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Abstract: In this paper, we studied the nonlinear two-mode modified Korteweg-de
Vries (TMmKdV) equation. We derived multiple singular soliton solutions to this
new version of KdV equation by using the simplified form of Hirota’s direct method.
Also, kink and periodic solutions are extracted by using the tanh-expansion and the
sine-cosine function methods. Finally, graphical analysis is conducted to show some
physical features regarding TMmKdV equation.
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1 Introduction

Sergei V. Korsunsky [1] was the first who established the nonlinear two-mode Korteweg-
de Vries (TMKdV) equation which reads

wtt + (a1 + a2)wxt + a1a2wxx + ((λ1 + λ2)
∂

∂t
+ (λ1a2 + λ2a1)

∂

∂x
)wwx (1)

+ ((µ1 + µ2)
∂

∂t
+ (µ1a2 + µ2a1)

∂

∂x
)wxxx,

where w(x, t) is a field function representing the height of the free water surface above a
flat bottom, a1 and a2 are the phase velocities, µ1 and µ2 are the dispersion parameters,
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λ1 and λ2 are the parameters of nonlinearity.

The modified Korteweg-de Vries (mKdV) equation for the one-dimensional propa-
gation of solitary waves in a fluid is given by

wt + αwxxx + βw2wx = 0, (2)

which is a generalized model in ocean dynamics, nonlinear lattice and plasma physics. In
this paper we reconstruct and study the two-mode modified Korteweg-de Vries equation
which describes the propagation of two wave modes of the same orientation. Now, the
two-mode modified Korteweg-de Vries (TMmKdV) equation in a scaled-form reads

wtt + (a1 + a2)wxt + a1a2wxx + (β(λ1 + λ2)
∂

∂t
+ β(λ1a2 + λ2a1)

∂

∂x
)w2wx (3)

+ (α(µ1 + µ2)
∂

∂t
+ α(µ1a2 + µ2a1)

∂

∂x
)wxxx,

where a1, a2, λ1, λ2, µ1, µ2 are some real numbers, w(x, t) is a field function, a1 and a2
are the phase velocities, µ1 and µ2 are the dispersion parameters, λ1 and λ2 are
the parameters of nonlinearity. Note that a1, a2 are considered to be distinct and x, t
∈ (−∞,∞). Now we suggest the changes of variable by using the transformations [1–5]:

T = (µ1 + µ2)
−1
2 t,

X = (µ1 + µ2)
−1
2 (x− a0t),

a0 =
a1 + a2

2
,

W = (λ1 + λ2)
1
2w.

Therefore, equation (3) reduces to TMmKdV equation in a scaled form as

WTT − a2WXX + (β
∂

∂T
− βλa ∂

∂X
)W 2Wx + (α

∂

∂T
− αµa ∂

∂X
)WXXX , (4)

where

a =
a1 − a2

2
,

λ =
λ2 − λ1
λ2 + λ1

, |λ| ≤ 1,

µ =
µ2 − µ1

µ2 + µ1
, |µ| ≤ 1,

where |λ| ≤ 1, |µ| ≤ 1 and a is defined above. Note that when a = 0, by integrating with
respect to t, the two-mode modified Korteweg-de Vries equation (4) is reduced to the
standard modified Korteweg-de Vries equation (2).

Finally, for more details about generating two-mode equations and physical features
such models possess, we recommend for the readers the following references [6–14].

2 Multiple Soliton Solutions

In this section, we apply the simplified bilinear method [15–20], to find single soliton
solutions and multiple soliton solutions for TMmKdV equation. First, we substitute

W (X,T ) = eεi , εi(X,T ) = hiX − ωiT
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into the linear terms of (4) and solve the resulting equation to obtain the dispersion
relation

ωi =
αh3i ± hi

√
α2h4i + 4αµah2i + 4a2

2
. (5)

As a result εi becomes

εi(X,T ) = hiX −
αh3i ± hi

√
α2h4i + 4αµah2i + 4a2

2
T, i = 1, 2, . . . . (6)

Second, we propose the solutions of (4) in the form

W (X,T ) = R

(
arctan

(
h(X,T )

k(X,T )

))
X

= R
hXk − kXh
h2 + k2

. (7)

The auxiliary functions h(X,T ) and k(X,T ) for single-soliton solution are given by{
h(X,T ) = eε1(X,T ) = eh1X−

αh31±h1
√
α2h41+4αµah21+4a2

2 T ,
k(X,T ) = 1.

(8)

Substituting (7) and (8) into (4) and solving for R, we get

R = ±2

√
6α

β
. (9)

Under the constraint condition λ = µ, the single soliton solution is given by

W (X,T ) = 2h1

√
6α

β

eh1X−
αh31±h1

√
α2h41+4αµah21+4a2

2 T

1 + e2h1X−(αh3
1±h1

√
α2h4

1+4αµah2
1+4a2)T

= h1

√
6α

β
sech (ε1(X,T )) , (10)

where

ε1(X,T ) = h1X −
αh31 ± h1

√
α2h41 + 4αµah21 + 4a2

2
T.

To find the two-soliton solution, we assume

h(X,T ) = eε1 + eε2

= eh1X−
αh31±h1

√
α2h41+4αµah21+4a2

2 T + eh2X−
αh32±h2

√
α2h42+4αµah22+4a2

2 T ,

k(X,T ) = 1− c12eh1X−
αh31±h1

√
α2h41+4αµah21+4a2

2 T+h2X−
αh32±h2

√
α2h42+4αµah22+4a2

2 T .

(11)

Substituting (7) and (11) into (4) and solving for c12, we see that the constraint condition
of two soliton solutions exists only if λ = µ = ±1 and the phase shift c12 is obtained by

c12 =
(h1 − h2)

2

(h1 + h2)
2 (12)
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and this can be generalized as

cij =
(hi − hj)2

(hi + hj)
2 , 1 ≤ i < j ≤ 3. (13)

To get the two-soliton solutions for (4), we substitute (11) and (12) into (7) and use
λ = µ = 1. As a result, we get

U(X,T ) =
h1e

h1X−r1T
(

1 + (h1−h2)
2

(h1+h2)
2 e2h2X−(αh3

2±(αh
3
2+2a))T

)√
6α
β

( (h1−h2)
2

(h1+h2)
2 eh1X−r1T+h2X−r2T − 1)2 + (eh1X−r1T + eh2X−r2T )2

+
h2e

h2X−r2T
(

1 + (h1−h2)
2

(h1+h2)
2 e2h1X−(αh3

1±(αh
3
1+2a))T

)√
6α
β

( (h1−h2)
2

(h1+h2)
2 eh1X−r1T+h2X−r2T − 1)2 + (eh1X−r1T + eh2X−r2T )2

,

(14)

where

r1 =
αh31 ± (αh31 + 2a)

2
,

r2 =
αh32 ± (αh32 + 2a)

2
.

For the three-soliton solutions, we use{
h(X,T ) = eε1 + eε2 + eε3 + c123e

ε1+ε2+ε3 ,

k(X,T ) = 1− c12eε1+ε2 − c13eε1+ε3 − c23eε2+ε3 ,
(15)

where cij are given in (13). Substituting (7) and (15) into (4) and solving for c123 under
the constraint condition λ = µ = ±1, we find

c123 = c12c13c23.

Finally, we reach to the fact that TMmKdV equation given in (4) has N -soliton solutions
under the constraint condition λ = µ = ±1 which can be obtained for finite N , where
N ≥ 3.

3 Singular Soliton Solutions

In this section we construct a multiple singular-soliton solution for (4) where the solution
is assumed to be of the form

W (X,T ) = R ln

(
h(X,T )

k(X,T )

)
X

= R
khX − hkX

kh
. (16)

The dispersion relation as in the previous section is given by

ωi =
αh3i ± hi

√
α2h4i + 4αµah2i + 4a2

2
,

and hence εi(X,T ) = hiX −
αh3i ± hi

√
α2h4i + 4αµah2i + 4a2

2
T , i = 1, 2, . . ..
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For the singular one-soliton solution, we consider

h(X,T ) = 1 + eε1(X,T ), k(X,T ) = 1− eε1(X,T ). (17)

Substituting (17) and (16) into (4) and solving for R, we get

R = ±
√
−6α/β. (18)

Under the constraint condition λ = µ, the single-soliton solution is given by

W (X,T ) = −2h1

√
−6α

β

eh1X−
αh31±h1

√
α2h41+4αµah21+4a2

2 T

e2h1X−(αh3
1±h1

√
α2h4

1+4αµah2
1+4a2)T − 1

= −h1
√
−6α

β
csch (ε1(X,T )) . (19)

To obtain singular two-soliton solution, we set{
h(X,T ) = 1 + eε1(X,T ) + eε2(X,T ) + c12e

ε1(X,T )+ε2(X,T ),

k(x, t) = 1− eε1(X,T ) − eε2(X,T ) + c12e
ε1(X,T )+ε2(X,T ).

(20)

Substituting (18), (20) and (16) into (4) and solving for c12 lead to the two soliton
solutions only if λ = µ = ±1 and the same phase shift c12 obtained in (12) and hence cij
given by (13).

To construct the singular three-soliton solution, we set

h(X,T ) = 1 + eε1(X,T ) + eε2(X,T ) + eε3(X,T ) + c12e
ε1(X,T )+ε1(X,T ) + c23e

ε2(X,T )+ε3(X,T )

+ c13e
ε1(X,T )+ε3(X,T ) + c123e

ε1(X,T )+ε2(X,T )+ε3(X,T ),

k(X,T ) = 1− eε1(X,T ) − eε2(X,T ) − eε3(X,T ) + c12e
ε1(X,T )+ε1(X,T ) + c23e

ε2(X,T )+ε3(X,T )

+ c13e
ε1(X,T )+ε3(X,T ) − c123eε1(X,T )+ε2(X,T )+ε3(X,T ). (21)

Repeating the same previous steps, we reach to the same fact that the three single-soliton
solutions exists only under the constraint condition λ = µ = ±1.

4 Solitary Ansatze Methods

In this part, we introduce in brief two methods, the tanh-technique and the sine-cosine
function method to solve the problem (4).

4.1 The tanh method

The tanh technique [21–26] suggests the following solution

W (ζ) = S(Y ) =

M∑
i=0

biY
i, (22)

where Y = tanh(δζ). The index M can be determined by a balance procedure. Once
we have M , we collect all coefficients of powers of Y in the resulting equation and set
them to zero. Finally, we solve the obtained algebraic system to retrieve the values of
the required coefficients bi.
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Now, we consider a new variable ζ = X − γT to reduce (4) into the following differ-
ential equation

(γ2 − a2)W − β

3
(γ + λa)W 3 − α(γ + µa)W ′′ = 0, (23)

where W = W (ζ) and the prime denotes the ordinary derivative. By a blanching
procedure for equation (23), the value of the parameter M is equal to 1 and thus
W (ζ) = A + B tanh(δζ). Substituting this proposed solution in (23) yields the fol-
lowing algebraic system:

0 = −Aa2 − 1

3
λA3aβ − 1

3
A3βγ +Aγ2,

0 = −Ba2 − λA2Baβ −A2Bβγ +Bγ2 + 2µBaαδ2 + 2Bαγδ2,

0 = −λAB2aβ −AB2βγ,

0 = −1

3
λB3aβ − 1

3
B3βγ − 2µBaαδ2 − 2Bαγδ2. (24)

Solving the above system produces the following two-wave solution

W (X,T ) = ±
√
−6αδ2 ((−1 + λµ)a+ (λ− µ)γ)√
β ((−1 + λ2)a+ 2(−λ+ µ)αδ2)

tanh (δ (X − γT )) , (25)

with γ = (−αδ2 ±
√
a2 − 2µaαδ2 + α2δ4). If the tanh-function is replaced by coth-

function in (25), a new solution will be obtained.

4.2 The sine-cosine method

The sine-cosine technique [24,25,27–31] assumes the solution of (23) in the form of

W (ζ) = A sinB(δζ), (26)

or
W (ζ) = A cosB(δζ), (27)

To determine the values of A, B, γ and δ, we substitute (26) in (23) to get

0 =
(
AµBaαδ2 −AµB2aαδ2 +ABαγδ2 −AB2αγδ2

)
sinB−2(δz) (28)

−
(
Aa2 +Aγ2 +AµB2aαδ2 +AB2αγδ2

)
sinB(δz)−

(
1

3
λA3aβ − 1

3
A3βγ

)
sin3B(δz).

Now, equating the exponents B − 2 and 3B in (28) and setting the coefficients of same
power to zero, produce the following two-wave solution

W (X,T ) =

√
−6αδ2 ((−1 + λµ)a+ (λ− µ)γ)√
β ((−1 + λ2)a+ (−λ+ µ)αδ2)

csc (δ (X − γT )) , (29)

with γ = 1
2 (−αδ2 ±

√
4a2 − 4µaαδ2 + α2δ4).

Finally, by using the cosine-function method (27), another two-wave solution will be
obtained being the same as given in (29) but with csc replaced by sec.
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5 Numerical Example

In this section, we study some physical features of the solution of TMmKdV equation
given in (25). In Figure 1, increasing the phase velocity a leads to a gradual increase in
the space between the two-waves of TMmKdV equation. In Figure 2, decreasing of the
nonlinearity parameter λ leads to interaction of the two-waves of the TMmKdV equation.
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Figure 1: Behaviors of two-waves in (25) at the increasing phase velocity: a = 1, 3, 5 respec-
tively. The assigned values for the other parameters are δ = γ = 1, λ = 1
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Figure 2: Behaviors of two-waves in (25) at the decreasing nonlinearity parameter: λ =
− 1

2
, 0, 1

2
respectively. The assigned values for the other parameters are δ = γ = 1, s = 1,

µ = 1
4
, α = −1, β = 1.

6 Conclusion

In this paper we studied the solutions of the scaled TMmKdV equation which reads

WTT − a2WXX + (β
∂

∂T
− βλa ∂

∂X
)W 2Wx + (α

∂

∂T
− αµa ∂

∂X
)WXXX .

We used three different methods, the simplified bilinear method, the tanh-technique and
the sine-cosine function method. The following findings are observed in this work.
•When λ = µ = ±1, TMmKdV equation admits multiple-soliton solutions by means

of the simplified bilinear method.
• For arbitrary λ and µ, periodic solutions are obtained for TMmKdV equation by

using the sine-cosine method.
• For arbitrary λ and µ, kink solutions are obtained for TMmKdV equation by using

the tanh-expansion method.
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