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Abstract: Topological degree theory is a useful tool for studying systems of dif-
ferential equations. In this work, a biological model is considered. Specifically, we
prove the existence of positive T -periodic solutions of a system of delay differential
equations for a model with feedback arising on circadian oscillations in the drosophila
period gene protein.
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1 Introduction

The study of cellular control has been developed in many papers on mathematical analysis
to determine the existence of stable oscillations in mRNA regulatory processes, see [5]
and to understand circadian cycles and, in particular, of the cellular machinery that
produces them, see [7].

In all cases, search for conditions on the parameters of the proposed systems has been
carried out with the purpose of determining conditions for the existence of stable cycles
and the cycles when the system solution may be even chaotic.

Let us consider a model proposed by Goldbeter [3], who showed the variation on PER:
the period of messenger of Ribo-Nucleic Acid (mRNA) in Drosophila (often called “fruit
flies”) related to circadian rhythms. Our model does not consider temperature variation
as shown in [6]. Here, a nonautonomous version of the model is considered with the
aim of proving the existence of periodic solutions by means of a powerful topological
tool: the Leray-Schauder degree (see [1] and [2]). In the original model, the existence
of a positive steady state can be shown, under appropriate conditions, by the use of the
Brouwer degree. As we shall see, when the parameters are replaced by periodic functions,
essentially the same conditions yield the existence of positive periodic solutions.
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Figure 1: Model for the circadian variation in PER.

2 The Model

The following simplified model was proposed in [3]. Some more complex alternative
models have been studied with light interaction and timeless (TIM) proteins (see [4]).

2.1 General features

1. This negative feedback will be described by an equation of Hill type in which n
denotes the degree of cooperativity, and K(t) is the threshold repression function.

2. To simplify the model, we consider that PN behaves directly as a repressor.

3. The constants Ks,Ki and Vj denote the maximum rate and Michaelis constant of
the kinase(s) and the phosphatase(s) involved in the reversible phosphorylation of
P0 into P1, and of P1 into P2 are not negative.

4. Maximum accumulation rate of cytosol is denoted by Vs.

5. Cytosol is degraded enzymically, in a Michaelian manner, at a maximum rate Vm.

6. Functions of this system are:

(a) Cytosolic concentration is denoted by M .

(b) We consider only three states of the protein: unphosphorylated (P0),
monophosphorylated (P1) and bisphosphorylated (P2).

(c) Fully phosphorylated form of PER (P2) is degraded in a Michaelian man-
ner, at a maximum rate Vd, and also transported into the nucleus, at a rate
characterized by the apparent first-order rate constant k1.
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7. The rate of synthesis of PER, proportional to M , is characterized by an apparent
first-order rate constant Ks.

8. Transport of the nuclear, bisphosphorylated form of PER (PN ) into the cytosol is
characterized by the apparent first-order rate constant k2.

9. The model could be readily extended to include a larger number of phosphorylated
residues.

With this in mind, our non-autonomous version of Goldbeter’s system reads:

dM

dt
=

VS(t)K1(t)n

Kn
1 (t) + PN (t)n

− Vm(t)M(t)

Km1(t) +M(t)
,

dP0

dt
= Ks(t)M(t) +

V2(t)P1(t)

K2(t) + P1(t)
− V1(t)P0(t)

K1(t) + P0(t)
,

dP1

dt
=

V1(t)P0(t)

K1(t) + P0(t)
+

V4(t)P2(t)

K4(t) + P2(t)
− P1(t)

(
V2(t)

K2(t) + P1(t)
+

V3(t)

K3(t) + P1(t)

)
,

dP2

dt
=

V3(t)P1(t)

K3(t) + P1(t)
+ k2(t)PN (t)− P2(t)

(
k1(t) +

V4(t)

K4(t) + P2(t)
+

Vd(t)

Kd(t) + P2(t)

)
,

dPN
dt

= k1(t)P2(t)− k2(t)PN (t),

(1)
where Ki, i = 1, 2, 3, 4, d,m1, s, k1, k2 and Vj , j = 1, 2, 3, 4, S,m, d are strictly positive,
continuous T -periodic functions. We shall prove that, under accurate assumptions to be
specified below, the system admits at least one positive T -periodic solution.

3 Existence of Positive Periodic Solutions

In order to apply the topological degree method to problem (1), let us consider the space
of continuous T -periodic vector functions

CT := {u ∈ C(R,R5) : u(t) = u(t+ T ) for all t},

equipped with the standard uniform norm, and the positive cone

K := {u ∈ CT : uj ≥ 0, j = 1, . . . , 5}.

Thus, the original problem can be written as Lu = Nu, where L : C1 ∩CT → C is given
by Lu := u′ and the nonlinear operator N : K → CT is defined as the right-hand side of
system (1). For convenience, the average of a function u shall be denoted by u, namely

u := 1
T

∫ T
0
u(t) dt. Also, identifying R5 with the subset of constant functions of CT , we

may define the function φ : [0,+∞)5 → R5 given by φ(x) := Nx.
For the reader’s convenience, let us summarize the basic properties of the Leray-

Schauder degree which, roughly speaking, can be regarded as an algebraic count of the
zeros of a mapping F : Ω → E, where E is a Banach space and Ω ⊂ E is open and
bounded. In more precise terms, assume that F = I − K, where K is compact and
F 6= 0 on ∂Ω. The degree degLS(F,Ω, 0) is defined as the Brouwer degree degB of its
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restriction F |V : Ω∩V → V , where V is an accurate finite-dimensional subspace of E. In
particular, if the range of K is finite dimensional, then one may take V as the subspace
spanned by Im(K). If degLS(F,Ω, 0) is different from 0, then F vanishes in Ω; moreover,
the degree is invariant over a continuous homotopy Fλ := I−Kλ with Kλ being compact
and Fλ 6= 0 over ∂Ω. Finally, we recall that if ∆ : Rn → Rn is a diffeomorphism and
0 ∈ ∆(A) for some open bounded A ⊂ Rn, then degB(∆, A, 0) is just the sign of the
Jacobian determinant of ∆ at the (unique) pre-image of 0. The following continuation
theorem is a direct consequence of the standard topological degree methods (see e.g. [1]).

Theorem 3.1 Assume there exists Ω ⊂ K◦ being open and bounded such that:

a) The problem Lu = λNu has no solutions on ∂Ω for 0 < λ < 1.

b) φ(u) 6= 0 for all u ∈ ∂Ω ∩ R5.

c) degB(φ,Ω ∩ R5, 0) 6= 0.

Then (1) has at least one solution in Ω.

3.1 A priori bounds

Firstly, we shall find appropriate bounds for the solution of the problem Lu = λNu with
λ ∈ (0, 1). For convenience, let us fix the following notation for the minima and maxima
of all the functions involved in the model, namely

0 < vi ≤ Vi(t) ≤ Vi, 0 < κj ≤ Kj(t) ≤ Kj , 0 < k̂l ≤ kl(t) ≤ kl, ∀ i, j, l.

Now assume that u ∈ K◦ satisfies Lu = λNu for some 0 < λ < 1. Let us firstly
consider a value t∗ at which M achieves an absolute maximum, then M ′(t∗) = 0 and
hence

VS(t∗)K1(t∗)n

Kn
1 (t∗) + PN (t∗)n

=
Vm(t∗)M(t∗)

Km1
(t∗) +M(t∗)

≥ vmM(t∗)

Km1
+M(t∗)

:= bM (M(t∗)),

where the increasing function

bM (x) :=
vmx

Km1
+ x

has inverse such that

b−1M (y) :=
Km1

y

vm − y
.

If

Hypothesis 3.1
vm > VS ,

then

M(t∗) = b−1M

(
VS(t∗)K1(t∗)n

Kn
1 (t∗) + PN (t∗)n

)
< b−1M (VS(t∗)) ≤ VSKm1

vM − VS
:=M.

Next, suppose that P0 achieves its absolute maximum at some point, denoted again t∗,
then

Ks(t
∗)M(t∗) +

V2(t∗)P1(t∗)

K2(t∗) + P1(t∗)
=

V1(t∗)P0(t∗)

K1(t∗) + P0(t∗)
≥ v1P0(t∗)

K1 + P0(t∗)
:= b0(P0(t∗)).
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Again, we define an increasing and invertible function:

b0(x) :=
v1x

K1 + x
→ b−10 (y) :=

K1y

v1 − y
.

Thus, under the condition

Hypothesis 3.2
KSM+ V2 < v1

we deduce that

P0(t∗) = b−10

(
Ks(t

∗)M(t∗) +
V2(t∗)P1(t∗)

K2(t∗) + P1(t∗)

)
<

KSM+ V2
v1 − (KSM+ V2)

K1 := P0.

Next, an upper bound P1 for P1 is readily obtained in the following way. Let us denote
again by t∗ a value at which P1 achieves its absolute maximum, then

V1(t∗)P0(t∗)

K1(t∗) + P0(t∗)
+

V4(t∗)P2(t∗)

K4(t∗) + P2(t∗)
= P1(t∗)

(
V2(t∗)

K2(t∗) + P1(t∗)
+

V3(t∗)

K3(t∗) + P1(t∗)

)
.

When P1(t∗) � 0, the right-hand side gets close to V2(t∗) + V3(t∗), while the left-hand
side is always less than or equal to V1P0

κ1+P0
+ V4 because P2

K4(t∗)+P4
≤ 1 and x

κ1+x
increase

when x = P0.
Thus, the existence of P1 is guaranteed by the condition

Hypothesis 3.3

V1P0

κ1 + P0
+ V4 < min

t∈R
{V2(t) + V3(t)}.

The remaining upper bounds are obtained as follows. In the first place, define a new
variable Q := PN + P2 which satisfies the equation:

dQ

dt
=

V3(t)P1(t)

K3(t) + P1(t)
− P2(t)

(
V4(t)

K4(t) + P2(t)
+

Vd(t)

Kd(t) + P2(t)

)
.

If Q achieves its absolute maximum at t∗, then

V3P1

κ3 + P1
≥ V3(t∗)P1(t∗)

K3(t∗) + P1(t∗)
− P2(t∗)

(
V4(t∗)

K4(t∗) + P2(t∗)
+

Vd(t
∗)

Kd(t∗) + P2(t∗)

)
.

As before, if the condition

Hypothesis 3.4
V3P1

κ3 + P1
< min

t∈R
(V4(t) + Vd(t))

is assumed, then P2(t∗) ≤ P̃ for some P̃ . Moreover, from the fourth equation of the

system we deduce the existence of a constant C such that
dP2

dt
≥ −CP2(t). Hence we

obtain, for all t, that P2(t) ≤ eCT P̃ := P2. Then Q′(t) is bounded. Besides, there exist
t̂ critical point of PN , in consequence

k1(t̂)P2(t̂) = k2(t̂)PN (t̂),



6 C.H.D. ALLIERA

then PN (t̂) verifies:

PN (t̂) ≤ k∗1
k2∗
P2,

thus

Q(t̂) = PN (t̂) + P2(t̂) ≤ Q0 :=

(
k∗1
k2∗

+ 1

)
P2.

In this way, knowing that Q′ ≤ Q1, by integrating up to a certain t in the interval
J := [t̂, t̂+ T ] follows:

Q(t) = Q(t̂) +

∫ t

t̂

Q′(t) ≤ Q0 + Q1 (t− t̂)︸ ︷︷ ︸
≤T

, t ∈ J

in this way, there is also a PN of PN (t), then

PN (t) ≤ Q(t) ≤ Q0 + Q1T := PN .

After upper bounds are established, we proceed with the lower bounds as follows.
Assume that M achieves its absolute minimum at some t∗, then we use again the fact
that M ′(t∗) = 0 to obtain:

Vm(t∗)M(t∗)

Km1
(t∗) +M(t∗)

=
VS(t∗)K1(t∗)

n

Kn
1 (t∗) + PN (t∗)n

≥ vSκ
n
1

κn1 + PnN
.

As we did before:
Vm(t∗)M(t∗)

Km1
(t∗) +M(t∗)

≥ vmM(t∗)

κm1
+M(t∗)

lets define the increasing and bijective function

b̂M (x) :=
vmx

κm1
+ x

, b̂−1M (y) :=
κm1

y

vm − y

this inverse is increasing too, thus:

M(t∗) ≥ b̂−1M
(

vSκ
n
1

Kn1 + PnN

)
:= m.

This shows that M1(t) ≥ m for some positive constant m. In the same way, we find a
lower bound p0 for P0 using the fact that

V1(t∗)P0(t∗)

K1(t∗) + P0(t∗)
= Ks(t∗)M(t∗) +

V2(t∗)P1(t∗)

K2(t∗) + P1(t∗)
≥ κsm.

We know that
V1(t∗)P0(t∗)

K1(t∗) + P0(t∗)
≥ v1P0(t∗)

κ1 + P0(t∗)
,

this function is increasing and its inverse is also increasing:

b̂1(x) :=
v1x

κ1 + x
→ b̂−11 (y) :=

κ1y

v1 − y
,

therefore, it is defined p0 := b̂−11 (κsm).
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Next, suppose that P1 achieves its absolute minimum at t∗, then

P1(t∗)

(
V2(t∗)

K2(t∗) + P1(t∗)
+

V3(t∗)

K3(t∗) + P1(t∗)

)
>

V1(t∗)P0(t∗)

K1(t∗) + P0(t∗)
≥ v1p0
K1 + p0

> 0

which yields the existence of a positive lower bound p1 := v1p0

K1+p0
. Finally, positive lower

bounds for P2 and PN are obtained by means of the function Q = P2 + PN . Indeed, if
Q achieves its absolute minimum at some t∗, then

P2(t∗)

(
V4(t∗)

K4(t∗) + P2(t∗)
+

Vd(t∗)

Kd(t∗) + P2(t∗)

)
≥ v3p1
K3 + p1

and we deduce that P2(t∗) cannot be arbitrarily small. As before, using the fact that
P ′2 ≥ −CP2 it is seen that P2(t) ≥ e−CTP2(t∗) and the conclusion follows. This, in turn,
yields a lower bound pN > 0 for PN .

4 Main Theorem

We are already in conditions of defining the open set Ω ⊂ K◦ as

Ω := {(M,P0, P1, P2, PN ) ∈ CT : m < M(t) <M, p0 < P0(t) < P0,

p1 < P1(t) < P1, p2 < P2(t) < P2, pN < PN (t) < PN}.

Theorem 4.1 Assume that the previous conditions (3.1), (3.2), (3.3) and (3.4) hold.
Then problem (1) has at least one positive T−periodic solution.

Proof. In the previous section, the first condition of the continuation theorem was
verified. It remains to prove that b) and c) are fulfilled as well. With this aim, set
Q := Ω∩R5 and recall that the function φ : Q → R5 is defined by φ(x) = Nx. We claim
that each coordinate φj has different signs at the corresponding opposite faces of Q.

Indeed, compute for example φ1(M, P0, P1, P2, PN ) and φ1(m, P0, P1, P2, PN ) for pj ≤
Pj ≤ Pj :

φ1(M, P0, P1, P2, PN ) =
1

T

∫ T

0

(
VS(t)K1(t)n

Kn
1 (t) + PN

− Vm(t)M
Km1

(t) +M

)
dt

< VS −
vmM
Km1 +M

= 0,

φ1(m, P0, P1, P2, PN ) =
1

T

∫ T

0

(
VS(t)K1(t)n

Kn
1 (t) + PN

− Vm(t)m

Km1
(t) + m

)
dt

>
vSκ

n
1

Kn1 + PnN
− Vmm

κm1
+ m

≥ 0

provided that m is small enough. In the same way, making the lower bounds smaller if
necessary, we deduce that

φ2(M,P0, P1, P2, PN ) < 0 < φ2(M, p0, P1, P2, PN ),

φ3(M,P0,P1, P2, PN ) < 0 < φ3(M,p0, p1, P2, PN ),
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φ4(M,P0, P1,P2, PN ) < 0 < φ4(M,p0, p1, p2, PN ),

φ5(M,P0, P1, P2,PN ) < 0 < φ5(M,p0, p1, p2, pN ).

Thus, condition b) of the continuation theorem is verified. Moreover, we may define a
homotopy as follows. Consider the center of Q given by

℘ :=

(
M+ m

2
,
P0 + p0

2
,
P1 + p1

2
,
P2 + p2

2
,
PN + pN

2

)
and the function H : Q× [0; 1]→ R5 given by

H(x, λ) = (1− λ)(℘− x) + λφ.

We need to verify that H does not vanish at ∂Q. To this end, suppose, for example, that
H(M, P0, P1, P2, PN ) = 0 for some λ̂ ∈ [0; 1], then

0 = H1(M, λ̂) = (1− λ̂)

(
M+ m

2
−M

)
︸ ︷︷ ︸

<0

+λ̂ φ1(M, P0, P1, P2, PN )︸ ︷︷ ︸
<0

< 0,

which is a contradiction. All the remaining cases follow in an analogous way. By the
homotopy invariance of the Brouwer degree, it follows that

degB(φ,Q, 0) = degB(℘− I,Q, 0) = (−1)5 6= 0.

This proves the third condition of the continuation theorem and, therefore, the existence
of a T -periodic solution is deduced.

5 Conclusion

Topological degree was used for proving existence of stable equilibrium in a generic model
of circadian cycle. This theory allowed to demonstrate the existence of positive periodic
solutions when parameters are replaced by fixed periodic functions. The relevance of
finding periodic solutions in biological models relies mainly on the fact that periodic
functions represent natural cycles, such as hormonal processes.

We show that topological degree can be successfully applied to find positive periodic
orbits for some of these models in the non-autonomous case. It is worthy mentioning
that, for diverse biological cycles, the behaviour is characterized by models with periodic
parameters; thus, the present paper provides a useful mathematical tool to understand
such models.

For future work, it would be interesting to consider a more general situation, in
which the parameters are not periodic but almost-periodic functions, which attracted the
attention of many researchers in the last decades. Here, the topological degree cannot
be used anymore because of the lack of compactness of the associated operator; thus, a
different approach is required, such as the use of fixed points in cones under monotonicity
conditions that avoid the compactness assumption.
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