � R g + 1f � 1 <R g

�
;

we have

Ee� i�� 1 =
1
2

�
� � i�

h
1 � e( � � i� )R

i
+

1
2

�
� + i�

+
Z R

x = �1
e� i�x 1

2
�e �x dx =

� 2

� 2 + � 2 :

Thus,


 (1; �; � ) = Ee� i�� 1 Ee� � 1 � = Ee� i�� 1




 + �
=

� 2

� 2 + � 2




 + �

and with � = � = 0 = # in (4.3); the functional
Z 1

t =0
e� �t E1[t � � 1 ;t � ) (t) dt

=
1
�

1
1 � 
 (0; 0; � )

[
 (1; 0; 0) � 
 (0; 0; 0) + 
 (0; 0; � ) � 
 (1; 0; � )] = e
�R 1

2� + 
e �R

and
E1[t � � 1 ;t � ) (t) = P f t � � 1 � t < t � g

= L � 1
�

� Z 1

t =0
e� �t E1[t � � 1 ;t � ) (t) dt

�
=

1
2

e
�

�

te

�R

2 � �R
�

(4.15)

which reduces to (4.13) whenR = 0 :

Case 2. Observation of process P i upon general M th drop.

2a. For the general threshold levelM (when the stock price dropsM th times), since the
active process incrementsX n are Bernoulli with p = 0 :5 due to the symmetric Laplace
PDF of � n de�ned in (4.4) above with zero shift and with

E1( t � � 1 ;t � ] (t) = � � (t)
��
z;v;u;# =1 ;�;’;�;# 0 ;# =0 ;

� �
� (� ) =

Z 1

t =0
e� �t E1[t � � 1 ;t � ) (t) dt

= DM � 1
x

1
�


 0 (0)
1

1 � 
 (x; 0; � )
� [
 (1; 0; 0) � 
 (x; 0; 0) + 
 (x; 0; � ) � 
 (1; 0; � )] ; (4.16)
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where

 (1; 0; � ) =




 + �

; 
 (x; 0; 0) =
1 + x

2
; 
 (x; 0; � ) = (

1 + x
2

)




 + �
:

Therefore,

� �
� (� ) = DM � 1

x
1
�

2 (
 + � )

 + 2 � � 
x

�
1 �

1 + x
2

+
1 + x

2




 + �
�




 + �

�

= DM � 1
x

1
�

2 (
 + � )

 + 2 � � 
x

�
1 � x

2
�


 + �

�

= DM � 1
x

�
1


 + 2 � � 
x

�
�D M � 2

x

�
1


 + 2 � � 
x

�
=

1
(
 + 2 �)

�




 + 2 �

� M � 1

=

 M � 1

(
 + 2 � )M :

So
E1( t � � 1 ;t � ] (t) = P f t � � 1 � t < t � g = L � 1

� f � � (� )g =
1
2

� 
t
2

� M � 1

(M � 1)!
e� 


2 t : (4.17)

2b. Next we obtain the result for E1( t � � 1 ;t � ] (t) for generalM and general shift parameter
a in our model such that

f � 1 (x) =
1
2

�e � � jx � aj ; x 2 R:

After some algebra we have


 (0; �; 0) = E1f � 1 � 0ge� i�� 1 =
Z a

x =0
e� i�x 1

2
�e � (x � a) dx +

Z 1

x = a
e� i�x 1

2
�e � � (x � a) dx

=
1
2

�
2�e � i�a � e� �a (� + i� )

� 2 + � 2 ;


 (0; �; � ) =
1
2

�
2�e � i�a � e� �a (� + i� )

� 2 + � 2




 + �
and


 (0; �; 0) =
1
2

�
2�e � i�a � e� �a (� + i� )

� 2 + � 2 ;

Ee� i�� 1 =
2� 2e� i�a

� 2 + � 2 �
1
2

�
� 2 + � 2

�
(� + i� ) e� �a + ( � � i� ) e�a �


 (1; �; � ) =
�

2� 2e� i�a

� 2 + � 2 �
1
2

�
� 2 + � 2

�
(� + i� ) e� �a + ( � � i� ) e�a � � 



 + �


 (x; �; � ) = ( p + qx)
�

2� 2e� i�a

� 2 + � 2 �
1
2

�
� 2 + � 2

�
(� + i� ) e� �a + ( � � i� ) e�a � � 



 + �
:

Hence
� �

� (� ) =
Z 1

t =0
e� �t E1( t � � 1 ;t � ] (t) dt

= DM � 1
x

1
�


 0 (0)
1

1 � 
 (x; 0; � )
� [
 (1; 0; 0) � 
 (x; 0; 0) + 
 (x; 0; � ) � 
 (1; 0; � )]

= DM � 1
x

�
1
�

(
 + � )

 + � � p
 (2 � cosh(�a )) � q
 (2 � cosh(�a )) x
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�
�
(2 � cosh(�a )) � (p + qx) (2 � cosh�a )) + ( p + qx) (2 � cosh(�a ))




 + �

� (2 � cosh(�a ))




 + �

��

=

 M � 1(q(2 � cosh(�a ))) M

(
 + � � p
 (2 � cosh(�a ))) M (4.18)

by the D-operator inversion formulas from [12].

E1[t � � 1 ;t � ) (t) = P f t � � 1 � t < t � g = L � 1
� f � �

� (� )g

= 
 M � 1(q(2 � cosh(�a ))) M tM � 1

(M � 1)!
e� ( 
 � p
 (2 � cosh( �a ))) t

= q(2 � cosh(�a ))
(
q (2 � cosh(�a )) t)M � 1

(M � 1)!
e� ( 
 � p
 (2 � cosh( �a ))) t : (4.19)

Notice that when a = 0 (in the symmetric case), (4.19) reduces to (4.17) and the
value of � is irrelevant given it is �nite.

5 Continuous Time Parameter Process on Interval [0; t � )

Now consider the functional of passive processP being observed over the period [0; t � ),
jointly with the active process A � , the �rst passage time t � , and the counting processes
N t and � t . The functional satis�es the formula:

^
� � (t) = EzN t e� i�� t e� i�P � vA � e� #t � 1[0;t � ) (t)

=
1X

k=0

EzN t e� i�� t e� i�P � vA � e� #t � 1[0;t � ) (t)1f � = kg:

Since
P �

j =0 E1[t � � j � 1 ;t � � j ) (t) = E1[0;t � ) (t);

^
� � (t) =

1X

k=0

kX

j =0

E [zA k � j � 1 vA k � j � 1 v
P k

i = k � j X i e� i�� k � j � 1 � i�P k � j � 1

� e� i�
P k

i = k � j � i e� #t k � j � 1 e� #
P k

i = k � j � i 1[t k � j � 1 ;t k � j ) (t)];

and applying the transformation Dp to
^
� � (t) we have:

Dp

�
^
� � (t)

�
(x) =

1X

k=0

kX

j =0

Fjk (t) xX k � j +1 + ��� + X k � 1

� E (vx)X k � j +1+ ��� + X k � 1 e� i� ( � k � j +1 + ��� + � k � 1 ) e� # (� k � j +1 + ��� +� k � 1 )

� E
�
1 � xX k

�
e� i�� k e� # � k vX k ;

where
Fjk (t) =

E (zvx)A k � j � 1 e� i ( � + � )Pk � j � 1 e� #t k � j � 1 1[t k � j � 1 ;t k � j ) (t) (vx)X k � j e� i� ( � k � j ) e� # (� k � j ) ;
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�
F (t) = EzA e� i�P e� #T 1[T;T +�) (t) vX e� i�� e� # �

under the assumptions that random vectorsA 
 P 
 T and X 
 � 
 � are independent.
Then

�
F � (� ) =

X

r

zr
X

m

vm
Z

p
e� i�p

Z

w
e� i�w

Z

s� 0
e� #s e� �s :

�
1
�

Z

�

�
e� #� � e� (#+ � ) �

�
PA 
 P 
 T 
 X 
 � 
 � (r; m; dp; ds; dw; d� )

and becauseA 
 P 
 T and X 
 � 
 � are independent,

=
1
�

E
h
zA e� i�P e� (#+ � )T

i
[
 (v; �; # ) � 
 (v; �; # + � )] :

Thus
F �

jk (� ) =
1
�


 0� 1 j � 1 �
� � � 1�


 k � j � 1 �
� 1 � � 13�

; (5.1)

(i )
X

k> 0

k � 1X

j =1

F �
jk (� ) =

1
�


 0	 �
X

k> 0


 k � 2
k � 1X

j =1

�
� 1




� j � 1

=
1
�


 0
	 �

(1 � 
 ) (1 � � 1)
; (5.2)

with notation 
 := 
 (zvx; � + �; # ) and 
 0 := 
 0 (zvx; � + �; # ), and further

� 1 = 
 (vx; �; # ) ; � 1
0 = 
 0 (vx; �; # ) ; � = 
 (v; �; # ) ;

� 3 = 
 (v; �; # + � ) ; � 13 = 
 (vx; �; # + � ) ; � 0 = 
 0 (v; �; # ) ; � 13
0 = 
 0 (vx; �; # + � ) ;

� � = � � � 3 � � 1 + � 13; � � =
	 �

1 � � 1 + � �; 	 � =
�
� � � 1� �

� 1 � � 13�
:

(ii ) Considerj = k = 0. A � 1 = t � 1 = P� 1 = 0 for t 2 [0; t0) and N t = A � 1 = � t = 0.

F00 (t) = E1[0;t 0 ) (t)e� #t 0 vA 0 e� i�P 0
�
1 � xA 0

�
:

F �
00 (� ) =

X

r

vr
Z

p
e� i�p

Z

s
e� #s

Z s

t =0
e� �t dtPA 0 
 P0 
 t 0 (r; dp; ds)

=
X

r

vr
Z

p
e� i�p

Z

s
e� #s 1

�

h
e� #s � e� (#+ � )s

i
PA 0 
 P0 
 t 0 (r; dp; ds) =

1
�

� � 0: (5.3)

(iii ) Consider j = 0 ; k > 0.

F0k (t) = EzN t vA k e� i�P k � 1 e� i�P k e� #t k 1[t k � 1 ;t k ) (t)
�
xA k � 1 � xA k

�

= E (zvx)A k � 1 e� i ( � + � )Pk � 1 e� #t k � 1 1[t k � 1 ;t k ) (t) vX k
�
1 � xX k

�
e� i�� k e� # � k :

F �
0k (� ) =

Z

t
e� �t

X

r

(zvx)r
Z

p
e� i ( � + � )p

X

m

vm
Z

q
e� i�q

Z

s
e� #s

�
Z

�
e� #� 1[s;s + � ) (t) dtPA k � 1 
 Pk � 1 
 Tk � 1 
 X k 
 � k 
 � k (r; dp; ds; m; dq; d�)

=
X

r

(zvx)r
Z

p
e� i ( � + � )p

X

m

vm
Z

q
e� i�q

Z

s
e� #s e� �s
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�
Z �

t � s=0
e� � ( t � s) dtPA k � 1 
 Pk � 1 
 Tk � 1 
 X k 
 � k 
 � k (r; dp; ds; m; dq; d�)

=
X

r

(zvx)r
Z

p
e� i ( � + � )p

X

m

vm
Z

q
e� i�q

Z

�

h
e� #� � e� (#+ � ) �

i

� PA k � 1 
 Pk � 1 
 X k 
 � k 
 � k (r; dp; m; dq; d� )

=
1
�


 k � 1 (zvx; � + �; # ) 
 0 (zvx; � + �; # )

� [
 (v; �; # ) � 
 (v; �; # + � ) � 
 (vx; �; # ) + 
 (vx; �; # + � )]

and X

k> 0

F �
0k (� ) =

1
�


 0 (zvx; � + �; # )
1

1 � 
 (zvx; � + �; # )
� [
 (v; �; # ) � 
 (v; �; # + � ) � 
 (vx; �; # ) + 
 (vx; �; # + � )] =

1
�


 0

1 � 

� �: (5.4)

(iv ) Consider j = k > 0. Fkk (t) = E1[0;t 0 ) (t) e� #t k vA k e� i�P k
�
xA k � 1 � xA k

�

= E1[0;t 0 ) (t) e� #t k (vx)A 0 e� i�P 0 e� #t 0 (vx)X 1 + ��� + X k � 1 e� i� ( � 1 + ��� + � k � 1 ) e� # (� 1 + ��� +� k � 1 )

�
�
vX k � (vx)X k

�
e� i�� k e� # � k

= E1[0;t 0 ) (t) e� #t k (vx)A 0 e� i�P 0 e� #t 0 
 k � 1 (vx; �; # ) [
 (v; �; # ) � 
 (vx; �; # )] :

So,
X

k> 0

F �
kk (� ) =

1
�

	 � 0

1 � � 1 : (5.5)

Altogether, from ( i ) through ( iv ) we have

^
� �

� (� ) =
Z 1

t =0
e� �t � � (t) dt = DM � 1

x

n X

k> 0

k � 1X

j =1

F �
jk (� ) + F �

00 (t) +
X

k> 0

F �
0k (� ) +

X

k> 0

F �
kk (� )

o

= DM � 1
x

n 1
�

�
� � 0 +


 0

1 � 

� �

�o
(5.6)

where � � = � � + 	 �
1� � 1 and � = � or � 0: The Laplace inverse of (5.6) will permit the

recovery of
^
� � (t).

6 Conclusion

In this paper we study a class of signed marked random measures (A ; �; T ) =P 1
n =0 (X n ; � n ) " t n with position dependent marking, on a �ltered probability space

(
 ; F ; F t ; P ). We target the critical behavior of the underlying stochastic process about
a �xed threshold in the context of time sensitivity. The latter means that all related
characteristics, such as �rst passage time and the location of the process upon crossing
the threshold relate to deterministic time t � 0. The major bene�t of this study is to
utilize stochastic control over the process that must traditionally be considered on time
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interval [0 ; t] ; t � 0. Using and further embellishing 
uctuation theory, we �nd explicitly
the functionals

� � (t) = EzN t e� i�� t e� i’P � � 1 uA � � 1 e� i�P � vA � e� # 0 t � � 1 � #t � 1[t � � 1 ;t � ) (t)

and
^
� � (t) = EzN t e� i�� t e� i�P � vA � e� #t � 1[0;t � ) (t)

with respect to time t 2 [� � � 1; � � ) and t 2 [0; � � ); respectively. These functionals describe
the status of underlying processesN t =

P 1
n =0 X n " t n [0; t] and � t =

P 1
n =0 � n " t n [0; t] ;

along with other characteristics like the values of these processes upon the crossing as
well as just prior to crossing the threshold.

We discuss various applications to the �nance (stock option trading) and risk theory.
A number of special cases and examples demonstrate analytic tractability of the results
obtained.
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Abstract: This paper presents a new approach to assure the decentralized opti-
mal control of interconnected nonlinear systems based on the decentralized state-
dependent riccati equation (SDRE). To remedy the problem of persistent stability
in other works, we based our approach on the foundations of the Lyapunov theory.
It allows developing a new su�cient condition to guarantee the global asymptotic
stability of the systems under study. We conducted a simulation of this new control
method on a numerical example. It demonstrated its e�ciency and the su�ciency of
the new stability conditions.
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1 Introduction

In recent years, the modern dynamical systems are getting more complex, highly intercon-
nected, and mutually interdependent. This change is caused either by physical attributes,
and/or a multitude of information and communication network constraints [1{3]. The
important dimension and complexity of these large-scale systems often require a hierar-
chical decentralized architecture to analyze and control these systems [4{10]. Since these
complex dynamic systems can be characterized by an interconnection between many sub-
systems, possible control strategies are generally based on a decentralized approach. The
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advantage of such method is to reduce the complexity and therefore make the implemen-
tation of the control law more feasible.

In fact, the decentralized control refers to a control design with local decisions. These
decisions are based only on local information of the subsystems. This method is given
considerable interest because it brings up signi�cant solutions for the traditional con-
trol approach limitations such as the implementation constraints, cost and reliability
considerations especially for large-scale systems.

Optimal control of nonlinear systems is one of the most challenging subjects in control
theory. Indeed, the classical problems of optimal control are based on the solution of
the Hamilton-Jacobi equation (HJE) [11, 12]. The solution to the HJE is a function of
the state of the nonlinear system which makes it possible to characterize the quadratic
optimal law of control sought under some hypotheses. However, in most cases it is
impossible to solve it analytically, and despite recent progress, unsolved problems still
exist and researchers often complain about the very limited applicability of contemporary
theories because of conditions imposed on the system. This has led to numerous methods
proposed in the literature for obtaining a suboptimal state feedback control law for the
general case of nonlinear dynamic systems [13,14].

The SDRE approach is one of the methods applied in the determination of a sub-
optimal quadratic control based on the solution of a state-dependent Riccati equation.
This strategy provides an e�cient algorithm for nonlinear state feedback control syn-
thesis while retaining the nonlinearities of the complex dynamic system, thanks to the

exibility of the state-dependent weighting matrices [15, 16]. This approach, proposed
by Pearson [17] and later extended by Wernli and Cook [18], was studied independently
by Mracek and Cloutier [19]. It should be pointed out that, although it is a relatively
simpli�ed and practical technique for controlling nonlinear systems, the SDRE approach
involves problems that deserve to be treated with great attention, in particular the sta-
bility problem of the system controller [20,21]. Elloumi and Benhadj Braiek [22,23] have
developed a su�cient condition for the stability of nonlinear system with optimal control
based on SDRE approach. In this paper, we extend this work to the case of large scale
interconnected systems. In this direction we carried out the synthesis of decentralized
optimal control law based on the SDRE technique. This approach aims to minimize a
performance criterion in order to compute decentralized optimal control gains when some
su�cient conditions developed using the Lyapunov theory are veri�ed.

The rest of the paper is organized as follows: the second section is devoted to the
description of the systems under study and the formulation of the problem. In the third
section, we present the decentralized optimal control law based on the SDRE approach.
The fourth section treats the stability of the system in question using the quadratic
Lyapunov function. The simulation results are set out in the �fth section to illustrate
the applicability of the developed approach. Finally, conclusions are drawn and future
scope of study is outlined.

2 Description of the System Under Study and Problem Formulation

A nonlinear system can be described by the interconnection of subsystems as follows:

(
_x i = f i ((x i ; x j ) ; ui (t) ; t) ; i 6= j;

yi = hi (x i ) ; i = 1 ; :::; n; j = 1 ; :::; n;
(1)
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where x i (t) 2 Rn i , ui 2 Rm i and yi 2 Rpi are, respectively, the state, the control and
the output of the i th subsystem.

f i (x i ; x j ) and hi (x i ) are nonlinear functions of the state. Through the state-
dependent coe�cient (SDC) factorization, system designers can represent the nonlinear
equations of the system under consideration as linear structures with state-dependent
coe�cients. Thus, the following procedure is similar to the optimal linear control (LQR)
method, except that all matrices may depend on the states. Based on this concept, the
state space equation for the nonlinear interconnected subsystem can be expressed as a
linear-like state-space equation using direct SDC factorization as:

8
<

:
_x i (t) = A i (x i ) x i (t) + B i (x i ) ui (t) +

nP

j =1 ;j 6= i
H ij (x i ; x j )x j (t) ;

yi (t) = Ci (x i ) x i (t) ; i = 1 ; : : : ; n;
(2)

whereA i (x i ) is the characteristic matrix that depends on the state of the i th subsystem,
B i (x i ) is the control vector of the i th subsystem,Ci (x i ) is the state-dependent observa-
tion matrix of the i th subsystem andH ij (x i ; x j ) is the state -dependent interconnection
matrix between the i th and the j th subsystem.

The global interconnected system can be de�ned by the following compact form:
(

_x = A (x) x + B (x) u + H (x) x;

y = C (x) x;
(3)

with
xT =

�
xT

1 ; xT
2 ; ::: ; xT

n
�

being the state vector of the overall system;x 2 Rn ; n =
nP

i =1
ni ;

uT =
�
uT

1 ; uT
2 ; ::: ; uT

n
�

being the control vector of the overall system ,
A (x) = diag [A i (x i )] ; B (x) = diag [B i (x i )] and C (x) = diag [Ci (x i )].
H (x) is the global interconnection matrix given as follows:

H (x) =

0

BBB@

0 H12 (x) � � � H1n (x)
H21 (x) 0 � � � H2n (x)

...
...

. . .
...

Hn 1 (x) � � � � � � 0

1

CCCA
: (4)

Our contribution consists in the application of a decentralized optimal control via the
SDRE approach to nonlinear interconnected systems. We based on solving the decentral-
ized state-dependent Riccati equations to obtain the local control gains. The synthesis
of a decentralized control for the system in question is detailed in the following section.

3 Decentralized State-Dependent Riccati Regulation Theory

The decentralized state-dependent Riccati equation technique is a nonlinear control de-
sign method for the direct construction of nonlinear sub-optimal feedback controllers.
The determination of such decentralized control is based on considering the decoupled
subsystem, expressed as follows:

(
_x i = A i (x i ) x i + B i (x i ) ui ; i = 1 ; : : : ; n

yi = Ci (x i ) x i :
(5)
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Note that A i (x i ) is not a unique matrix because there could be many possible choices in
the direct (SDC) factorization. For this subsystem, the SDRE technique �nds an input
ui (t) that approximately minimizes the following performance criterion:

J i =
1
2

1Z

0

�
xT

i Qi (x i ) x i + uT
i Ri (x i ) ui

�
dt; (6)

where Qi (x i ) 2 R(n i � n i ) and Ri (x i ) 2 R(m i � m i ) are symmetric, positive de�nite matri-
ces. xT

i Qi (x i ) x i is a measure of the control accuracy anduT
i Ri (x i ) ui is a measure of

the control e�ort.

3.1 Existence of a control solution

The SDRE feedback control provides a similar approach as the algebraic Riccati equation
(ARE) for LQR problems to the nonlinear regulation problem for the decoupled nonlinear
subsystem (5) with cost functional (6). Indeed, once a SDC form has been found, the
SDRE approach is reduced to solving a LQR problem at each sampling instant.

To guarantee the existence of such controller, the conditions in the following de�ni-
tions must be satis�ed [19].

� De�nition 3.1 : A i (x i ) is a controllable (stabilizable) parametrization of the non-
linear subsystem for a given region if [A i (x i ) ; B i (x i )] are pointwise controllable
(stabilizable) in the linear sense for allx i in that region.

� De�nition 3.2 : A i (x i ) is an observable (detectable) parametrization of the non-
linear subsystem for a given region if [Ci (x i ) ; A i (x i )] are pointwise observable
(detectable) in the linear sense for allx i in that region.

Given these standing assumption, the state feedback decentralized controller is obtained
in the following form:

ui (x i ) = � K i (x i ) x i (7)

and the state feedback decentralized gain for minimizing (6) is

K i (x i ) = R� 1
i (x i ) B T

i (x i ) Pi (x i ) ; (8)

wherePi (x i ) is the unique symmetric positive-de�nite solution of the decentralized state
dependent Riccati equation (SDRE)

AT
i (x i ) Pi (x i ) + Pi (x i ) A i (x i )

� Pi (x i ) B i (x i ) R� 1
i (x i ) B T

i (x i ) Pi (x i ) + CT
i (x i ) Qi (x i ) Ci (x i ) = 0 :

(9)

Remark 3.1: It is important to note that the existence of the decentralized
optimal control for a particular parametrization of the subsystem is not guaranteed.
Furthermore, there may be an in�nite number of parametrizations of the subsystem,
therefore the choice of parametrization is very important. The other factor which may
determine the existence of a solution is theQi (x i ) and Ri (x i ) weighting matrices in the
state dependent Riccati equation (9).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1) (2019) 55{67 59

Remark 3.2. The greatest advantage of the state-dependent Riccati equation ap-
proach is that physical intuition is always present and the designer can directly control
the performance by tuning the weighting matrices Qi (x i ) and Ri (x i ). In other words,
via the SDRE, the design 
exibility of LQR formulation is directly translated to control
the nonlinear interconnected systems. Moreover,Qi (x i ) and Ri (x i ) are not only allowed
to be constant, but can also vary as functions of states. In this way, di�erent modes of
behavior can be imposed in di�erent regions of the state-space [21].

3.2 Optimality of the SDRE regulation

As x i ! 0, A i (x i ) ! @fi (0)/ @xi which implies that Pi (x i ) approaches the linear ARE
at the origin. Furthermore, the SDRE control solution asymptotically approaches the
optimal control as x i ! 0 and away from the origin the SDRE control is arbitrarily close
to the optimal feedback. Hence the SDRE approach yields an asymptotically optimal
feedback solution.

Let the Hamiltonian be de�ned by the following expression:

H i (x i ; ui ; � i ) = 1
2

�
xT

i Qi (x i ) x i + uT
i Ri (x i ) ui

�
+ � T

i [A i (x i ) x i + B i (x i ) ui ] : (10)

Mracek and Cloutier developed the necessary conditions for the optimality of a general
nonlinear regulator, that is the regulator governed by (5) and (6), and then extend these
results to determine the optimality of the SDRE approach [19].

Theorem 1. For the general multivariable nonlinear SDRE control case (i.e.,n > 1),
the SDRE nonlinear feedback solution and its associated state satisfy the �rst neces-
sary condition for optimality @Hi / @ui = 0 of the nonlinear optimal regulator prob-
lem de�ned by (5) and (6). Additionally, the second necessary condition for optimality
_� i = � @Hi

.
@xi is asymptotically satis�ed at a quadratic rate.

Proof. Pontryagin’S maximum principle states that necessary conditions for opti-
mality are

@Hi

@ui
= 0 ; _� i = �

@Hi

@xi
; _x i =

@Hi

@�i
; (11)

where H i is the Hamiltonian. Using (7) yields

@Hi

@ui
= B T

i (x i ) [� i � Pi (x i ) x i ] (12)

and � i , the adjoint vector for the system, satis�es

� i = Pi (x i ) x i ; (13)

and the �rst optimality condition (12) is satis�ed identically for the nonlinear regulator
problem. With the Hamiltonian de�ned in (10), the second necessary condition becomes

_� i = � xT
i

�
@Ai (x i )

@xi

� T

� i � uT
i

�
@Bi (x i )

@xi

� T

� i � Qi (x i ) x i

�
1
2

xT
i

@Qi (x i )
@xi

x i �
1
2

uT
i

@Ri (x i )
@xi

ui :

(14)
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Taking the time derivative of (13) yields

_� i = _Pi (x i ) x i + Pi (x i ) _x i : (15)

Substituting this result, along with (5), (7) and (14) into (9) leads to the SDRE necessary
condition for optimality

_Pi (x i ) x i +
1
2

xT
i Pi (x i ) B i (x i ) R� 1

i (x i )
@Ri (x i )

@xi
R� 1

i (x i ) B T
i (x i ) Pi (x i ) x i

+ xT
i

�
@Ai (x i )

@xi

� T
Pi (x i ) x i +

1
2

xT
i

@Qi (x i )
@xi

x i

� xT
i Pi (x i ) B i (x i ) R� 1

i (x i )
�

@Bi (x i )
@xi

� T

Pi (x i ) x i = 0 :

(16)

Hence, whenever (16) is satis�ed, the closed-loop SDRE solution satis�es all the �rst-
order necessary conditions for an extremum of the cost functional.

4 Stability Study

In this section, we study the asymptotic stability of interconnected system based on the
Lyapunov theory [10]. We begin with the stability study of each subsystem, thereafter
we deal with the development of a su�cient condition to assure the asymptotic stability
of the overall interconnected nonlinear system.

4.1 Stability of a decoupled nonlinear subsystem

Stability of SDRE systems is still an open problem. Local stability results are presented
by Cloutier, D’souza and Mracek in the case when the closed-loop coe�cient matrix is
assumed to have a special structure.

The authors in [22,23] presented the optimal control solution for nonlinear subsystem
using the SDRE method. The asymptotic stability of decoupled subsystem (5) with
SDRE feedback control is guaranteed provided that

M i (x i ) = � CT
i (x i ) Qi (x i ) Ci (x i ) � Pi (x i ) B i (x i ) R � 1

i (x i ) B T
i (x i ) Pi (x i )

�
�
I n 
 xT

i Pi (x i ) B i (x i ) R � 1
i (x i ) B T

i (x i )
� @Pi (x i )

@xi
+

�
I n 
 (xT

i AT
i (x i )

� @Pi (x i )
@xi

(17)

is negative de�nite for all x i 2 Rn i .
Now, to guarantee the asymptotic stability of the overall interconnected system (3),

we carry out a stability study of interconnected system (2) with the decentralized control
(7) as depicted in the following subsection.

4.2 Stability of a global interconnected system

In this paragraph, we present our contribution which consists in developing a su�cient
condition to assure the asymptotic stability of the overall interconnected nonlinear system
(3) with the decentralized control law (7). This study is based on the quadratic Lyapunov
function

V (x) = xT P (x) x; (18)
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where P (x) = diag [Pi (x i )].
The global asymptotic stability of the equilibrium state ( x = 0) of system (3) is

ensured when the time derivative _V (x) of V (x) is negative de�ne for all x 2 Rn ,

_V (x) = _xT P (x) x + xT dP (x)
dt

x + xT P (x) _x: (19)

The use of expression (19) and the following equality:

dP (x)
dt

=
�
I n 
 _xT � @P(x)

@x
(20)

yields

_V (x) = xT �
AT (x) P (x) + P (x) A (x)

�
x + xT �

H T (x) P (x) + P (x) H (x)
�

x

� 2xT �
P (x) B (x) R� 1 (x) B T (x) P (x)

�
x + xT �

I n 
 _xT � @P(x)
@x

x;
(21)

then

_V (x) = xT �
AT (x) P (x) + H T (x) P (x)

+ P (x) A (x) + P (x) H (x) � 2P (x) B (x) R� 1 (x) B T (x) P (x)
�

x

+ xT
� �

I n 

�
xT AT (x) + xT H T (x) � xT P (x) B (x) R� 1 (x) B T (x)

�� @P(x)
@x

�
;

(22)

where 
 is the Kronecker product notation whose de�nition and properties are detailed
in the appendix. Using the state-dependent Riccati equation (9), expression (22) can be
simpli�ed as follows:

_V (x) = xT �
� CT (x) Q (x) C (x) � P (x) L (x) P (x)

�
x

+ xT �
H T (x) P (x) + P (x) H (x)

�
x + xT

�
�
I n 


�
xT AT (x) + xT H T (x)

�� @P(x)
@x

�
x

� xT

�
�
I n 


�
xT P (x) B (x) R � 1 (x) B T (x)

�� @P(x)
@x

�
x;

(23)

where L (x) = B (x) R� 1 (x) B T (x) ; 8 x 2 Rn .
To ensure the asymptotic stability of the overall systems (3) with the decentralized

optimal control law (7), _V (x) should be negative de�nite, which is equivalent to M (x)
being negative de�nite, with

M (x) = � CT (x) Q (x) C (x) � P (x) B (x) R� 1 (x) B T (x) P (x)

�
�
I n 
 xT P (x) B (x) R� 1 (x) B T (x)

� @P(x)
@x

+
�
I n 
 xT AT (x) + xT H T (x)

� @P(x)
@x

+ P (x) H (x) + H T (x) P (x) :

(24)
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We need to simplify the manipulation of matrix M (x) by expressing@P(x)/ @xin terms
of P (x) > 0; 8 x 2 Rn . When deriving the SDRE (9) with respect to the state vector
x 2 Rn , we get the following expression:

@P(x)
@x

A (x) + ( I n 
 P (x))
@A(x)

@x
+

@AT (x)
@x

P (x) +
�

I n 
 AT (x)
� @P(x)

@x
+

@� ( x)
@x

�
@P(x)

@x
L (x) P (x) � (I n 
 P (x) L (x))

@P(x)
@x

� (I n 
 P (x))
@L(x)

@x
P (x) = 0

(25)

with � ( x) = CT (x) Q (x) C (x), which gives
�
I n 
 AT (x) � I n 
 (P (x) L (x))

� @P(x)
@x

+
@P(x)

@x
[A (x) � L (x) P (x)] = W (x) (26)

with

W (x) = ( I n 
 P (x))
@L(x)

@x
P (x) � (I n 
 P (x))

@A(x)
@x

�
@AT (x)

@x
P (x) �

@� ( x)
@x

: (27)

To simplify the partial derivative expression @P(x)/ @xwe use the functionsV ec and
mat and their properties de�ned in this paper appendix; so (26) becomes

V ec
�

@P(x)
@x

�
=

�
I n 


�
I n 
 AT (x)+ I n 
 P (x) L (x)

�

+ ( A (x) � L (x) P (x)) 
 I n ]� 1V ec(W (x))

(28)

which leads to
@P(x)

@x
= mat (n 2 ;n )

��
I n 


�
I n 
 A(x) + I n 
 AT (x)

� 2 (I n 
 L (x) P (x))]) � 1V ec(W (x))
i

:

(29)

Therefore, we can state the following result.

Theorem 2. The overall system (3) is globally asymptotically stabilizable by the
optimal decentralized control law (7), with the cost function (6) if the matrix M (x)
de�ned by (24) is negative de�nite for all x 2 Rn .

5 Simulation Results

In this section we will illustrate the performance of the decentralized SDRE approach,
discussed in the previous paragraph, by a numerical example. We consider a nonlinear
interconnected system de�ned by the following two subsystems of state equations:

8
>>>>>>>><

>>>>>>>>:

P
1:

8
<

:

_x11 = � 2x11 + x11x12;
_x12 = x13 + x12x11 + x2

22x21;
_x13 = u1+ x2

13

�
x12x11 + x2

11

�
+ x22x21;

P
2:

8
<

:

_x21 = � x21 + x2
22;

_x22 = x6 +
�
x2

12x11 + x2
22x21

�
;

_x23 = u2+ x2
23

�
x12x2

11 + x22x2
21

�
+ x2

23x2
21;

(30)

with
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� x1 = [ x11 x12 x13]T ; x2 = [ x21 x22 x23]T being the state vectors of subsystems
P

1
and

P
2,

� u =
�

u1 u2
� T being the inputs of the interconnected nonlinear system.

We solve equation (9) with

Q1 (x1) = Q2 (x2) =

0

@
1 0 0
0 1 0
0 0 1

1

A ; (31)

R1 (x1) = R2 (x2) = 0 :1: (32)
For interconnected nonlinear systems (30), we choose the following (SDC) parametriza-
tion:

A1 (x1) =

0

@
� 2 x11 0
x12 0 1

x2
13x12 0 x13x2

11

1

A ; A2 (x2) =

0

@
� 1 x22 0

0 x22x21 1
x2

23x22x21 + x2
23x2

21 0 0

1

A :

The control matrices are given as follows:

B1 (x1) = B2 (x2) =

0

@
0
0
1

1

A :

The interconnection matrices between subsystem 1 and subsystem 2 are expressed as
follows:

H12 (x2) =

0

@
0 0 0

x2
22 0 0

x22 0 0

1

A ; H21 (x1; x2) =

0

@
0 0 0

x2
12 0 0

x2
23x12 0 0

1

A :

The controllability matrices, respectively, for subsystem 1 and subsystem 2 are given as
follows:

� 1 (x1) =
�
B1(x1) A1(x1) B1(x1) A2

1(x1) B1(x1)
�

=

0

@
0 0 x11

0 1 x13x2
11

1 x13x2
11 x2

13x4
11

1

A ;
(33)

� 2 (x2) =
�
B2(x2) A2(x2) B2(x2) A2

2 (x2) B2 (x2)
�

=

0

@
0 0 x22

0 1 x22x21

1 0 0

1

A :
(34)

� 1 (x1) ; � 2 (x2) have a full order rank for all x i , which can justify the good choice of
(SDC) parametrization. Now, we referring to equation (9), we can write the following
decentralized state-dependent Riccati equations:

8
>>>><

>>>>:

P1 (x1) A1 (x1) + AT
1 (x1) P1 (x1) + Q1 (x1)

� P1 (x1) B1 (x1) R� 1
1 (x1) B T

1 (x1) P1 (x1) = 0 ;

P2 (x2) A2 (x2) + AT
2 (x2) P2 (x2) + Q2 (x2)

� P2 (x2) B2 (x2) R� 1
2 (x2) B T

2 (x2) P2 (x2) = 0 :

(35)
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The decentralized optimal control are expressed as follows:

u1 (x1) = � 0:1
�

0 0 1
�

P1 (x1)

0

@
x11

x12

x13

1

A (36)

and

u2 (x2) = � 0:1
�

0 0 1
�

P2 (x2)

0

@
x21

x22

x23

1

A : (37)

� Numerical simulation:

Figure 1 (respectively Figure 2) shows the behavior of the �rst states vari-
ables x11, x12 and x13, (respectively, the second states variables x21, x21

and x23 of interconnected system (30) controlled by the decentralized con-
trol laws illustrated in Figure 3. Initial conditions were taken as follows:
x11 (0) = x13 (0) = x21 (0) = x22 (0) = 0 :1; x12 (0) = x23 (0) = 0.

0 1 2 3 4 5 6 7 8 9 10
•0.02

0

0.02

0.04

0.06

0.08

0.1

Ti me

State variable of subsystem 1

 

 

x
11

x
12

x
13

Figure 1 : Closed loop reponses ofx1 .

0 2 4 6 8 10

•0.06

•0.04

•0.02

0

0.02

0.04

0.06

0.08

0.1

Ti me

Statesvariables of subsystem 2

 

 

x
21

x
22

x
23

Figure 2 : Closed loop reponses ofx2 .



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1) (2019) 55{67 65

0 1 2 3 4 5 6 7 8 9 10
 0.5

 0.4

 0.3

 0.2

 0.1

0

0.1

Ti me

 

 

u
1
(x

1
) u

2
(x

2
)

Figure 3 : Decentralized control signals evolution.

We can note a satisfactory stabilization of state variables which converge into the
origin point con�rming the asymptotic stability of the controlled interconnected system
using the decentralized SDRE approach.

6 Conclusion

In this paper, we have considered the method for feedback control of nonlinear intercon-
nected systems using the decentralized state-dependent Riccati equation. This decen-
tralized optimal approach is based on the solution of algebraic Riccati equation. Our
�rst result was to determine and prove su�cient conditions that guarantee the global
asymptotic stability of the overall interconnected system. We have then run some nu-
merical simulations on a third order system. As expected, these simulations have shown
the aptitude of the SDRE approach to be implemented easily and to give satisfactory
result in terms of performance for a wide class of nonlinear interconnected systems. One
of the possible perspectives that we can consider as a continuity of this research would be
to investigate an optimal control for interconnected nonlinear systems via approximate
methods.

Appendix

We recall hereafter the useful mathematical notations and properties concerning the
Kronecker tensor product used in this paper.

A.1. Kronecker product:

The Kronecker product of A (p � q) and B (r � s) denoted by A 
 B is the (pr � qs)
matrix de�ned by [24,25]

A 
 B =

0

B@

a11B : : : a1qB
...

. . .
...

ap1B � � � apqB

1

CA : (38)

A.2. Vec-function:
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Vec-function is a linear algebra tool which is important in the multidimensional
regression matrix representation. This operator is de�ned as follows [24,25] :

A = ( A1 A2 : : : An ) ; V ec(A) =

0

BBB@

A1

A2
...
An

1

CCCA
; (39)

where 8 i 2 f 1; : : : ; ng ; A i is a vector of Rm .
We recall the following useful rule of this function, given as follows:

V ec(E:A:C ) = ( CT 
 E )V ec(A): (40)

A.3. Mat function :

An important matrix-valued linear function of a vector, denoted by mat (n;m ) ( : ),
was de�ned in [24, 25] as follows: ifV is a vector of dimensionp = n:m; then
M = mat (n;m ) (V ) is the (n � m) matrix verifying V = V ec(M ).
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Abstract: In this paper, a new 3D chaotic system is introduced. Basic dynamical
characteristics and properties of this new chaotic system are studied, namely the
equilibrium points and their stability, the Lyapunov exponent, Lyapunov exponent
spectrum and the Kaplan-Yorke dimension. Also, we derive new control results via
the adaptive control method based on Lyapunov stability theory and the adaptive
control theory of this new chaotic system with unknown parameters. The results are
validated by numerical simulation using Matlab.

Keywords: chaotic system; strange attractor; Lyapunov exponent; Lyapunov stabil-
ity theory; adaptive control; synchronization.

Mathematics Subject Classi�cation (2010): 37B55, 34C28, 34D08, 37B25,
37D45, 93C40, 93D05.

1 Introduction

In mathematics and physics, chaos theory deals with the behavior of certain nonlinear
dynamical systems that under certain conditions exhibit a phenomenon known as chaos,
which is characterised by a sensitivity to initial conditions [1]. Chaos as an important
nonlinear phenomenon has been studied in mathematics, engineering and many other
disciplines. Since Lorenz discovered a three-dimensional autonomous chaotic system [2],
many other systems have been introduced and analysed, we mention the Chen, R•ossler
and L•u systems [3,4,5]. After that hyperchaotic systems were constructed using many
di�erent methods. The synchronization of two chaotic systems was introduced in the
work of Pecora and Carroll [6], then many di�erent methodologies have been developed
for synchronization of chaotic systems such as the OGY method [7], active contol method
[8], sliding mode control [9], backstepping control [10], function projective method [11],
adaptive control [12-14], etc.

In this work, a new chaotic system is introduced and we derive new control results
via the adaptive control method based on Lyapunov stability theory and the adaptive
control theory for this new chaotic system with unknown parameters. The results are
validated by numerical simulation using Matlab.
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1.1 Description of the novel chaotic system

In this research work, we propose a new 3D chaotic system with two quadratic nonlin-
earities, which is given in the system form as

8
><

>:

dx 1
dt = a(x2 � x1);

dx 2
dt = cx1 + x1x3;

dx 3
dt = � x1x2 + b(x1 � x3);

(1)

where a; b; care positive reals parameters. In the �rst part of this paper, we shall show
that the system (1) is chaotic when the system parametersa; b and c take the values:

a = 13; b = 2 :5; c = 50: (2)

1.2 Basic properties

In this section, some basic properties of system (1) are given. We start with the equili-
brum points of the system and check their stability at the initial values of the parameters
a; b; c:

1.3 Equilibrum points

Putting equations of system (1) equal to zero, i.e.

a(x2 � x1) = 0 ; cx1 + x1x3 = 0 ; � x1x2 + b(x1 � x3) = 0 ; (3)

gives the three equilibrium points

p0 = (0 ; 0; 0) ; p1;2 =
�

1
2

b�
1
2

p
4bc+ b2;

1
2

b�
1
2

p
4bc+ b2; � c

�
: (4)

1.4 Stability

In order to check the stability of the equilibrum points we derive the Jacobian matrix at
a point p(x; y; z) of the system (1)

J (p) =

0

@
� a a 0

c + z 0 x
b� y � x � b

1

A : (5)

For p0, we obtain J (p0) =

0

@
� a a 0
c 0 0
b 0 � b

1

A , with the characteristic polynomial equation

� 3 + ( a + b) � 2 + ( ab� ac) � � abc= 0 ; which has three eigenvalues

� 1 = 19: 811; � 2 = � 2:5; � 3 = � 32:811: (6)

Since all the eigenvalues are real, the Hartma-Grobman theorem implies thatp0 is a
saddle point which is unstable according to the Lyapunov theorem of stability.

By the same method, the eigenvalues of the Jacobian atp1 are:

� 1 = 0 :993 85� 12: 895i; � 2 = 0 :993 85 + 12: 895i; � 3 = � 17:488: (7)
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The eigenvalues of the Jacobian atp2 are:

� 1 = 0 :763 22� 14: 634i; � 2 = 0 :763 22 + 14: 634i; � 3 = � 17: 026: (8)

Then p1 and p2 are two unstable saddle-foci because none of the eigenvalues have zero
real part and � 1; � 2 are complex.

1.5 Dissipativity

A dissipative dynamical system satis�es the condition

r :V =
@

:
x

@x
+

@
:
y

@y
+

@
:
z

@z
< 0: (9)

In the case of the system (1), we have

r :V = � (a + b): (10)

For a = 13; b = 2 :5; c = 50 we obtain r :V = � 15: 5 < 0; and threfore dissipativity
condition holds for this system. Also,

dV
dt

= e� (a+ b) = 1 : 855 4� 10� 7: (11)

Then the volume of the attractor decreases by a factor of 0:00000018554:

2 Lyapunov Exponents and Kaplan-Yorke Dimension

Lyapunov exponents are used to measure the exponential rates of divergence and con-
vergence of nearby trajectoiries, which is an important characterstic to judge whether
the system is chaotic or not. The existence of at least one positive Lyapunov exponent
implies that the system is chaotic.

For the chosen parameter values (2); the Lyapunov exponents of the novel chaotic
system (1) are obtained using Matlab as:

L 1 = 1 :4375; L 2 = � 0:000166417; L 3 = � 16:9373: (12)

The Lyapunov exponents spectrum is shown in Fig. 1.
Since the spectrum of Lyapunov exponents (13) has a positive termL 1; it follows

that the novel 3-D chaotic system (1) is chaotic. The Kaplan-Yorke dimension of system
(1) is calculated as

DKL = 2 +
L 1 + L 2

jL 3j
= 2 :0849: (13)

3 Adaptive Control of the Novel 3-D Chaotic System

This section describes an adaptive design of a globally stabilizing feedback controller for
the chaotic system (1) with unknown parameters. The design is carried out using the
adaptive control theory and Lyapunov stability theory.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1) (2019) 68{78 71

0 200 400 600 800 1000
-20

-15

-10

-5

0

5

Time (sec)

Ly
ap

un
ov

 E
xp

on
en

ts

Figure 1 : Lyapunov exponents spectrum.

-90

-80

-70

-60

-50

-40

-30

-20

-10

-30 -20 -10  0  10  20  30  40

x

z

Figure 2 : Projection of the strange attractor of the system (1) into the (z; x)-plane.

A controlled chaotic system of (1) is given by
8
><

>:

dx 1
dt = a(x2 � x1) + u1;

dx 2
dt = cx1 + x1x3 + u2;

dx 3
dt = � x1x2 + b(x1 � x3) + u3;

(14)

where a; b; c are unknown constant parameters, andu1; u2; u3 are adaptive controllers
to be found using the statesx1; x2; x3 and estimatesa1 (t) ; b1 (t) ; c1 (t) of the unknown
parametersa; b; c, respectively.

We take the adaptive control law de�ned by
8
<

:

u1 = � a1 (t) (x2 � x1) � k1x1;
u2 = � c1 (t) x1 � x1x3 � k1x2;
u3 = x1x2 � b1 (t) (x1 � x3) � k3x3;

(15)
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where k1; k2; k3 are positive gain constants.
Substituting (15) into (14), we obtain the closed-loop control system as

8
<

:

dx 1
dt = ( a � a1 (t)) ( x2 � x1) � k1x1;

dx 2
dt = ( c � c1 (t)) x1 � k2x2;

dx 3
dt = ( b� b1 (t)) ( x1 � x3) � k3x3:

(16)

We de�ne the parameter estimation errors as

ea (t) = a � a1 (t) ; ec (t) = c � c1 (t) ; eb (t) = b� b1 (t) : (17)

By using (17), we rewrite the closed-loop system (16) as
8
<

:

dx 1
dt = ea (t) (x2 � x1) � k1x1;

dx 2
dt = ec (t) x1 � k2x2;

dx 3
dt = eb (t) (x1 � x3) � k3x3:

(18)

Di�erentiating (17) with respect to t, we obtain
8
><

>:

dea ( t )
dt = � da1 ( t )

dt ;
dec ( t )

dt = � dc1 ( t )
dt ;

deb ( t )
dt = � db1 ( t )

dt :
(19)

To �nd an update law for the parameter estimates, we shall use the Lyapunov stability
theory. We consider the quadratic Lyapunov function given by

V (x1; x2; x3; ea ; eb; ec) =
1
2

�
x2

1 + x2
2 + x2

3 + e2
a + e2

b + e2
c

�
: (20)

which is a positive de�nite function on R6.
Di�erentiating V along the trajectories of the systems (18) and (19), we obtain the

following:

_V = �
3X

i =1

ki x2
i + ea

�
x1x2 � x2

1 �
da1 (t)

dt

�
+ eb

�
x1x3 � x2

3 �
db1 (t)

dt

�
+ ec

�
x1x2 �

dc1 (t)
dt

�
:

(21)
In view of (21), we take the parameter update law as follows

8
>><

>>:

da1 ( t )
dt = x1x2 � x2

1;
db1 ( t )

dt = x1x3 � x2
3;

dc1 ( t )
dt = x1x2:

(22)

Theorem 3.1 The 3-D novel chaotic system (14) with unknown parameters is glob-
ally and exponentially stabilized by the adaptive feedback control law (15) and the param-
eter update law (22), wherek1; k2; k3 are positive constants3.1.

Proof. Substituting the parameter update law (21) into (20), we obtain the time
derivative of V as:

_V = � k1x2
1 � k2x2

2 � k3x2
3; (23)

which is a negative de�nite function on R6. By the direct method of Lyapunov [15], it
follows that x1; x2; x3; ea ; eb; ec are globally exponentially stable. 2



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1) (2019) 68{78 73

3.1 Numerical simulations

We used the classical fourth-order Runge-Kutta method with the step sizeh = 10 � 8 to
solve the system of di�erential equations (14) and (22), when the adaptive control law
(15) is applied.

The parameter values of the novel 3-D chaotic system (14) are chosen as in the chaotic
case (2). The positive gain constants are taken aski = 3, for i = 1 ; 2; 3.

The initial conditions of the novel chaotic system (14) are chosen asx1(0) =
6:4; x2(0) = � 4:7; x3(0) = 2 :5: Furthermore, as initial conditions of the parameter esti-
mates of the unknown parameters, we have chosen:a1(0) = 2 :5; b1(0) = 5 :3; c1(0) = 4 :8:

In Figs. 3-4, the exponential convergence of the controlled statesx1(t); x2(t); x3(t)
and the time-history of the parameter estimatesa1(t); b1(t); c1(t) are depicted, when the
adaptive control law (15) and parameter update law (22) are implemented.
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Figure 3 : Exponential convergence of the controlled states x1(t); x2(t); x3(t):

4 Adaptive Synchronization of the Identical Novel 3-D Chaotic Systems

In this section, we derive an adaptive control law for globally and exponentially synchro-
nizing the identical novel 3-D chaotic systems with unknown system parameters. Thus,
the master system is given by the novel chaotic system dynamics

8
><

>:

dx 1
dt = a(x2 � x1);

dx 2
dt = cx1 + x1x3;

dx 3
dt = � x1x2 + b(x1 � x3):

(24)

Also, the slave system is given by the novel chaotic system dynamics
8
><

>:

dy1
dt = a(y2 � y1) + u1;

dy2
dt = cy1 + y1y3 + u2;

dy3
dt = � y1y2 + b(y1 � y3) + u3:

(25)
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Figure 4 : Time-history of the parameter estimates a1(t); b1(t); c1(t):

In (24) and (25), the system parametersa; b; c are unknown and the design goal is
to �nd an adaptive feedback controls u1; u2; u3 using the statesx1; x2; x3 and estimates
a1 (t) ; b1 (t) ; c1 (t) of the unknown parameters a; b; c, respectively. The synchronization
error between the novel chaotic systems (24) and (25) is de�ned as

e1 = y1 � x1; e2 = y2 � x2; e3 = y3 � x3: (26)

Then (26) implies 8
<

:

_e1 = _y1 � _x1;
_e2 = _y2 � _x2;
_e3 = _y3 � _x3:

(27)

Thus, the synchronization error dynamics is obtained as
8
<

:

_e1 = a(e2 � e1) + u1;
_e2 = ce1 + y1y3 � x1x3 + u2;
_e3 = b(e1 � e3) � y1y2 + x1x2 + u3:

(28)

We take the adaptive control law de�ned by
8
<

:

u1 = � a1(e2 � e1) � k1e1;
u2 = � c1e1 � y1y3 + x1x3 � k2e2;
u3 = � b1(e1 � e3) + y1y2 � x1x2 � k3e3:

(29)

where k1; k2; k3 are positive gain constants.
Substituting (29) into (28), we obtain the closed-loop error dynamics as

8
<

:

_e1 = ( a � a1)(e2 � e1) � k1e1;
_e2 = ( c � c1)e1 � k2e2;
_e3 = ( b� b1)(e1 � e3) � k3e3:

(30)
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The parameter estimation errors are de�ned as

ea (t) = a � a1 (t) ; ec (t) = c � c1 (t) ; eb (t) = b� b1 (t) : (31)

Di�erentiating (31) with respect to t, we obtain

8
><

>:

dea ( t )
dt = � da1 ( t )

dt ;
dec ( t )

dt = � dc1 ( t )
dt ;

deb ( t )
dt = � db1 ( t )

dt :
(32)

By using (31), we rewrite the closed-loop system (30) as

8
<

:

_e1 = ea(e2 � e1) � k1e1;
_e2 = ece1 � k2e2;
_e3 = eb(e1 � e3) � k3e3:

(33)

We consider the quadratic Lyapunov function given by

V (x1; x2; x3; ea ; eb; ec) =
1
2

�
x2

1 + x2
2 + x2

3 + e2
a + e2

b + e2
c

�
: (34)

which is a positive de�nite function on R6.
Di�erentiating V along the trajectories of the systems (33) and (32), we obtain the

following:

_V = �
3X

i =1

ki e2
i + ea

�
e1e2 � e2

1 �
da1 (t)

dt

�
+ eb

�
e1e3 � e2

3 �
db1 (t)

dt

�
+ ec

�
e1e2 �

dc1 (t)
dt

�
:

(35)
In view of (35), we take the parameter update law as follows:

8
><

>:

da1 ( t )
dt = e1e2 � e2

1;
db1 ( t )

dt = e1e3 � e2
3;

dc1 ( t )
dt = e1e2:

(36)

Substituting (36) into (35), we get

_V = �
3X

i =1

ki e2
i ; (37)

which is a negative de�nite function on R3: Hence, by the Lyapunov stability theory [15],
it follows that ei (t) �! 0 ast �! 1 for i = 1 ; 2; 3. Hence, we have proved the following
theorem.

Theorem 4.1 The novel 3-D chaotic systems (24) and (25) with unknown parame-
ters are globally and exponentially synchronized for all initial conditions by the adaptive
feedback control law (29) and the parameter update law (36), wherek1; k2; k3 are positive
constants 4.1.
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Figure 5 : Synchronization of the states x1(t) and y1(t).
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Figure 6 : Synchronization of the states x2(t) and y2(t).

4.1 Numerical simulations

We used the classical fourth-order Runge-Kutta method with the step sizeh = 10 � 8 to
solve the system of di�erential equations (24), (25) and (36), when the adaptive control
law (29) is applied.

The parameter values of the novel 3-D chaotic system (24) are chosen as in the chaotic
case (2). The positive gain constants are taken aski = 4, for i = 1 ; 2; 3.

The initial conditions for the master system (24) are chosen asx1(0) = 5 ; x2(0) =
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Figure 7 : Synchronization of the states x3(t) and y3(t).
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Figure 8 : Time-history of the synchronization errors e1(t); e2(t); e3(t):

� 3; x3(0) = � 10 and those for the slave system (25) are chosen asy1(0) = 14 ; y2(0) =
10; y3(0) = 5 : Furthermore, as initial conditions of the parameter estimates of the un-
known parameters, we have chosena1(0) = 10 ; b1(0) = 15 ; c1(0) = 20 : In Figs. 5-7, the
synchronization of the states of the master system (24) and slave system (25) is depicted,
when the adaptive control law (29) and parameter update law (36) are implemented. In
Fig. 8, the time-history of the synchronization errors e1(t); e2(t); e3(t) is depicted.
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5 Conclusion

In this paper, a new chaotic system is introduced. Basic properties of this system are
studied, namely, the equilibrum points and their stability, the Lyapunov exponent and
the Kaplan-Yorke dimension. Moreover, adaptive control schemes have been proposed
to stabilize and synchronize such two new chaotic systems. Numerical simulations using
MATLAB have been made to illustrate our results for the new chaotic system with
unknown parameters.
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Abstract: This study focuses on two passive controls. Passive control is the addition
of a small object to an object to reduce the drag force of the object. In this case, two
passive controls are placed in front of and in the rear of the main object. The distance
between the main object and the two passive controls varies and the Reynolds number
used is 5000. The main object is a circular cylinder, and its passive control in front
is a cylinder of type- I at the distance S / D = 0.6, 1.2 ; 1.8; 2.4; 3.0 and in the rear
is an elliptical or circular cylinder at the distance T / D = 0,6; 0,9; 1,2; 1,5; 1,8 and
2,1. In this study, we want to �nd an e�ective distance of the main object to two
passive controls so that the drag coe�cient of the main object is minimal compared
to that with non-passive control or with one passive control in front. In addition,
a mathematical model of the drag coe�cient of circular cylinders with two passive
controls at Re = 5000 will be obtained.
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1 Introduction

Today, so many people are racing to create new technologies. Technological advancement
is growing rapidly. Technology is actually a way and e�ort to improve the quality of
human life [1]. New technologies can be created by conducting ongoing research, where
the new technology is expected to change the behavior of users of these new technologies.
Research related to 
uid 
ow can be done by experiment or simulation. Study of the

ow of 
uids through objects with the aim of reducing the drag force of most objects is
a paramount concern of the researchers.

Some researchers used one passive control placed in front of various shapes, such as
cylindrical cylinders, type-I cylinders, type-D cylinders etc. Circular cylinders, elliptical
cylinders or other shapes are commonly used objects for designing industrial chimneys,
o�shore and 
yover structures and others. In this case, the design process should allow
for the geometrical shape of the object because it a�ects the value of the drag coe�cient,
so that for di�erent geometric shapes the drag coe�cient values are also di�erent. At the
interaction between the 
uid 
ow and the object the resulting 
uid 
ow across a single
object or multiple grouped objects will produce di�erent 
ow characteristics.

In this study, we consider a boundary layer because it is seen that the liquid that 
ows
through the surface of the object comes with the 
ow of particles around it. Basically,
the boundary layer is an increase in shear stress which will a�ect the 
ow velocity in
each layer [14]. The surface of the object will move slowly due to the friction force, so
that the particle 
ow velocity around the object will be zero. While the other particles
will interact,the velocity of the 
ow away from the object will be faster. This is due to
increased shear stress.

There are some studies that use boundary layer concept, and the concept of the
boundary layer can help to �nd the answer to the e�ect of shear stress having a very
important role in 
ow characteristics around the object [2]. The research, among others,
has been conducted on the 
ow of 
uids through an object, such as a single cylindrical
circular object [3], or a modi�ed cylinder such as a cylinder of type-I or a cylinder of type-
D [4,5] and a study has been conducted on a 
uid stream through more than one object,
i.e. 
uid 
ow through more than one cylinder of various sizes and con�gurations, 
uid

ow through a circular cylinder with tandem con�guration [6{9] and eliptical cylinders
with their side con�gurations [10,11].

The existence of a drag force occurs when an object is bypassed by a 
uid. In this case,
the drag force is in
uenced by several parameters, one of which is the drag coe�cient.
One way to reduce the drag force on the objects bypassed is to add a smaller object in
front of the main object called the passive control. The addition of passive control is
carried out to reduce the coe�cient by 48% [6], also one can �nd a mathematical model
for a circular cylinder with two passive controls with the Reynolds number 5000. The
cylinder of type-I is a circular cylinder obtained by cutting the left and right ends at a
certain angle, so that the cylinder is shaped like I. The best cutting edge is 53o, this is
because the wake occured is wider than that at the other angle, forming also a wider and
more annoying strong 
ow on the object wall.

In this study, we will get a mathematical model for a circular cylinder with two
passive controls with the Reynolds number when these two passive controls e�ectively
decrease the drag coe�cient. The Reynolds number used is Re = 5000. Two passive
controls will be used, the passive control in front is the cylinder of type-I and the passive
control of type-I is placed perpendicular to the 
ow, while the passive control in the rear
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is landscape. The distance between the passive control in front and the circular cylinder
is varying, as well as the distance between the passive control in the rear and the circular
cylinder.

2 Numerical Method

The previously described problem can be solved by using the unstable incompressible

uid equation and the Navier-Stokes equation:

@v
@t

+ r � vv = �r P +
1

Re
r 2v; (1)

r � v = 0 ; (2)

where Re is the Reynolds number,v is the velocity, and P is the pressure. The Navier-
Stokes equation can be solved by using SIMPLE algorithms and numerical methods. The
�rst thing to do is to give the initial value for each variable. By ignoring the pressure
components, we will �nd the velocity component of the momentum equation, so equation
(1) becomes

@v
@t

= �r � vv +
1

Re
r 2v (3)

by using the �nite di�erence method, we have

(f x ) i =
2f i +1 + 3 f i � 6f i � 1 + f i � 2

6 dx
and (f y ) j =

2f j +1 + 3 f j � 6f j � 1 + f j � 2

6 dx
;

(f xx ) i =
f i +1 � 2f i + f i � 1

dx2 and (f y y) j =
f j +1 � 2f j + f j � 1

dx2 ;

and afterwards
@v
@t

=
v �� � v �

� t
= �r P (4)

because of equation (2), then equation (4) becomes

r � v �

� t
= � � P (5)

by using SOR (Successive Over Relaxation)

(Pn ) i;j = (1 � � )(Pn � 1) i;j + � (Pn ) i;j : (6)
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Figure 1 : Design of the research system.

Figure 2 : Schematic of two passive controls and a circular cylinder.

3 Main Result

Our research system is 10D 20D, where D is the diameter of the circular cylinder, placed
at the distance of 4D from the front of the system and in the center of the system, as
shown in Figure 1.

In this study, we used two passive controls. The �rst passive control is a cylinder of
type-I placed in front of a circular cylinder at varying distance, i.e. S / D = 0.6,1,2,1,8,2,4
and 3.0. The second passive control are circular cylindrical and elliptical cylinders. The
second passive control is placed in the rear of the circular cylinder at varying distance,
i.e. T / D = 0.6,0,9,1,2,1,5,1,8 and 2.1 as shown in Figure 2.

3.1 Drag coe�cient

The drag coe�cient of a single circular cylinder has been obtained by using the simula-
tion program, the results are compared with experimental results and other simulation
programs. We calculated that the drag coe�cient of a single cylinder with Re = 100 is
1.356, while other researchers, with the same Reynolds number, have obtained: Zulhi-
dayat has 1.4 and Five has 1.39 [12]. In this paper we will simulate a circular cylinder
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with two passive controls, and the Reynolds number used is 5000. The drag coe�cient
for a circular cylinder with Re = 5000 is 1.51.

S/D 0.6 1.2 1.8 2.4 3.0
CD 5000 1.455 1.273 1.221 1.224 1.216

Table 1 : Cd of a circular cylinder for Re=5000 with di�erence S/D.

Table 1 presents data on the drag coe�cient of a circular cylinder with a passive
control, the cylinder of type-I , located at the front at varying distance. From the table it
is clear that for the Reynold number Re = 5000, the best distance to get the minimum
drag coe�cient is S/D = 1.8 or S/D = 3.0 with a drag coe�cient of 1.221 or 1.216.
The value of the drag coe�cient is still smaller than the drag coe�cient without passive
control.

CDO S/D
T/D 0.6 1.2 1.8 2.4 3.0
0.6 1.116 1.012 0.973 0.992 0.987
0.9 1.205 1.043 1.015 1.007 1.008
1.2 1.169 1.014 0.977 0.990 0.986
1.5 1.412 1.277 0.916 1.265 1.245
1.8 1.557 1.284 1.225 1.222 1.195
2.1 1.401 1.384 1.220 1.209 1.191

Table 2 : CD of a circular cylinder for Re=5000 with di�erence S/D.

The drag coe�cient of a circular cylinder with two passive controls at the front and
in the rear. Passive control in front of the circular cylinder is the cylinder of type-I , while
the passive control behind the circular cylinder is a small circular cylinder. The data on
the drag coe�cient with the Reynolds number Re = 5000 and the con�guration as above,
can be seen in Table 2. It appears that the passive control behind has a signi�cant e�ect
on the drag coe�cient, since the drag coe�cient is still smaller than that without passive
control. The minimum drag coe�cient of the con�guration is 0.916, this occurs at S/D
= 1.8 and T/D = 1.5.
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3.2 Mathematical Model

In this case, the simulation result of the drag coe�cient with two passive controls is inter-
polated to obtain the mathematical model. By using the bilinear interpolation approach
one can make a mathematical model of the drag coe�cient. Bilinear interpolation is the
development of linear interpolation of two variables [13]. In this study we use the 2nd
order bilinear interpolation. In this case, the variables used are (x, y) = (T / D, S /
D). By taking the nine points of drag data that have been obtained from the simulation
results in Table 2 we can get the interpolation formulation. Therefore, nine polynomial
equations and nine unknown coe�cients can be obtained. The polynomial interpolation
function can be written as follows:

f (x; y) = a00 + a01y + a02y2 + a10x + a11xy + a12xy2 + a20x2 + a21x2y + a22x2y2: (7)

Taking data from Table 3 and substituting (x, y)=(T/D, S/D) into f(x,y) we �nd the
unknown coe�cients. Therefore, we can obtain the mathematical model of the drag
coe�cient as follows:

E(x; y) = 0 :0275x2y2 � 0:0240x2y + 0 :0590x2 � 0:1713xy2 + 0 :1792xy � 0:2958x

+5 :5913y2 � 0:848y + 1 :5542: (8)

f (T=D; S=D) S/D
T/D 0.6 1.8 3.0
0.6 1.116 0.973 0.987
1.2 1.169 0.977 0.986
1.8 1.557 1.225 1.195

Table 3 : Nine drag data results for a circular cylinder

The error in the above mathematical model is calculated using an absolute error as
follows:

e(x; y) = jE (x; y) � f (x; y)j: (9)
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Figure 3 : Graphic plot of Table 2 in Matlab.

Figure 4 : Comparison of the graphic plot of Table 2 and the graphic plot of Table 3.

If we simulate the original data in Table 2 as shown in Figure 3 and compare it with
the simulation result by using bilinear interpolation shown in Figure 4 then it appears
that the smallest absolute error is S / D = 0.6,1.8,3.0 , T / D = 0.6,1.2,1.8 with the
value of Cd = 1.116, 1.169, 1.557, 0.973, 0.977, 1.225, 0.987, 0.986, 1.195 and also the
obtained largest absolute error is in S / D =2.4 , T / D = 1.5 , with the value of Cd =
1.265. In other words, the error will not exceed the point of 0.2282.

3.3 Wake

In this study, the velocity data at the distance 6D, 8.5D and 11D from the center of the
circular cylinder or at the distance 10D, 12.5D and 15D from the front of the system,
are shown in Figure 1 . In both passive controls with Re = 5000 there is a wake. Also,
it can be seen for the drag coe�cient of the main circular cylinder that there is a
signi�cant decrease. In this case there is a decrease in the drag coe�cient which a�ects
the magnitude of the average velocity behind the circular cylinder.

It appears that Table 4 shows that a decrease in 
ow velocity behind the circular
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cylinder correspons to the decrease in the drag coe�cient. In addition, the 
ow velocity
near the circular cylinder (i.e., 6D from the center of the circular cylinder) will increase
as the distance moves farther away from the center of the circular cylinder and will return
equally to the speed without passive control.

Re Single 1 PC % 2 PC %
5000 1.51 1.216 19.47 0.916 39.34

Table 4 : CD for Re = 5000.

4 Conclusion

By using the bilinear interpolation approach one can make a mathematical model of the
drag coe�cient. Bilinear interpolation is the development of linear interpolation of two
variables. In this study we use the 2nd order bilinear interpolation. Thus, a mathematical
model can be formed forCd of a circular cylinder using two passive controls at Re =
5000. The mathematical model can be written as follows:

E(x; y) = 0 :0275x2y2 � 0:0240x2y + 0 :0590x2 � 0:1713xy2 + 0 :1792xy � 0:2958x

+5 :5913y2 � 0:848y + 1 :5542: (10)

In addition, a reduction of the drag coe�cient in a circular cylinder can be done by
adding passive control. Passive control can be placed in front and/or behind. The drag
coe�cient can be reduced by up to 40% if using passive control in the form of the cylinder
of type-I and an ellipse-shaped cylindrical back control rather than a passive control drag
coe�cient. This is reinforced by the decreasing 
ow velocity behind the circular cylinder.
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Abstract: In this paper, we studied the nonlinear two-mode modi�ed Korteweg-de
Vries (TMmKdV) equation. We derived multiple singular soliton solutions to this
new version of KdV equation by using the simpli�ed form of Hirota's direct method.
Also, kink and periodic solutions are extracted by using the tanh-expansion and the
sine-cosine function methods. Finally, graphical analysis is conducted to show some
physical features regarding TMmKdV equation.

Keywords: two-mode mKdV; Hirota bilinear method; sine-cosine function method;
multiple singular solutions; kink and periodic solutions.
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1 Introduction

Sergei V. Korsunsky [1] was the �rst who established the nonlinear two-mode Korteweg-
de Vries (TMKdV) equation which reads

wtt + ( a1 + a2)wxt + a1a2wxx + (( � 1 + � 2)
@
@t

+ ( � 1a2 + � 2a1)
@

@x
)wwx (1)

+ (( � 1 + � 2)
@
@t

+ ( � 1a2 + � 2a1)
@

@x
)wxxx ;

where w(x; t ) is a �eld function representing the height of the free water surface above a

at bottom, a1 and a2 are the phase velocities,� 1 and � 2 are the dispersion parameters,
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� 1 and � 2 are the parameters of nonlinearity.

The modi�ed Korteweg-de Vries (mKdV) equation for the one-dimensional propa-
gation of solitary waves in a 
uid is given by

wt + �w xxx + �w 2wx = 0 ; (2)

which is a generalized model in ocean dynamics, nonlinear lattice and plasma physics. In
this paper we reconstruct and study the two-mode modi�ed Korteweg-de Vries equation
which describes the propagation of two wave modes of the same orientation. Now, the
two-mode modi�ed Korteweg-de Vries (TMmKdV) equation in a scaled-form reads

wtt + ( a1 + a2)wxt + a1a2wxx + ( � (� 1 + � 2)
@
@t

+ � (� 1a2 + � 2a1)
@

@x
)w2wx (3)

+ ( � (� 1 + � 2)
@
@t

+ � (� 1a2 + � 2a1)
@

@x
)wxxx ;

where a1; a2; � 1; � 2; � 1; � 2 are some real numbers,w(x; t ) is a �eld function, a1 and a2

are the phase velocities,� 1 and � 2 are the dispersion parameters,� 1 and � 2 are
the parameters of nonlinearity. Note that a1; a2 are considered to be distinct andx; t
2 (�1 ; 1 ): Now we suggest the changes of variable by using the transformations [1{5]:

T = ( � 1 + � 2)
� 1
2 t;

X = ( � 1 + � 2)
� 1
2 (x � a0t);

a0 =
a1 + a2

2
;

W = ( � 1 + � 2)
1
2 w:

Therefore, equation (3) reduces to TMmKdV equation in a scaled form as

WT T � a2WXX + ( �
@

@T
� ��a

@
@X

)W 2Wx + ( �
@

@T
� ��a

@
@X

)WXXX ; (4)

where

a =
a1 � a2

2
;

� =
� 2 � � 1

� 2 + � 1
; j� j � 1;

� =
� 2 � � 1

� 2 + � 1
; j� j � 1;

where j� j � 1; j� j � 1 and a is de�ned above. Note that when a = 0, by integrating with
respect to t, the two-mode modi�ed Korteweg-de Vries equation (4) is reduced to the
standard modi�ed Korteweg-de Vries equation (2).

Finally, for more details about generating two-mode equations and physical features
such models possess, we recommend for the readers the following references [6{14].

2 Multiple Soliton Solutions

In this section, we apply the simpli�ed bilinear method [15{20], to �nd single soliton
solutions and multiple soliton solutions for TMmKdV equation. First, we substitute

W (X; T ) = e" i ; " i (X; T ) = hi X � ! i T
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into the linear terms of (4) and solve the resulting equation to obtain the dispersion
relation

! i =
�h 3

i � hi

p
� 2h4

i + 4 ��ah 2
i + 4a2

2
: (5)

As a result " i becomes

" i (X; T ) = hi X �
�h 3

i � hi

p
� 2h4

i + 4 ��ah 2
i + 4a2

2
T; i = 1 ; 2; : : : : (6)

Second, we propose the solutions of (4) in the form

W (X; T ) = R
�

arctan
�

h(X; T )
k(X; T )

��

X
= R

hX k � kX h
h2 + k2 : (7)

The auxiliary functions h(X; T ) and k(X; T ) for single-soliton solution are given by

(

h(X; T ) = e" 1 (X;T ) = eh1 X �
�h 3

1 � h 1

p
� 2 h 4

1 +4 ��ah 2
1 +4 a 2

2 T ;
k(X; T ) = 1 :

(8)

Substituting (7) and (8) into (4) and solving for R, we get

R = � 2

r
6�
�

: (9)

Under the constraint condition � = �; the single soliton solution is given by

W (X; T ) = 2 h1

r
6�
�

eh1 X �
�h 3

1 � h 1

p
� 2 h 4

1 +4 ��ah 2
1 +4 a 2

2 T

1 + e2h1 X � ( �h 3
1 � h1

p
� 2 h4

1 +4 ��ah 2
1 +4 a2 )T

= h1

r
6�
�

sech ("1(X; T )) ; (10)

where

"1(X; T ) = h1X �
�h 3

1 � h1

p
� 2h4

1 + 4 ��ah 2
1 + 4a2

2
T:

To �nd the two-soliton solution, we assume

h(X; T ) = e" 1 + e" 2

= eh1 X �
�h 3

1 � h 1

p
� 2 h 4

1 +4 ��ah 2
1 +4 a 2

2 T + eh2 X �
�h 3

2 � h 2

p
� 2 h 4

2 +4 ��ah 2
2 +4 a 2

2 T ;

k(X; T ) = 1 � c12eh1 X �
�h 3

1 � h 1

p
� 2 h 4

1 +4 ��ah 2
1 +4 a 2

2 T + h2 X �
�h 3

2 � h 2

p
� 2 h 4

2 +4 ��ah 2
2 +4 a 2

2 T :

(11)

Substituting (7) and (11) into (4) and solving for c12, we see that the constraint condition
of two soliton solutions exists only if � = � = � 1 and the phase shiftc12 is obtained by

c12 =
(h1 � h2)2

(h1 + h2)2 (12)
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and this can be generalized as

cij =
(hi � hj )2

(hi + hj )2 ; 1 � i < j � 3: (13)

To get the two-soliton solutions for (4), we substitute (11) and (12) into (7) and use
� = � = 1. As a result, we get

U(X; T ) =
h1eh1 X � r 1 T

�
1 + (h1 � h2 )2

(h1 + h2 )2 e2h2 X � ( �h 3
2 � ( �h 3

2 +2 a)) T
� q

6�
�

( (h1 � h2 )2

(h1 + h2 )2 eh1 X � r 1 T + h2 X � r 2 T � 1)2 + ( eh1 X � r 1 T + eh2 X � r 2 T )2

+
h2eh2 X � r 2 T

�
1 + (h1 � h2 )2

(h1 + h2 )2 e2h1 X � ( �h 3
1 � ( �h 3

1 +2 a)) T
� q

6�
�

( (h1 � h2 )2

(h1 + h2 )2 eh1 X � r 1 T + h2 X � r 2 T � 1)2 + ( eh1 X � r 1 T + eh2 X � r 2 T )2
;

(14)

where

r 1 =
�h 3

1 � (�h 3
1 + 2a)

2
;

r 2 =
�h 3

2 � (�h 3
2 + 2a)

2
:

For the three-soliton solutions, we use
(

h(X; T ) = e" 1 + e" 2 + e" 3 + c123e� 1 + � 2 + " 3 ;

k(X; T ) = 1 � c12e� 1 + � 2 � c13e� 1 + " 3 � c23e� 2 + " 3 ;
(15)

where cij are given in (13). Substituting (7) and (15) into (4) and solving for c123 under
the constraint condition � = � = � 1, we �nd

c123 = c12c13c23:

Finally, we reach to the fact that TMmKdV equation given in (4) has N -soliton solutions
under the constraint condition � = � = � 1 which can be obtained for �nite N , where
N � 3.

3 Singular Soliton Solutions

In this section we construct a multiple singular-soliton solution for (4) where the solution
is assumed to be of the form

W (X; T ) = R ln
�

h(X; T )
k(X; T )

�

X
= R

khX � hkX

kh
: (16)

The dispersion relation as in the previous section is given by

! i =
�h 3

i � hi

p
� 2h4

i + 4 ��ah 2
i + 4a2

2
;

and hence" i (X; T ) = hi X �
�h 3

i � hi

p
� 2h4

i + 4 ��ah 2
i + 4a2

2
T, i = 1 ; 2; : : :.
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For the singular one-soliton solution, we consider

h(X; T ) = 1 + e" 1 (X;T ) ; k(X; T ) = 1 � e" 1 (X;T ) : (17)

Substituting (17) and (16) into (4) and solving for R, we get

R = �
p

� 6�=�: (18)

Under the constraint condition � = � , the single-soliton solution is given by

W (X; T ) = � 2h1

r
� 6�

�
eh1 X �

�h 3
1 � h 1

p
� 2 h 4

1 +4 ��ah 2
1 +4 a 2

2 T

e2h1 X � ( �h 3
1 � h1

p
� 2 h4

1 +4 ��ah 2
1 +4 a2 )T � 1

= � h1

r
� 6�

�
csch ("1(X; T )) : (19)

To obtain singular two-soliton solution, we set
(

h(X; T ) = 1 + e" 1 (X;T ) + e" 2 (X;T ) + c12e" 1 (X;T )+ " 2 (X;T ) ;

k(x; t ) = 1 � e" 1 (X;T ) � e" 2 (X;T ) + c12e" 1 (X;T )+ " 2 (X;T ) :
(20)

Substituting (18), (20) and (16) into (4) and solving for c12 lead to the two soliton
solutions only if � = � = � 1 and the same phase shiftc12 obtained in (12) and hencecij

given by (13).
To construct the singular three-soliton solution, we set

h(X; T ) = 1 + e" 1 (X;T ) + e" 2 (X;T ) + e� 3 (X;T ) + c12e" 1 (X;T )+ " 1 (X;T ) + c23e" 2 (X;T )+ " 3 (X;T )

+ c13e" 1 (X;T )+ " 3 (X;T ) + c123e" 1 (X;T )+ " 2 (X;T )+ " 3 (X;T ) ;

k(X; T ) = 1 � e" 1 (X;T ) � e" 2 (X;T ) � e� 3 (X;T ) + c12e" 1 (X;T )+ " 1 (X;T ) + c23e" 2 (X;T )+ " 3 (X;T )

+ c13e" 1 (X;T )+ " 3 (X;T ) � c123e" 1 (X;T )+ " 2 (X;T )+ " 3 (X;T ) : (21)

Repeating the same previous steps, we reach to the same fact that the three single-soliton
solutions exists only under the constraint condition � = � = � 1.

4 Solitary Ansatze Methods

In this part, we introduce in brief two methods, the tanh-technique and the sine-cosine
function method to solve the problem (4).

4.1 The tanh method

The tanh technique [21{26] suggests the following solution

W (� ) = S(Y ) =
MX

i =0

bi Y i ; (22)

where Y = tanh( �� ). The index M can be determined by a balance procedure. Once
we haveM , we collect all coe�cients of powers of Y in the resulting equation and set
them to zero. Finally, we solve the obtained algebraic system to retrieve the values of
the required coe�cients bi .
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Now, we consider a new variable� = X � 
T to reduce (4) into the following di�er-
ential equation

(
 2 � a2)W �
�
3

(
 + �a )W 3 � � (
 + �a )W 00= 0 ; (23)

where W = W (� ) and the prime denotes the ordinary derivative. By a blanching
procedure for equation (23), the value of the parameterM is equal to 1 and thus
W (� ) = A + B tanh( �� ). Substituting this proposed solution in (23) yields the fol-
lowing algebraic system:

0 = � Aa2 �
1
3

�A 3a� �
1
3

A3�
 + A
 2;

0 = � Ba2 � �A 2Ba� � A2B�
 + B
 2 + 2 �Ba�� 2 + 2B�
� 2;

0 = � �AB 2a� � AB 2�
;

0 = �
1
3

�B 3a� �
1
3

B 3�
 � 2�Ba�� 2 � 2B�
� 2: (24)

Solving the above system produces the following two-wave solution

W (X; T ) = �

p
� 6�� 2 (( � 1 + �� )a + ( � � � )
 )

p
� (( � 1 + � 2)a + 2( � � + � )�� 2)

tanh ( � (X � 
T )) ; (25)

with 
 = ( � �� 2 �
p

a2 � 2�a�� 2 + � 2� 4). If the tanh-function is replaced by coth-
function in (25), a new solution will be obtained.

4.2 The sine-cosine method

The sine-cosine technique [24,25,27{31] assumes the solution of (23) in the form of

W (� ) = A sinB (�� ); (26)

or
W (� ) = A cosB (�� ); (27)

To determine the values ofA; B; 
 and � , we substitute (26) in (23) to get

0 =
�
A�Ba�� 2 � A�B 2a�� 2 + AB�
� 2 � AB 2�
� 2�

sinB � 2(�z ) (28)

�
�
Aa2 + A
 2 + A�B 2a�� 2 + AB 2�
� 2�

sinB (�z ) �
�

1
3

�A 3a� �
1
3

A3�

�

sin3B (�z ):

Now, equating the exponentsB � 2 and 3B in (28) and setting the coe�cients of same
power to zero, produce the following two-wave solution

W (X; T ) =

p
� 6�� 2 (( � 1 + �� )a + ( � � � )
 )

p
� (( � 1 + � 2)a + ( � � + � )�� 2)

csc (� (X � 
T )) ; (29)

with 
 = 1
2 (� �� 2 �

p
4a2 � 4�a�� 2 + � 2� 4).

Finally, by using the cosine-function method (27), another two-wave solution will be
obtained being the same as given in (29) but with csc replaced by sec.
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5 Numerical Example

In this section, we study some physical features of the solution of TMmKdV equation
given in (25). In Figure 1, increasing the phase velocitya leads to a gradual increase in
the space between the two-waves of TMmKdV equation. In Figure 2, decreasing of the
nonlinearity parameter � leads to interaction of the two-waves of the TMmKdV equation.

Figure 1 : Behaviors of two-waves in (25) at the increasing phase velocity: a = 1 ; 3; 5 respec-
tively. The assigned values for the other parameters are � = 
 = 1, � = 1

2 , � = 1
4 , � = � 1,

� = 1.

Figure 2 : Behaviors of two-waves in (25) at the decreasing nonlinearity parameter: � =
� 1

2 ; 0; 1
2 respectively. The assigned values for the other parameters are� = 
 = 1, s = 1,

� = 1
4 , � = � 1, � = 1.

6 Conclusion

In this paper we studied the solutions of the scaled TMmKdV equation which reads

WT T � a2WXX + ( �
@

@T
� ��a

@
@X

)W 2Wx + ( �
@

@T
� ��a

@
@X

)WXXX :

We used three di�erent methods, the simpli�ed bilinear method, the tanh-technique and
the sine-cosine function method. The following �ndings are observed in this work.

� When � = � = � 1, TMmKdV equation admits multiple-soliton solutions by means
of the simpli�ed bilinear method.

� For arbitrary � and � , periodic solutions are obtained for TMmKdV equation by
using the sine-cosine method.

� For arbitrary � and � , kink solutions are obtained for TMmKdV equation by using
the tanh-expansion method.
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